1
|
Gunasekara N, Clauss D, Voss A, Schurz K, Fleck K, Neu-Gil P, Bloch W. The Influence of an Acute Endurance Intervention on Breast Cancer Cell Growth-A Pilot Study. Int J Mol Sci 2025; 26:3976. [PMID: 40362215 PMCID: PMC12071605 DOI: 10.3390/ijms26093976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Exercise potentially inhibits tumor growth. It remains unclear which processes mediate these effects. Alterations of cytokine concentration in serum can influence cancer cell growth and may cause cell growth inhibition. This pilot study examines whether exercise-induced conditioning in serum can directly affect tumor cells. It focuses on serum collected before and after acute endurance exercise and its impact in vitro. Participants underwent a 1 h endurance training on a cycle ergometer. Samples were collected before, after, and two hours post-exercise. MDA-MB-231 cells were incubated with serum, and cell vitality and proliferation were assessed. Cytokine arrays identified relevant cytokine concentration changes. After identifying CXCL9 as a possible contributor to inhibitory effects, we inhibited the CXCR3 pathway and reassessed vitality. Exercise-conditioned serum significantly reduced cell vitality and proliferation post-intervention and after resting. Cytokine arrays revealed changes in multiple concentrations, and the inhibition of CXCL9 resulted in growth inhibitory effects. Our findings suggest that serum conditioned by an endurance intervention causes changes in cancer cell growth. Based on our observations, the alterations in serum cause growth-inhibitory effects, possibly mediated through the CXCR3 axis. This study provides preliminary evidence supporting the role of exercise in modulating the cancer cell growth directly by changes in serum.
Collapse
Affiliation(s)
- Nadira Gunasekara
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, 50933 Köln, Germany (W.B.)
| | - Dorothea Clauss
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, 50933 Köln, Germany (W.B.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anika Voss
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, 50933 Köln, Germany (W.B.)
| | - Konstantin Schurz
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, 50933 Köln, Germany (W.B.)
| | | | - Pablo Neu-Gil
- Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, 50933 Köln, Germany (W.B.)
| |
Collapse
|
2
|
Park JY, Kim TY, Woo SW, Moon HY. Effect of exercise-induced Neutrophil maturation on skeletal muscle repair in vitro. Biochem Biophys Rep 2024; 38:101699. [PMID: 38601749 PMCID: PMC11004084 DOI: 10.1016/j.bbrep.2024.101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Neutrophils as first line defender initiate a cascade of healing process immediately after muscle injury. At muscle injury site, neutrophils remove damaged muscle fibers and recruit other immune cells and these functions show in mature neutrophils. In the previous study, physical exercise can mediate neutrophils' functional changes such as phagocytosis and chemotaxis, though there is no research on how exercise-induced neutrophils contribute the muscle regeneration. In this present study, we investigated the maturation of neutrophils after 4 weeks of mouse treadmill exercise and assessed wound healing assay to evaluate whether treatment with exercise-activated neutrophils is effective for skeletal muscle repair in vitro. In the exercise group, significantly higher mRNA levels of maturation markers compared to the sedentary group and exercise-activated neutrophils improved wound healing of mouse muscle cells. To confirm at the human cell level, based on the well-known fact that exercise increases circulating cortisol levels, neutrophil-like cells were treated with dexamethasone (dHL60 + dex) as exercise mimetics. dHL60 + dex had significantly higher mRNA levels of neutrophil maturation marker and improved wound healing of human skeletal muscle cells compared to the control. These findings suggest that exercise affects neutrophil maturation and that exercise-induced neutrophils contribute to skeletal muscle repair in vitro.
Collapse
Affiliation(s)
- Jae Yeon Park
- Dept. of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae Yeon Kim
- Dept. of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Song Won Woo
- Dept. of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyo Youl Moon
- Dept. of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Bennett S, Tiollier E, Owens DJ, Brocherie F, Louis JB. Implications of Heat Stress-induced Metabolic Alterations for Endurance Training. Int J Sports Med 2024; 45:422-435. [PMID: 38401534 DOI: 10.1055/a-2251-3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Inducing a heat-acclimated phenotype via repeated heat stress improves exercise capacity and reduces athletes̓ risk of hyperthermia and heat illness. Given the increased number of international sporting events hosted in countries with warmer climates, heat acclimation strategies are increasingly popular among endurance athletes to optimize performance in hot environments. At the tissue level, completing endurance exercise under heat stress may augment endurance training adaptation, including mitochondrial and cardiovascular remodeling due to increased perturbations to cellular homeostasis as a consequence of metabolic and cardiovascular load, and this may improve endurance training adaptation and subsequent performance. This review provides an up-to-date overview of the metabolic impact of heat stress during endurance exercise, including proposed underlying mechanisms of altered substrate utilization. Against this metabolic backdrop, the current literature highlighting the role of heat stress in augmenting training adaptation and subsequent endurance performance will be presented with practical implications and opportunities for future research.
Collapse
Affiliation(s)
- Samuel Bennett
- Center for Biological Clocks Research, Texas A&M University, College Station, United States
| | - Eve Tiollier
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Julien B Louis
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
4
|
Huang KY, Upadhyay G, Ahn Y, Sakakura M, Pagan-Diaz GJ, Cho Y, Weiss AC, Huang C, Mitchell JW, Li J, Tan Y, Deng YH, Ellis-Mohr A, Dou Z, Zhang X, Kang S, Chen Q, Sweedler JV, Im SG, Bashir R, Chung HJ, Popescu G, Gillette MU, Gazzola M, Kong H. Neuronal innervation regulates the secretion of neurotrophic myokines and exosomes from skeletal muscle. Proc Natl Acad Sci U S A 2024; 121:e2313590121. [PMID: 38683978 PMCID: PMC11087749 DOI: 10.1073/pnas.2313590121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 05/02/2024] Open
Abstract
Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.
Collapse
Affiliation(s)
- Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Gaurav Upadhyay
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yujin Ahn
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
| | - Masayoshoi Sakakura
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Gelson J. Pagan-Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Younghak Cho
- Department of Chemical and Biomolecular Engineering and KI for the Nano Century, Korea Advanced Institute of Science and Technology, Daejeon305-701, Republic of Korea
| | - Amanda C. Weiss
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Chen Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jennifer W. Mitchell
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jiahui Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yanqi Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yu-Heng Deng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Austin Ellis-Mohr
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Zhi Dou
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Xiaotain Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Sehong Kang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jonathan V. Sweedler
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KI for the Nano Century, Korea Advanced Institute of Science and Technology, Daejeon305-701, Republic of Korea
| | - Rashid Bashir
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Martha U. Gillette
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Mattia Gazzola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Korea University-Korea Institute of Science and Technology Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
5
|
Lautaoja-Kivipelto JH, Karvinen S, Korhonen TM, O'Connell TM, Tiirola M, Hulmi JJ, Pekkala S. Interaction of the C2C12 myotube contractions and glucose availability on transcriptome and extracellular vesicle microRNAs. Am J Physiol Cell Physiol 2024; 326:C348-C361. [PMID: 38047306 PMCID: PMC11192488 DOI: 10.1152/ajpcell.00401.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Exercise-like electrical pulse stimulation (EL-EPS) of myotubes mimics many key physiological changes induced by in vivo exercise. Besides enabling intracellular research, EL-EPS allows to study secreted factors, including muscle-specific microRNAs (myomiRs) carried in extracellular vesicles (EVs). These factors can participate in contraction-induced intercellular cross talk and may mediate the health benefits of exercise. However, the current knowledge of these responses, especially under variable nutritional conditions, is limited. We investigated the effects of EL-EPS on C2C12 myotube transcriptome in high- and low-glucose conditions by messenger RNA sequencing, while the expression of EV-carried miRNAs was analyzed by small RNA sequencing and RT-qPCR. We show that higher glucose availability augmented contraction-induced transcriptional changes and that the majority of the differentially expressed genes were upregulated. Furthermore, based on the pathway analyses, processes related to contractility and cytokine/inflammatory responses were upregulated. In addition, we report that EL-EPS increased packing of miR-1-3p into EVs independent of glucose availability. Together our findings suggest that in vitro EL-EPS is a usable tool not only to study contraction-induced intracellular mechanisms but also extracellular responses. The distinct transcriptional changes observed under variable nutritional conditions emphasize the importance of careful consideration of media composition in future exercise-mimicking studies.NEW & NOTEWORTHY The present study examined for the first time the effects of exercise-like electrical pulse stimulation administered under distinct nutritional conditions on 1) the transcriptome of the C2C12 myotubes and 2) their media containing extracellular vesicle-carried microRNAs. We report that higher glucose availability augmented transcriptional responses related especially to contractility and cytokine/inflammatory pathways. Agreeing with in vivo studies, we show that the packing of exercise-responsive miR-1-3p was increased in the extracellular vesicles in response to myotube contractions.
Collapse
Affiliation(s)
- Juulia H Lautaoja-Kivipelto
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
- Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Sira Karvinen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tia-Marje Korhonen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Thomas M O'Connell
- Department of Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juha J Hulmi
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Bilski J, Brzozowski T. Special Issue "Adipokines, Myokines, and Physical Exercise in Health and Disease 2.0". Int J Mol Sci 2024; 25:940. [PMID: 38256013 PMCID: PMC10815892 DOI: 10.3390/ijms25020940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
We are pleased to present our Editorial to this Special Issue on "Adipokines, Myokines, and Physical Exercise in Health and Disease 2 [...].
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland
| |
Collapse
|
7
|
Yeo RX, Noone J, Sparks LM. Translating In Vitro Models of Exercise in Human Muscle Cells: A Mitocentric View. Exerc Sport Sci Rev 2024; 52:3-12. [PMID: 38126401 DOI: 10.1249/jes.0000000000000330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Human skeletal muscle cell (HSkMC) models provide the opportunity to examine in vivo training-induced muscle-specific mitochondrial adaptations, additionally allowing for deeper interrogation into the effect of in vitro exercise models on myocellular mitochondrial quality and quantity. As such, this review will compare and contrast the effects of in vivo and in vitro models of exercise on mitochondrial adaptations in HSkMCs.
Collapse
|
8
|
Xia H, Scholtes C, Dufour CR, Guluzian C, Giguère V. ERRα fosters running endurance by driving myofiber aerobic transformation and fuel efficiency. Mol Metab 2023; 78:101814. [PMID: 37802398 PMCID: PMC10590867 DOI: 10.1016/j.molmet.2023.101814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVE Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered to express a physiologically relevant activated form of ERRα on skeletal muscle exercise metabolism and performance. METHODS We recently shown that mutational inactivation of three regulated phosphosites in the amino terminal domain of the nuclear receptor ERRα impedes its degradation, leading to an accumulation of ERRα proteins and perturbation of metabolic homeostasis in ERRα3SA mutant mice. Herein, we used a multi-omics approach in combination with physical endurance tests to ascertain the consequences of expressing the constitutively active phospho-deficient ERRα3SA form on muscle exercise performance and energy metabolism. RESULTS Genetic heightening of ERRα activity enhanced exercise capacity, fatigue-resistance, and endurance. This phenotype resulted from extensive reprogramming of ERRα global DNA occupancy and transcriptome in muscle leading to an increase in oxidative fibers, mitochondrial biogenesis, fatty acid oxidation, and lactate homeostasis. CONCLUSION Our findings support the potential to enhance physical performance and exercise-induced health benefits by targeting molecular pathways regulating ERRα transcriptional activity.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Charlotte Scholtes
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3
| | - Catherine R Dufour
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3
| | - Christina Guluzian
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6.
| |
Collapse
|
9
|
Murata A, Akiyama H, Honda H, Shimizu K. Electrical pulse stimulation-induced tetanic exercise simulation increases the secretion of extracellular vesicles from C2C12 myotubes. Biochem Biophys Res Commun 2023; 672:177-184. [PMID: 37354611 DOI: 10.1016/j.bbrc.2023.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Extracellular vesicles (EVs) released into the blood during exercise mediate its whole-body health effects. The differentiation of EVs released by skeletal muscle cells in vivo from those released by other cells is challenging, therefore, it is unclear whether exercise increases the number of EVs secreted by skeletal muscle cells. In this study, we investigated whether exercise affects the quantity of EVs released from skeletal muscle cells using in vitro exercise models. C2C12 myotubes were cultured on a gel layer with 1 or 30 Hz electrical pulse stimulation (EPS) to induce contractions as an artificial simulating exercise. We found that tetanic contraction induced by 30 Hz EPS increased the number of secreted EVs. MicroRNA (miRNA)-seq analysis revealed that 30 Hz EPS altered the miRNA in the secreted EVs. Furthermore, expression analysis of genes related to the biogenesis and transport of EVs revealed that the expression of ALG-2 interacting protein X (Alix) was increased in response to 30 Hz EPS, and the peak value of intracellular Ca2+ in myotubes at 30 Hz EPS was higher than that at 1 Hz, indicating that the increase in intracellular Ca2+ concentration may be related to the increased secretion of EVs in response to 30 Hz EPS.
Collapse
Affiliation(s)
- Akari Murata
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hirokazu Akiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
10
|
Dalle Carbonare L, Minoia A, Zouari S, Piritore FC, Vareschi A, Romanelli MG, Valenti MT. Crosstalk between Bone and Muscles during Physical Activity. Cells 2023; 12:2088. [PMID: 37626898 PMCID: PMC10453939 DOI: 10.3390/cells12162088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| |
Collapse
|
11
|
Bols NC, Lee LEJ, Dowd GC. Distinguishing between ante factum and post factum properties of animal cell lines and demonstrating their use in grouping ray-finned fish cell lines into invitromes. In Vitro Cell Dev Biol Anim 2023; 59:41-62. [PMID: 36719554 DOI: 10.1007/s11626-022-00744-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 02/01/2023]
Abstract
In this review, animal cell lines are considered to have two classes of attributes: "before-the-fact" (ante factum) and "after-the-fact" (post factum) properties. Fish cell lines from Actinopterygii (ray-finned fishes) are used to illustrate this distinction and to demonstrate how these properties can be used in various ways to categorize cell lines into groups or invitromes. Before-the-fact properties are set at initiation and are properties of the sample and species from which the cell line arose and of the scientist(s) who developed the cell line. On the basis of the Actinopterygii sample, invitromes exist for embryos, larvae, juveniles, adults, and spawning fish, and for most solid organs but rarely for biological fluids. For species, invitromes exist for only a small fraction of the Actinopterygii total. As to their development, scientists from around the world have contributed to invitromes. By contrast, after-the-fact properties are limitless and become apparent during development, characterization, use, and storage of the cell line. For ray-finned invitromes, cell lines appear to acquire immortality during development, are characterized poorly for differentiation potential, have numerous uses, and are stored formally only sporadically. As an example of applying these principles to a specific organ, the skeletal muscle invitrome is used. For ante factum properties, the cell lines are mainly from trunk muscle of economically important fish from 11 orders, 15 families, 19 genera, and 21 species of ray-finned fishes. For post factum properties, fibroblast-like and myogenic cell lines have been described but epithelial-like FHM is most widely used and curated. Considering cell lines by their before- and after-the-fact properties should facilitate integration of new cell lines into the literature and help incorporate the discipline of cell biology into other research areas, particularly the natural history of fishes.
Collapse
Affiliation(s)
- Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Georgina C Dowd
- The New Zealand Institute for Plant & Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand
| |
Collapse
|
12
|
Takada S, Fumoto Y, Kinugawa S. Ergogenic effects of caffeine are mediated by myokines. Front Sports Act Living 2022; 4:969623. [PMID: 36570495 PMCID: PMC9774489 DOI: 10.3389/fspor.2022.969623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Exercise has long been known to effectively improve and enhance skeletal muscle function and performance. The favorable effects of exercise on remote organs other than skeletal muscle are well known, but the underlying mechanism has remained elusive. Recent studies have indicated that skeletal muscle not only enables body movement, but also contributes to body homeostasis and the systemic stress response via the expression and/or secretion of cytokines (so-called myokines). Not only the induction of muscle contraction itself, but also changes in intracellular calcium concentration ([Ca2+]i) have been suggested to be involved in myokine production and secretion. Caffeine is widely known as a Ca2+ ionophore, which improves skeletal muscle function and exercise performance (i.e., an "ergogenic aid"). Interestingly, some studies reported that caffeine or an increase in [Ca2+]i enhances the expression and/or secretion of myokines. In this review, we discuss the association between caffeine as an ergogenic aid and myokine regulation.
Collapse
Affiliation(s)
- Shingo Takada
- Department of Lifelong Sport, School of Sports Education, Hokusho University, Ebetsu, Japan,Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan,*Correspondence: Shingo Takada ;
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan,Shintaro Kinugawa
| |
Collapse
|
13
|
Sheng CY, Son YH, Jang J, Park SJ. In vitro skeletal muscle models for type 2 diabetes. BIOPHYSICS REVIEWS 2022; 3:031306. [PMID: 36124295 PMCID: PMC9478902 DOI: 10.1063/5.0096420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Type 2 diabetes mellitus, a metabolic disorder characterized by abnormally elevated blood sugar, poses a growing social, economic, and medical burden worldwide. The skeletal muscle is the largest metabolic organ responsible for glucose homeostasis in the body, and its inability to properly uptake sugar often precedes type 2 diabetes. Although exercise is known to have preventative and therapeutic effects on type 2 diabetes, the underlying mechanism of these beneficial effects is largely unknown. Animal studies have been conducted to better understand the pathophysiology of type 2 diabetes and the positive effects of exercise on type 2 diabetes. However, the complexity of in vivo systems and the inability of animal models to fully capture human type 2 diabetes genetics and pathophysiology are two major limitations in these animal studies. Fortunately, in vitro models capable of recapitulating human genetics and physiology provide promising avenues to overcome these obstacles. This review summarizes current in vitro type 2 diabetes models with focuses on the skeletal muscle, interorgan crosstalk, and exercise. We discuss diabetes, its pathophysiology, common in vitro type 2 diabetes skeletal muscle models, interorgan crosstalk type 2 diabetes models, exercise benefits on type 2 diabetes, and in vitro type 2 diabetes models with exercise.
Collapse
Affiliation(s)
- Christina Y. Sheng
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Young Hoon Son
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | - Sung-Jin Park
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
14
|
RSPO3 is a novel contraction-inducible factor identified in an "in vitro exercise model" using primary human myotubes. Sci Rep 2022; 12:14291. [PMID: 35995979 PMCID: PMC9395423 DOI: 10.1038/s41598-022-18190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The physiological significance of skeletal muscle as a secretory organ is now well known but we can only speculate as to the existence of as-yet-unidentified myokines, especially those upregulated in response to muscle contractile activity. We first attempted to establish an “insert-chamber based in vitro exercise model” allowing the miniature but high cell-density culture state enabling highly developed contractile human myotubes to be readily obtained by applying electric pulse stimulation (EPS). By employing this in vitro exercise model, we identified R-spondin 3 (RSPO3) as a novel contraction-inducible myokine produced by cultured human myotubes. Contraction-dependent muscular RSPO3 mRNA upregulation was confirmed in skeletal muscles of mice subjected to sciatic nerve mediated in situ contraction as well as those of mice after 2 h of running. Pharmacological in vitro experiments demonstrated a relatively high concentration of metformin (millimolar range) to suppress the contraction-inducible mRNA upregulation of human myokines including RSPO3, interleukin (IL)-6, IL-8 and CXCL1. Our data also suggest human RSPO3 to be a paracrine factor that may positively participate in the myogenesis processes of myoblasts and satellite cells. Thus, the “insert chamber-based in vitro exercise model” is a potentially valuable research tool for investigating contraction-inducible biological responses of human myotubes usually exhibiting poorer contractility development even in the setting of EPS treatment.
Collapse
|
15
|
Sugimoto T, Nakamura T, Yokoyama S, Fujisato T, Konishi S, Hashimoto T. Investigation of Brain Function-Related Myokine Secretion by Using Contractile 3D-Engineered Muscle. Int J Mol Sci 2022; 23:ijms23105723. [PMID: 35628536 PMCID: PMC9144730 DOI: 10.3390/ijms23105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Brain function-related myokines, such as lactate, irisin, and cathepsin B (CTSB), are upstream factors that control brain-derived neurotrophic factor (BDNF) expression and are secreted from skeletal muscle by exercise. However, whether irisin and CTSB are secreted by muscle contraction remains controversial. Three-dimensional (3D)-engineered muscle (3D-EM) may help determine whether skeletal muscle contraction leads to the secretion of irisin and CTSB, which has never been identified with the addition of drugs in conventional 2D muscle cell cultures. We aimed to investigate the effects of electrical pulse stimulation (EPS)-evoked muscle contraction on irisin and CTSB secretion in 3D-EM. The 3D-EM, which consisted of C2C12 myoblasts and type-1 collagen gel, was allowed to differentiate for 2 weeks and divided into the control and EPS groups. EPS was applied at 13 V, 66 Hz, and 2 msec for 3 h (on: 5 s/off: 5 s). Irisin and CTSB secretion into the culture medium was measured by Western blotting. Irisin secretion was significantly increased following EPS (p < 0.05). However, there was no significant difference in CTSB secretion between the two groups. The present study suggests that irisin may be a contractile muscle-derived myokine, but CTSB is not secreted by EPS-evoked muscle contractile stimulation in 3D-EM.
Collapse
Affiliation(s)
- Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Sho Yokoyama
- Department of Mechanical Engineering, School of Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Toshia Fujisato
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Satoshi Konishi
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan;
- Correspondence: ; Tel.: +81-77-599-4134
| |
Collapse
|
16
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
17
|
Moyle LA, Davoudi S, Gilbert PM. Innovation in culture systems to study muscle complexity. Exp Cell Res 2021; 411:112966. [PMID: 34906582 DOI: 10.1016/j.yexcr.2021.112966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.
Collapse
Affiliation(s)
- Louise A Moyle
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Sadegh Davoudi
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
de Wendt C, Espelage L, Eickelschulte S, Springer C, Toska L, Scheel A, Bedou AD, Benninghoff T, Cames S, Stermann T, Chadt A, Al-Hasani H. Contraction-Mediated Glucose Transport in Skeletal Muscle Is Regulated by a Framework of AMPK, TBC1D1/4, and Rac1. Diabetes 2021; 70:2796-2809. [PMID: 34561225 DOI: 10.2337/db21-0587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for AMPK, play important roles in exercise metabolism and contraction-dependent translocation of GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK-RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK combined with knockout of either Tbc1d1, Tbc1d4, or both RabGAPs. AMPK deficiency in muscle reduced treadmill exercise performance. Additional deletion of Tbc1d1 but not Tbc1d4 resulted in a further decrease in exercise capacity. In oxidative soleus muscle, AMPK deficiency reduced contraction-mediated glucose uptake, and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic extensor digitorum longus muscle, AMPK deficiency reduced contraction-stimulated glucose uptake, and deletion of Tbc1d1, but not Tbc1d4, led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase Rac1. Our results demonstrate a novel mechanistic link between glucose transport and the GTPase signaling framework in skeletal muscle in response to contraction.
Collapse
Affiliation(s)
- Christian de Wendt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Awovi Didi Bedou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
19
|
Molinari C, Ruga S, Farghali M, Galla R, Bassiouny A, Uberti F. Preventing c2c12 muscular cells damage combining magnesium and potassium with vitamin D3 and curcumin. J Tradit Complement Med 2021; 11:532-544. [PMID: 34765517 PMCID: PMC8572722 DOI: 10.1016/j.jtcme.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Background and aim Physical activity is defined as any bodily movement produced by skeletal muscles which causes energy consumption; moderate and constant physical activity is known to be beneficial and to slow the muscle loss process associated with aging. The aim of the present study was to test, in an in vitro exercise model, the biological effects of a new formulation composed of magnesium and potassium combined with vitamin D and curcumin created to support muscle activity and to prevent hypercontraction damage. Experimental procedure C2C12 cells were treated with vitamin D, buffered magnesium bisglycinate, curcumin, and potassium citrate. Cell viability, morpho-functional changes, calcium and magnesium movements, and the main kinases involved in glucose uptake were analyzed. The glycogen level and lactate were also evaluated. Results and conclusion Important results about a positive effect on mitochondrial activity, ATP production, oxygen consumption and in the physiological differentiation of C2C12 cells were obtained. Further experiments were performed under conditions that mimic the biological aspects of strenuous exercise. The combination of magnesium, vitamin D3, curcumin, and potassium citrate revealed beneficial effects on skeletal muscle cells under physiological conditions as well as while mimicking intense activity. In particular, in an in vitro model, they were able to control the hypercontraction, restoring ion fluxes, reducing inflammation signaling and supporting the main mechanism involved on aerobic activity. Our results have indicated for the first time that this new combination could be considered as a new nutraceutical formulation to improve physical performance and muscle recovery.
Collapse
Affiliation(s)
- Claudio Molinari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Mahitab Farghali
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Ahmad Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
20
|
Nintou E, Karligiotou E, Vliora M, Fatouros IG, Jamurtas AZ, Sakellaridis N, Dimas K, Flouris AD. Effects of In Vitro Muscle Contraction on Thermogenic Protein Levels in Co-Cultured Adipocytes. Life (Basel) 2021; 11:life11111227. [PMID: 34833103 PMCID: PMC8625343 DOI: 10.3390/life11111227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between the exercising muscle and the adipose tissue, mediated by myokines and metabolites, derived from both tissues during exercise has created a controversy between animal and human studies with respect to the impact of exercise on the browning process. The aim of this study was to investigate whether co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of electrical pulse stimulation (EPS) mimicking muscle contraction can impact the expression of UCP1, PGC-1a, and IL-6 in adipocytes, therefore providing evidence on the direct crosstalk between adipocytes and stimulated muscle cells. In the co-cultured C2C12 cells, EPS increased the expression of PGC-1a (p = 0.129; d = 0.73) and IL-6 (p = 0.09; d = 1.13) protein levels. When EPS was applied, we found that co-culturing led to increases in UCP1 (p = 0.044; d = 1.29) and IL-6 (p = 0.097; d = 1.13) protein expression in the 3T3-L1 adipocytes. The expression of PGC-1a increased by EPS but was not significantly elevated after co-culturing (p = 0.448; d = 0.08). In vitro co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of EPS leads to increased expression of thermogenic proteins. These findings indicate changes in the expression pattern of proteins related to browning of adipose tissue, supporting the use of this in vitro model to study the crosstalk between adipocytes and contracting muscle.
Collapse
Affiliation(s)
- Eleni Nintou
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Eleni Karligiotou
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Maria Vliora
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 341500 Larissa, Greece; (N.S.); (K.D.)
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 341500 Larissa, Greece; (N.S.); (K.D.)
| | - Andreas D. Flouris
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
- Correspondence: ; Tel.: +30-2431-047-072
| |
Collapse
|
21
|
Experimental models of lipid overload and their relevance in understanding skeletal muscle insulin resistance and pathological changes in mitochondrial oxidative capacity. Biochimie 2021; 196:182-193. [PMID: 34563603 DOI: 10.1016/j.biochi.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
It remains essential to decipher some of the pathological mechanisms that link obesity with deteriorating human health. Insulin resistance, due to enhanced free fatty acid substrate delivery, results in disrupted glucose homeostasis and altered mitochondrial oxidative capacity, which is a characteristic feature of an obese state. In fact, as a major site for regulating glucose homeostasis and energy production in response to insulin, the skeletal muscle has become an interesting target tissue to understand the impact of lipid overload on the development of insulin resistance and impaired mitochondrial respiratory function. In addition to systematically retrieving the discussed data, the current review brings an essential perspective in understanding the relevance of experimental models of lipid overload such as high fat diets in understanding the pathological link between insulin resistance and pathological changes in mitochondrial oxidative capacity. Importantly, inclusion of evidence from transgenic model highlights some of the unique molecular targets that are implicated in the development of insulin resistance and inefficient mitochondrial respiration processes within an obese state. Importantly, saturation with lipid products such as ceramides and diacylglycerols, especially within the skeletal muscle, appears to be instrumental in paving the path leading to worsening of metabolic complications. These metabolic consequences mostly interfere with the efficiency of the mitochondrial electron transport chain, leading to overproduction of toxic reactive oxygen species. Therefore, therapeutic agents that reverse the effects of lipid overload by improving insulin sensitivity and mitochondrial oxidative capacity are crucial for the management or even treatment of metabolic diseases.
Collapse
|
22
|
Chung I, Kim SA, Kim S, Lee JO, Park CY, Lee J, Kang J, Lee JY, Seo I, Lee HJ, Han JA, Kang MJ, Lim E, Kim SJ, Wu SW, Oh JY, Chung JH, Kim EK, Kim HS, Shin MJ. Biglycan reduces body weight by regulating food intake in mice and improves glucose metabolism through AMPK/AKT dual pathways in skeletal muscle. FASEB J 2021; 35:e21794. [PMID: 34314059 DOI: 10.1096/fj.202002039rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022]
Abstract
While biglycan (BGN) is suggested to direct diverse signaling cascades, the effects of soluble BGN as a ligand on metabolic traits have not been studied. Herein, we tested the effects of BGN on obesity in high-fat diet (HFD)-induced obese animals and glucose metabolism, with the underlying mechanism responsible for observed effects in vitro. Our results showed that BGN administration (1 mg/kg body weight, intraperitoneally) significantly prevented HFD-induced obesity, and this was mainly attributed to reduced food intake. Also, intracerebroventricular injection of BGN reduced food intake and body weight. The underlying mechanism includes modulation of neuropeptides gene expression involved in appetite in the hypothalamus in vitro and in vivo. In addition, BGN regulates glucose metabolism as shown by improved glucose tolerance in mice as well as AMPK/AKT dual pathway-driven enhanced glucose uptake and GLUT4 translocation in L6 myoblast cells. In conclusion, our results suggest BGN as a potential therapeutic target to treat risk factors for metabolic diseases.
Collapse
Affiliation(s)
- InHyeok Chung
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Shin Ae Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seolsong Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jung Ok Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Clara Yongjoo Park
- Department of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Juhee Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Jun Kang
- Department of Biotechnology, CHA University, Gyeonggi-do, Republic of Korea
| | - Jin Young Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Ilhyeok Seo
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jeong Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jeong Ah Han
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Min Ju Kang
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eunice Lim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Su Jin Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sang Woo Wu
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joo Yeon Oh
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ji Hyung Chung
- Department of Biotechnology, CHA University, Gyeonggi-do, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Min-Jeong Shin
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.,School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Gonzalez-Franquesa A, Peijs L, Cervone DT, Koçana C, Zierath JR, Deshmukh AS. Insulin and 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Differentially Regulate the Skeletal Muscle Cell Secretome. Proteomes 2021; 9:37. [PMID: 34449730 PMCID: PMC8396280 DOI: 10.3390/proteomes9030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a major contributor to whole-body glucose homeostasis and is an important endocrine organ. To date, few studies have undertaken the large-scale identification of skeletal muscle-derived secreted proteins (myokines), particularly in response to stimuli that activate pathways governing energy metabolism in health and disease. Whereas the AMP-activated protein kinase (AMPK) and insulin-signaling pathways have received notable attention for their ability to independently regulate skeletal muscle substrate metabolism, little work has examined their ability to re-pattern the secretome. The present study coupled the use of high-resolution MS-based proteomics and bioinformatics analysis of conditioned media derived from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR-an AMPK activator)- and insulin-treated differentiated C2C12 myotubes. We quantified 858 secreted proteins, including cytokines and growth factors such as fibroblast growth factor-21 (Fgf21). We identified 377 and 118 proteins that were significantly altered by insulin and AICAR treatment, respectively. Notably, the family of insulin growth factor binding-proteins (Igfbp) was differentially regulated by each treatment. Insulin- but not AICAR-induced conditioned media increased the mitochondrial respiratory capacity of myotubes, potentially via secreted factors. These findings may serve as an important resource to elucidate secondary metabolic effects of insulin and AICAR stimulation in skeletal muscle.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Daniel T. Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Ceren Koçana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Juleen R. Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Lautaoja JH, M O'Connell T, Mäntyselkä S, Peräkylä J, Kainulainen H, Pekkala S, Permi P, Hulmi JJ. Higher glucose availability augments the metabolic responses of the C2C12 myotubes to exercise-like electrical pulse stimulation. Am J Physiol Endocrinol Metab 2021; 321:E229-E245. [PMID: 34181491 PMCID: PMC8410101 DOI: 10.1152/ajpendo.00133.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The application of exercise-like electrical pulse simulation (EL-EPS) has become a widely used exercise mimetic in vitro. EL-EPS produces similar physiological responses as in vivo exercise, while less is known about the detailed metabolic effects. Routinely, the C2C12 myotubes are cultured in high-glucose medium (4.5 g/L), which may alter EL-EPS responses. In this study, we evaluate the metabolic effects of EL-EPS under the high- and low-glucose (1.0 g/L) conditions to understand how substrate availability affects the myotube response to EL-EPS. The C2C12 myotube, media, and cell-free media metabolites were analyzed using untargeted nuclear magnetic resonance (NMR)-based metabolomics. Furthermore, translational and metabolic changes and possible exerkine effects were analyzed. EL-EPS enhanced substrate utilization as well as production and secretion of lactate, acetate, 3-hydroxybutyrate, and branched-chain fatty acids (BCFAs). The increase in BCFAs correlated with branched-chain amino acids (BCAAs) and BCFAs were strongly decreased when myotubes were cultured without BCAAs suggesting the action of acyl-CoA thioesterases on BCAA catabolites. Notably, not all EL-EPS responses were augmented by high glucose because EL-EPS increased phosphorylated c-Jun N-terminal kinase and interleukin-6 secretion independent of glucose availability. Administration of acetate and EL-EPS conditioned media on HepG2 hepatocytes had no adverse effects on lipolysis or triacylglycerol content. Our results demonstrate that unlike in cell-free media, the C2C12 myotube and media metabolites were affected by EL-EPS, particularly under high-glucose condition suggesting that media composition should be considered in future EL-EPS studies. Furthermore, acetate and BCFAs were identified as putative exerkines warranting more research.NEW & NOTEWORTHY The present study examined for the first time the metabolome of 1) C2C12 myotubes, 2) their growth media, and 3) cell-free media after exercise-like electrical pulse stimulation under distinct nutritional loads. We report that myotubes grown under high-glucose conditions had greater responsiveness to EL-EPS when compared with lower glucose availability conditions and increased media content of acetate and branched-chain fatty acids suggests they might act as putative exerkines warranting further research.
Collapse
Affiliation(s)
- Juulia H Lautaoja
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sakari Mäntyselkä
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Juuli Peräkylä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
25
|
Vepkhvadze TF, Vorotnikov AV, Popov DV. Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects. BIOCHEMISTRY (MOSCOW) 2021; 86:597-610. [PMID: 33993862 DOI: 10.1134/s0006297921050084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- Tatiana F Vepkhvadze
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Alexander V Vorotnikov
- National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian Federation, Moscow, 121552, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
26
|
Moustogiannis A, Philippou A, Taso O, Zevolis E, Pappa M, Chatzigeorgiou A, Koutsilieris M. The Effects of Muscle Cell Aging on Myogenesis. Int J Mol Sci 2021; 22:3721. [PMID: 33918414 PMCID: PMC8038215 DOI: 10.3390/ijms22073721] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The process of myogenesis gradually deteriorates as the skeletal muscle ages, contributing to muscle mass loss. The aim of this study is to investigate the effect of senescence/aging on skeletal myogenesis, in vitro. A model of multiple cell divisions of C2C12 myoblasts was used to replicate cell senescence. Control and aged myoblasts were investigated during myogenesis, i.e., at days 0, 2, and 6of differentiation. SA-β-gal activity and comet assay were used as markers of aging and DNA damage. Flow cytometry was performed to characterize potential differences in cell cycle between control and aged cells. Alterations in the mRNA and/or protein expression of myogenic regulatory factors (MRFs), IGF-1 isoforms, apoptotic, atrophy, inflammatory, metabolic and aging-related factors were evaluated. Compared with the control cells, aged myoblasts exhibited G0/G1 cell cycle arrest, DNA damage, increased SA-β-gal activity, and increased expression of aging-related factors p16 and p21 during differentiation. Moreover, aged myoblasts showed a reduction in the expression of MRFs and metabolic/anabolic factors, along with an increased expression of apoptotic, atrophy and inflammatory factors. A diminished differentiation capacity characterized the aged myoblasts which, in combination with the induction of apoptotic and atrophy factors, indicated a disrupted myogenic lineage in the senescent muscle cells.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Orjona Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| |
Collapse
|
27
|
Beffagna G, Sommariva E, Bellin M. Mechanotransduction and Adrenergic Stimulation in Arrhythmogenic Cardiomyopathy: An Overview of in vitro and in vivo Models. Front Physiol 2020; 11:568535. [PMID: 33281612 PMCID: PMC7689294 DOI: 10.3389/fphys.2020.568535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a rare inherited heart disease, manifesting with progressive myocardium degeneration and dysfunction, and life-threatening arrhythmic events that lead to sudden cardiac death. Despite genetic determinants, most of AC patients admitted to hospital are athletes or very physically active people, implying the existence of other disease-causing factors. It is recognized that AC phenotypes are enhanced and triggered by strenuous physical activity, while excessive mechanical stretch and load, and repetitive adrenergic stimulation are mechanisms influencing disease penetrance. Different approaches have been undertaken to recapitulate and study both mechanotransduction and adrenergic signaling in AC, including the use of in vitro cellular and tissue models, and the development of in vivo models (particularly rodents but more recently also zebrafish). However, it remains challenging to reproduce mechanical load stimuli and physical activity in laboratory experimental settings. Thus, more work to drive the innovation of advanced AC models is needed to recapitulate these subtle physiological influences. Here, we review the state-of-the-art in this field both in clinical and laboratory-based modeling scenarios. Specific attention will be focused on highlighting gaps in the knowledge and how they may be resolved by utilizing novel research methodology.
Collapse
Affiliation(s)
- Giorgia Beffagna
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Milena Bellin
- Department of Biology, University of Padua, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Tamura Y, Kouzaki K, Kotani T, Nakazato K. Electrically stimulated contractile activity-induced transcriptomic responses and metabolic remodeling in C 2C 12 myotubes: twitch vs. tetanic contractions. Am J Physiol Cell Physiol 2020; 319:C1029-C1044. [PMID: 32936700 DOI: 10.1152/ajpcell.00494.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contraction of myotubes using electrical pulse stimulation is a research tool used to mimic muscle contractile activity and exercise in rodents and humans. Most protocols employed in previous work used low-frequency twitch contractions. However, high-frequency tetanus contractions that are more physiologically relevant to muscle contractions in vivo are poorly characterized. In this report, the similarities and differences in acute responses and chronic adaptations with different contractile modes using twitches (2 Hz, continuous, 3 h) and tetanus (66 Hz, on: 5 s/off: 5 s, 3 h) were investigated. RNA sequencing-based transcriptome analysis and subsequent bioinformatics analysis suggest that tetanus may promote bioenergetic remodeling rather than twitch. Based on in silico analyses, metabolic remodeling after three contractile sessions of twitch and tetanus were investigated. Although twitch and tetanus had no significant effect on glycolysis, both types of contraction upregulated glucose oxidation capacity. Both twitch and tetanus qualitatively caused mitochondrial adaptations (increased content, respiratory chain enzyme activity, and respiratory function). The magnitude of adaptation was much greater under tetanus conditions. Our findings indicate that the contraction of myotubes by tetanus may be a useful experimental model, especially in the study of metabolic adaptations in C2C12 myotubes.
Collapse
Affiliation(s)
- Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
29
|
Valero-Breton M, Warnier G, Castro-Sepulveda M, Deldicque L, Zbinden-Foncea H. Acute and Chronic Effects of High Frequency Electric Pulse Stimulation on the Akt/mTOR Pathway in Human Primary Myotubes. Front Bioeng Biotechnol 2020; 8:565679. [PMID: 33224929 PMCID: PMC7674644 DOI: 10.3389/fbioe.2020.565679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Electrical pulse stimulation (EPS) has been suggested to be a useful method to investigate the mechanisms underlying the adaptations of human skeletal muscle to both endurance and resistance exercise. Although different myotube stimulation protocols mimicking acute and chronic endurance exercise have been developed, no convincing protocol mimicking resistance exercise exists. Adaptations to resistance exercise mainly ensue via the Akt/mTOR pathway. Therefore, the aim of this study was to develop a high frequency EPS protocol mimicking resistance exercise both acutely (100 Hz, 15 V, 0.4 ms with 4 s rest between each contraction for 30 min) and chronically (acute EPS protocol repeated on three consecutive days) on human myotubes. Compared to control conditions, the acute EPS protocol increased the phosphorylation of AktSer473 at 0 h (+91%, p = 0.02) and 3 h (+95%, p = 0.01), and mTORSer2448 at 0 h (+93%, p = 0.03), 1 h (+129%, p = 0.01), and 3 h (+104%, p = 0.0250) post-stimulation. The phosphorylation of ERK1/2Thr202/Tyr204 was increased at 0 h (+69%, p = 0.02) and 3 h (+117%, p = 0.003) post-stimulation compared to control conditions. In addition, both S6K1Thr389 (+157%, p = 0.009) and S6Ser240/244 (+153%, p = 0.003) phosphorylation increased 1 h after EPS compared to control conditions. Chronic EPS protocol increased the phosphorylation of S6K1Thr389 1 h (+105%, p = 0.03) and 3 h (+126%, p = 0.02) and the phosphorylation of S6Ser240/244 1 h (+32%, p = 0.02) after the end of the last stimulation. In conclusion, the present work shows that human muscle cells subjected to EPS can be used as an in vitro model of acute and chronic resistance exercise.
Collapse
Affiliation(s)
- Mayalen Valero-Breton
- Exercise Physiology Laboratory, School of Kinesiology, Universidad Finis Terrae, Santiago, Chile
| | | | | | | | - Hermann Zbinden-Foncea
- Exercise Physiology Laboratory, School of Kinesiology, Universidad Finis Terrae, Santiago, Chile.,Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium.,Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| |
Collapse
|
30
|
Small L, Altıntaş A, Laker RC, Ehrlich A, Pattamaprapanont P, Villarroel J, Pillon NJ, Zierath JR, Barrès R. Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway. J Physiol 2020; 598:5739-5752. [PMID: 32939754 PMCID: PMC7756801 DOI: 10.1113/jp280428] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Exercising at different times of day elicits different effects on exercise performance and metabolic health. However, the specific signals driving the observed time-of-day specific effects of exercise have not been fully identified. Exercise influences the skeletal muscle circadian clock, although the relative contribution of muscle contraction and extracellular signals is unknown. Here, we show that contraction acutely increases the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifts Per2 rhythmicity in muscle cells. This contraction effect on core clock genes is mediated through a calcium-dependant mechanism; The results obtained in the present study suggest that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by muscle contraction. Contraction interventions may be used to mimic some time-of-day specific effects of exercise on metabolism and muscle performance. ABSTRACT Exercise entrains the central and peripheral circadian clocks, although the mechanism by which exercise modulates expression of skeletal muscle clock genes is unclear. The present study aimed to determine whether skeletal muscle contraction alone could directly influence circadian rhythmicity and uncover the underlying mechanism by which contraction modulates clock gene expression. We investigated the expression of core clock genes in human skeletal muscle after acute exercise, as well as following in vitro contraction in mouse soleus muscle and cultured C2C12 skeletal muscle myotubes. Additionally, we interrogated the molecular pathways by which skeletal muscle contraction could influence clock gene expression. Contraction acutely increased the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifted Per2 rhythmicity in C2C12 myotubes in vitro. Further investigation revealed that pharmacologically increasing cytosolic calcium concentrations by ionomycin treatment mimicked the effect of contraction on Per2 expression. Similarly, treatment with a calcium channel blocker, nifedipine, blocked the effect of electric pulse stimulation-induced contraction on Per2 expression. Increased calcium influx from contraction lead to binding of the phosphorylated form of cAMP response element-binding protein (CREB) to the Per2 promoter, suggesting a role of CREB in contraction-induced Per2 transcription. Thus, by dissociating the effect of muscle contraction alone from the whole effect of exercise, our investigations indicate that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by contraction.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rhianna C Laker
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pattarawan Pattamaprapanont
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Villarroel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020; 72:1667-1693. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic β-cells and endothelial cells, was discovered.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|