1
|
Leydon AR, Flores L, Khakhar A, Nemhauser JL. Reprogramming feedback strength in gibberellin biosynthesis highlights conditional regulation by the circadian clock and carbon dioxide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644045. [PMID: 40166289 PMCID: PMC11956932 DOI: 10.1101/2025.03.18.644045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The phytohormone gibberellin (GA) is an important regulator of plant morphology and reproduction, and the biosynthesis and distribution of GA in planta is agriculturally relevant to past and current breeding efforts. Tools like biosensors, extensive molecular genetic resources in reference plants and mathematical models have greatly contributed to current understanding of GA homeostasis; however, these tools are difficult to tune or repurpose for engineering crop plants. Previously, we showed that a GA-regulated Hormone Activated CAS9-based Repressor (GAHACR) functions in planta. Here, we use GAHACRs to modulate the strength of feedback on endemic GA regulated genes, and to directly test the importance of transcriptional feedback in GA signaling. We first adapted existing mathematical models to predict the impact of targeting a GAHACR to different nodes in the GA biosynthesis pathway, and then implemented a perturbation predicted by the model to lower GA levels. Specifically, we individually targeted either the biosynthetic gene GA20 oxidase (GA20ox) or the GA receptor GID1, and characterized primary root length, flowering time and the transcriptome of these transgenic lines. Using this approach, we identified a strong connection between GA signaling status and the circadian clock, which can be largely attenuated by elevated carbon dioxide levels. Our results identify a node in the GA signaling pathway that can be engineered to modulate plant size and flowering time. Our results also raise concerns that rising atmospheric CO2 concentration are likely to reverse many of the gains of Green Revolution crops.
Collapse
Affiliation(s)
| | - Leonel Flores
- Department of Biology, University of Washington, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, USA
| | | |
Collapse
|
2
|
Carrera-Castaño G, Mira S, Fañanás-Pueyo I, Sánchez-Montesino R, Contreras Á, Weiste C, Dröge-Laser W, Gómez L, Oñate-Sánchez L. Complex control of seed germination timing by ERF50 involves RGL2 antagonism and negative feedback regulation of DOG1. THE NEW PHYTOLOGIST 2024; 242:2026-2042. [PMID: 38494681 DOI: 10.1111/nph.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.
Collapse
Affiliation(s)
- Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Sara Mira
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Ángela Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Luis Gómez
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, 28040, Madrid, Spain
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| |
Collapse
|
3
|
Bisht A, Eekhout T, Canher B, Lu R, Vercauteren I, De Jaeger G, Heyman J, De Veylder L. PAT1-type GRAS-domain proteins control regeneration by activating DOF3.4 to drive cell proliferation in Arabidopsis roots. THE PLANT CELL 2023; 35:1513-1531. [PMID: 36747478 PMCID: PMC10118276 DOI: 10.1093/plcell/koad028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 05/22/2023]
Abstract
Plant roots possess remarkable regenerative potential owing to their ability to replenish damaged or lost stem cells. ETHYLENE RESPONSE FACTOR 115 (ERF115), one of the key molecular elements linked to this potential, plays a predominant role in the activation of regenerative cell divisions. However, the downstream operating molecular machinery driving wound-activated cell division is largely unknown. Here, we biochemically and genetically identified the GRAS-domain transcription factor SCARECROW-LIKE 5 (SCL5) as an interaction partner of ERF115 in Arabidopsis thaliana. Although nonessential under control growth conditions, SCL5 acts redundantly with the related PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) and SCL21 transcription factors to activate the expression of the DNA-BINDING ONE FINGER 3.4 (DOF3.4) transcription factor gene. DOF3.4 expression is wound-inducible in an ERF115-dependent manner and, in turn, activates D3-type cyclin expression. Accordingly, ectopic DOF3.4 expression drives periclinal cell division, while its downstream D3-type cyclins are essential for the regeneration of a damaged root. Our data highlight the importance and redundant roles of the SCL5, SCL21, and PAT1 transcription factors in wound-activated regeneration processes and pinpoint DOF3.4 as a key downstream element driving regenerative cell division.
Collapse
Affiliation(s)
- Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ran Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
4
|
Briones-Moreno A, Hernández-García J, Vargas-Chávez C, Blanco-Touriñán N, Phokas A, Úrbez C, Cerdán PD, Coates JC, Alabadí D, Blázquez MA. DELLA functions evolved by rewiring of associated transcriptional networks. NATURE PLANTS 2023; 9:535-543. [PMID: 36914897 DOI: 10.1038/s41477-023-01372-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
DELLA proteins are land-plant specific transcriptional regulators that transduce environmental information to multiple processes throughout a plant's life1-3. The molecular basis for this critical function in angiosperms has been linked to the regulation of DELLA stability by gibberellins and to the capacity of DELLA proteins to interact with hundreds of transcription factors4,5. Although bryophyte orthologues can partially fulfil functions attributed to angiosperm DELLA6,7, it is not clear whether the capacity to establish interaction networks is an ancestral property of DELLA proteins or is associated with their role in gibberellin signalling8-10. Here we show that representative DELLAs from the main plant lineages display a conserved ability to interact with multiple transcription factors. We propose that promiscuity was encoded in the ancestral DELLA protein, and that this property has been largely maintained, whereas the lineage-dependent diversification of DELLA-dependent functions mostly reflects the functional evolution of their interacting partners.
Collapse
Affiliation(s)
- Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas (CSIC-U Politècnica de València), Valencia, Spain
| | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas (CSIC-U Politècnica de València), Valencia, Spain
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | | | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-U Politècnica de València), Valencia, Spain
| | | | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-U Politècnica de València), Valencia, Spain
| | - Pablo D Cerdán
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-U Politècnica de València), Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-U Politècnica de València), Valencia, Spain.
| |
Collapse
|
5
|
Kim S, Huh SM, Han HJ, Lee GS, Hwang YS, Cho MH, Kim BG, Song JS, Chung JH, Nam MH, Ji H, Kim KH, Yoon IS. A rice seed-specific glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy. PLANT MOLECULAR BIOLOGY 2023; 111:523-539. [PMID: 36973492 DOI: 10.1007/s11103-023-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein. This gene successfully complemented the PHS phenotype of dor1 mutant and its ectopic expression enhanced seed dormancy. Here, we demonstrated that OsDOR1 protein binds to the GA receptor protein, OsGID1 in rice protoplasts, and interrupts with the formation OsGID1-OsSLR1 complex in yeast cells. Co-expression of OsDOR1 with OsGID1 in rice protoplasts attenuated the GA-dependent degradation of OsSLR1, the key repressor of GA signaling. We showed the endogenous OsSLR1 protein level in the dor1 mutant seeds is significantly lower than that of wild type. The dor1 mutant featured a hypersensitive GA-response of α-amylase gene expression during seed germination. Based on these findings, we suggest that OsDOR1 is a novel negative player of GA signaling operated in the maintenance of seed dormancy. Our findings provide a novel source of PHS resistance.
Collapse
Affiliation(s)
- Sooyeon Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Sun Mi Huh
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
- Department of Medical and Biological Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hay Ju Han
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Gang Seob Lee
- Biosafety Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mi Hyun Cho
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Ji Sun Song
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Hyeonso Ji
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Kyung-Hwan Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea.
| |
Collapse
|
6
|
Zeng D, Si C, Teixeira da Silva JA, Shi H, Chen J, Huang L, Duan J, He C. Uncovering the involvement of DoDELLA1-interacting proteins in development by characterizing the DoDELLA gene family in Dendrobium officinale. BMC PLANT BIOLOGY 2023; 23:93. [PMID: 36782128 PMCID: PMC9926750 DOI: 10.1186/s12870-023-04099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | | | - Hongyu Shi
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
7
|
Comprehensive Analysis of Betula platyphylla Suk. PIF Gene Family and Their Potential Functions in Growth and Development. Int J Mol Sci 2022; 23:ijms232315326. [PMID: 36499652 PMCID: PMC9738378 DOI: 10.3390/ijms232315326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Phytochrome-interacting factors (PIFs) are transcription factors with the basic helix-loop-helix (bHLH) domain. As integration factors between different signal pathways, members of the PIF protein family regulate many aspects of plant growth and development, such as seed germination, photomorphogenesis, thermomorphogenesis, rhythm regulation, flowering response, stomatal development, and stress responses. Our previous studies have shown that the BpSPL2 gene may regulate plants' adventitious root development through PIF genes. Within the Betula platyphylla genome, we identified eight PIF (BpPIFs) genes. We analysed and named them based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that transposition or segmental duplication events played a minor role in the expansion of BpPIFs. The comparative syntenic analysis combined with phylogenetic analysis provided a deep insight into the phylogenetic relationships of BpPIF genes, suggesting that BpPIF proteins are closer to PtPIF than to AtPIF. The analysis of cis-acting elements in promoter regions of BpPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. In addition, we found that these promoters have the transcription factor of B. platyphylla SPL2 (BpSPL2) binding motif GTAC. Expression analysis demonstrated that BpPIF genes, especially BpPIF4, BpPIF9b, and BpPIF10, might be the potential target genes of BpSPL2 in the process of adventitious root formation. Besides providing a comprehensive understanding of the BpPIF family, we propose a hypothetical gene network regulatory model for adventitious root formation.
Collapse
|
8
|
Manipulating GA-Related Genes for Cereal Crop Improvement. Int J Mol Sci 2022; 23:ijms232214046. [PMID: 36430524 PMCID: PMC9696284 DOI: 10.3390/ijms232214046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global population is projected to experience a rapid increase in the future, which poses a challenge to global food sustainability. The "Green Revolution" beginning in the 1960s allowed grain yield to reach two billion tons in 2000 due to the introduction of semi-dwarfing genes in cereal crops. Semi-dwarfing genes reduce the gibberellin (GA) signal, leading to short plant stature, which improves the lodging resistance and harvest index under modern fertilization practices. Here, we reviewed the literature on the function of GA in plant growth and development, and the role of GA-related genes in controlling key agronomic traits that contribute to grain yield in cereal crops. We showed that: (1) GA is a significant phytohormone in regulating plant development and reproduction; (2) GA metabolism and GA signalling pathways are two key components in GA-regulated plant growth; (3) GA interacts with other phytohormones manipulating plant development and reproduction; and (4) targeting GA signalling pathways is an effective genetic solution to improve agronomic traits in cereal crops. We suggest that the modification of GA-related genes and the identification of novel alleles without a negative impact on yield and adaptation are significant in cereal crop breeding for plant architecture improvement. We observed that an increasing number of GA-related genes and their mutants have been functionally validated, but only a limited number of GA-related genes have been genetically modified through conventional breeding tools and are widely used in crop breeding successfully. New genome editing technologies, such as the CRISPR/Cas9 system, hold the promise of validating the effectiveness of GA-related genes in crop development and opening a new venue for efficient and accelerated crop breeding.
Collapse
|
9
|
Zhao H, Zhang Y, Zheng Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. FRONTIERS IN PLANT SCIENCE 2022; 13:1000803. [PMID: 36092418 PMCID: PMC9449724 DOI: 10.3389/fpls.2022.1000803] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Seed germination is precisely controlled by a variety of signals, among which light signals and the phytohormones abscisic acid (ABA) and gibberellin (GA) play crucial roles. New findings have greatly increased our understanding of the mechanisms by which these three signals regulate seed germination and the close connections between them. Although much work has been devoted to ABA, GA, and light signal interactions, there is still no systematic description of their combination, especially in seed germination. In this review, we integrate ABA, GA, and light signaling in seed germination through the direct and indirect regulation of ABSCISIC ACID INSENSITIVE5 (ABI5), the core transcription factor that represses seed germination in ABA signaling, into our current understanding of the regulatory mechanism of seed germination.
Collapse
Affiliation(s)
- Hongyun Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, China
| | - Yamei Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, China
| |
Collapse
|
10
|
Lee BD, Yim Y, Cañibano E, Kim SH, García-León M, Rubio V, Fonseca S, Paek NC. CONSTITUTIVE PHOTOMORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:1662-1676. [PMID: 35166830 PMCID: PMC9237706 DOI: 10.1093/plphys/kiac060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Under favorable moisture, temperature, and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGA-LIKE 2 (RGL2), a major repressor of germination in Arabidopsis (Arabidopsis thaliana) seeds. Analysis of seed germination phenotypes of constitutive photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacted directly with RGL2, and in vivo this interaction was strongly enhanced by SUPPRESSOR OF PHYA-105 1. COP1 directly ubiquitinated RGL2 to promote its degradation. Moreover, GA stabilized COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.
Collapse
Affiliation(s)
| | | | | | - Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Marta García-León
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Vicente Rubio
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | | | |
Collapse
|
11
|
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, Aslam MM. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol Biol Rep 2022; 49:9673-9685. [PMID: 35713799 DOI: 10.1007/s11033-022-07425-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
GRAS transcription factors play multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses. The structural and functional features of GRAS TFs have been unveiled in the last two decades. A typical GRAS protein contained a C-terminal GRAS domain with a highly variable N-terminal region. Studies on these TFs increase in numbers and are reported to be involved in various important developmental processes such as flowering, root formation, and stress responses. The GRAS TFs and hormone signaling crosstalk can be implicated in plant development and to stress responses. There are relatively few reports about GRAS TFs roles in plants, and no related reviews have been published. In this review, we summarized the features of GRAS TFs, their targets, and the roles these GRAS TFs playing in plant development and multiple stresses.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Botany, University of Narowal, Narowal, Punjab, Pakistan. .,College of Life Science, Hainan University, Hainan, P.R. China.
| | - Oswald Nkurikiyimfura
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Sylvain Niyitanga
- Department of Plant Pathology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Bello Hassan Jakada
- College of Life Science, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Iffat Shaheen
- Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
12
|
Finkelstein RR, Lynch TJ. Overexpression of ABI5 Binding Proteins Suppresses Inhibition of Germination Due to Overaccumulation of DELLA Proteins. Int J Mol Sci 2022; 23:ijms23105537. [PMID: 35628355 PMCID: PMC9144539 DOI: 10.3390/ijms23105537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many aspects of plant growth, including seed dormancy and germination. The effects of these hormones are mediated by a complex network of positive and negative regulators of transcription. The DELLA family of proteins repress GA response, and can promote an ABA response via interactions with numerous regulators, including the ABA-insensitive (ABI) transcription factors. The AFP family of ABI5 binding proteins are repressors of the ABA response. This study tested the hypothesis that the AFPs also interact antagonistically with DELLA proteins. Members of these protein families interacted weakly in yeast two-hybrid and bimolecular fluorescence complementation studies. Overexpression of AFPs in sleepy1, a mutant that over-accumulates DELLA proteins, suppressed DELLA-induced overaccumulation of storage proteins, hyperdormancy and hypersensitivity to ABA, but did not alter the dwarf phenotype of the mutant. The interaction appeared to reflect additive effects of the AFPs and DELLAs, consistent with action in convergent pathways.
Collapse
|
13
|
Comparative analysis of buds transcriptome and identification of two florigen gene AkFTs in Amorphophallus konjac. Sci Rep 2022; 12:6782. [PMID: 35473958 PMCID: PMC9043200 DOI: 10.1038/s41598-022-10817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/13/2022] [Indexed: 11/15/2022] Open
Abstract
Leaves and flowers of Amorphophallus konjac do not develop simultaneously thus unique features can be elucidated through study of flowering transformation in A. konjac. In this study, transcriptome libraries of A. konjac leaf buds (LB) and flower buds (FB) were constructed followed by high-throughput sequencing. A total of 68,906 unigenes with an average length of 920 bp were obtained after library assembly. Out of these genes, 24,622 unigenes had annotation information. A total of 6859 differentially expressed genes (DEGs) were identified through differential expression analysis using LB as control. Notably, 2415 DEGs were upregulated whereas 4444 DEGs were downregulated in the two transcriptomes. Go and KEGG analysis showed that the DEGs belonged to 44 functional categories and were implicated in 98 metabolic pathways and 38 DEGs involved in plant hormone signal transduction. Several genes were mined that may be involved in A. konjac flower bud differentiation and flower organ development. Eight DEGs were selected for verification of RNA-seq results using qRT-PCR analysis. Two FLOWERING LOCUS T (FT) genes named AkFT1 and AkFT2 were identified though homologous analysis may be the florigen gene implicated in modulation of A. konjac flowering. These genes were significantly upregulated in flower buds compared with the expression levels on leaf buds. Overexpression of AkFT genes though heterologous expression in Arabidopsis showed that the transgenics flowered at a very early stage relative to wild type plants. These findings indicate that AkFT1 and AkFT2 function as regulation genes in A. konjac flowering development and the two genes may present similar functions during flowering transition.
Collapse
|
14
|
Panda D, Mohanty S, Das S, Sah RP, Kumar A, Behera L, Baig MJ, Tripathy BC. The role of phytochrome-mediated gibberellic acid signaling in the modulation of seed germination under low light stress in rice ( O. sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:585-605. [PMID: 35465204 PMCID: PMC8986944 DOI: 10.1007/s12298-022-01167-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/07/2023]
Abstract
UNLABELLED Seed germination plays cardinal roles in seedling establishment and their successive growth. However, seed germination is retarded by far-red (FR) enrichment under low light stress, and the inhibitory signalling mechanism remains ambiguous. Our results indicated that low light treatment, both in the open and growth chamber conditions, inhibits rice seed germination by decreasing the gibberellin (GA) contents. To explore the mechanism of GA-deficiency under low light stress, differential expression profiling of GA-anabolic, -catabolic, ABA -anabolic, -catabolic, and SLR1 was investigated, revealing that expression of ABA- anabolic, GA-catabolic genes and SLR1 was upregulated with a simultaneous downregulation of ABA-catabolic and GA-anabolic genes under low light treatment. These results suggested that FR-induced GA inadequacy is resulted by upregulation of SLR1 and GA-catabolism genes consequently increase DELLA that further subsided GA-responses in the germinating rice seeds. Moreover, we provided evidence that FR-induced GA inadequacy demotes rice seed germination by decreasing amylase activity, eventually decreasing the carbohydrate solubilization in the germinating seeds. Finally, we suggest that under low light stress, due to a retarded conversion of phytochrome A to their bioactive form, the ABA-catabolic genes were eventually upregulated with a simultaneous downregulation of GA-anabolic genes. Consequently, a lower GA pool fails to leverage the GA-dependent DELLA degradation, further shutting down the expected GA responses that reduce germination efficiency under FR-enriched light. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01167-7.
Collapse
Affiliation(s)
- Darshan Panda
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Soumya Mohanty
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Swagatika Das
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | | | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | | | | |
Collapse
|
15
|
Zhang H, Zang J, Huo Y, Zhang Z, Chen H, Chen X, Liu J. Identification of the Potential Genes Regulating Seed Germination Speed in Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040556. [PMID: 35214886 PMCID: PMC8879924 DOI: 10.3390/plants11040556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/02/2023]
Abstract
Seed germination is the crucial stage in plant life cycle. Rapid and uniform germination plays an essential role in plant development and grain yield improvement. However, the molecular mechanism underlying seed germination speed is largely unknown due to the complexity of the dynamic process and the difficulty in phenotyping. Here, we conducted a time-series comparative transcriptome study of two elite maize inbred lines, 72-3 and F9721, with striking difference in seed germination speed, and identified a major locus underlying maize germination speed through genome-wide association analysis (GWAS) of an F2 segregation population. Comparative transcriptome study identified 12 h after imbibition (HAI) as the critical stage responsible for the variation in germination speed. The differentially expressed genes (DEGs) between 72-3 and F9721 were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, oxidoreductase activity pathways, hormone signal transduction, and amino acid transporter activity pathways. GWAS revealed that germination speed was controlled by a major locus on chromosome 1 with the leading SNP as AX-91332814, explaining 10.63% of phenotypic variation. A total of 87 proposed protein-coding genes surrounding the locus were integrated with DEGs. Combined with evidence from the gene expression database and gene synteny with other model species, we finally anchored three genes as the likely candidates regulating germination speed in maize. This study provides clues for the further exploration of genes controlling the maize seed germination speed, thus facilitating breeding of rapid germinated elite lines through marker assistant selection.
Collapse
Affiliation(s)
- Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
| | - Xunji Chen
- Institute of Biotech & Nuclear, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Correspondence: (X.C.); (J.L.); Tel.: +86-991-4527003 (X.C.); +86-010-64801561 (J.L.)
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (J.Z.); (Y.H.); (Z.Z.); (H.C.)
- Correspondence: (X.C.); (J.L.); Tel.: +86-991-4527003 (X.C.); +86-010-64801561 (J.L.)
| |
Collapse
|
16
|
Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. Proc Natl Acad Sci U S A 2021; 118:1921960118. [PMID: 33602804 PMCID: PMC7923382 DOI: 10.1073/pnas.1921960118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Growth hormones are mobile chemicals that exert considerable influence over how multicellular organisms like animals and plants take on their shape and form. Of particular interest is the distribution of such hormones across cells and tissues. In plants, one of these hormones, gibberellin (GA), is known to regulate cell multiplication and cell expansion to increase the rate at which roots grow. In this work, biosensor measurements were combined with theoretical models to elucidate the biochemical mechanisms that direct GA distribution and how these patterns relate to root growth. Our detailed understanding of how GA distributions are controlled in roots should prove a valuable model for understanding the makings of the many other hormone distributions that influence how plants grow. Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth.
Collapse
|
17
|
Lv Y, Pan J, Wang H, Reiter RJ, Li X, Mou Z, Zhang J, Yao Z, Zhao D, Yu D. Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis. J Pineal Res 2021; 70:e12736. [PMID: 33811388 DOI: 10.1111/jpi.12736] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Seed germination, an important developmental stage in the life cycle of seed plants, is regulated by complex signals. Melatonin is a signaling molecule associated with seed germination under stressful conditions, although the underlying regulatory mechanisms are largely unknown. In this study, we showed that a low concentration (10 µM or 100 µM) of melatonin had no effect on seed germination, but when the concentration of melatonin increased to 500 µM or 1000 µM, seed germination was significantly inhibited in Arabidopsis. RNA sequencing analysis showed that melatonin regulated seed germination correlated to phytohormones abscisic acid (ABA), gibberellin (GA), and auxin. Further investigation revealed that ABA and melatonin synergistically inhibited seed germination, while GA and auxin antagonized the inhibitory effect of seed germination by melatonin. Disruption of the melatonin biosynthesis enzyme gene serotonin N-acetyltransferase (SNAT) or N-acetylserotonin methyltransferase (ASMT) promoted seed germination, while overexpression of ASMT inhibited seed germination. Taken together, our study sheds new light on the function and mechanism of melatonin in modulating seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Yan Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jinjing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jiemei Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhengping Yao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
18
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
19
|
Chen MX, Lu CC, Sun PC, Nie YX, Tian Y, Hu QJ, Das D, Hou XX, Gao B, Chen X, Liu SX, Zheng CC, Zhao XY, Dai L, Zhang J, Liu YG. Comprehensive transcriptome and proteome analyses reveal a novel sodium chloride responsive gene network in maize seed tissues during germination. PLANT, CELL & ENVIRONMENT 2021; 44:88-101. [PMID: 32677712 DOI: 10.1111/pce.13849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 05/20/2023]
Abstract
Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chong-Chong Lu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Peng-Cheng Sun
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Yong-Xin Nie
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Qi-Juan Hu
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Debatosh Das
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuan-Xuan Hou
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Bei Gao
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Shou-Xu Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Cheng-Chao Zheng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xiang-Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianhua Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
20
|
Yu F, Li M, He D, Yang P. Advances on Post-translational Modifications Involved in Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:642979. [PMID: 33828574 PMCID: PMC8020409 DOI: 10.3389/fpls.2021.642979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 05/05/2023]
Abstract
Seed germination and subsequent seedling establishment are important developmental processes that undergo extremely complex changes of physiological status and are precisely regulated at transcriptional and translational levels. Phytohormones including abscisic acid (ABA) and gibberellin (GA) are the critical signaling molecules that modulate the alteration from relative quiescent to a highly active state in seeds. Transcription factors such as ABA insensitive5 (ABI5) and DELLA domain-containing proteins play the central roles in response to ABA and GA, respectively, which antagonize each other during seed germination. Recent investigations have demonstrated that the regulations at translational and post-translational levels, especially post-translational modifications (PTMs), play a decisive role in seed germination. Specifically, phosphorylation and ubiquitination were shown to be involved in regulating the function of ABI5. In this review, we summarized the latest advancement on the function of PTMs involved in the regulation of seed germination, in which the PTMs for ABI5- and DELLA-containing proteins play the key roles. Meanwhile, the studies on PTM-based proteomics during seed germination and the crosstalk of different PTMs are also discussed. Hopefully, it will facilitate in obtaining a comprehensive understanding of the physiological functions of different PTMs in seed germination.
Collapse
|
21
|
Chandrasekaran U, Luo X, Zhou W, Shu K. Multifaceted Signaling Networks Mediated by Abscisic Acid Insensitive 4. PLANT COMMUNICATIONS 2020; 1:100040. [PMID: 33367237 PMCID: PMC7748004 DOI: 10.1016/j.xplc.2020.100040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 05/04/2023]
Abstract
Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.
Collapse
Affiliation(s)
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| |
Collapse
|
22
|
Morcillo RJL, Singh SK, He D, Vílchez JI, Kaushal R, Wang W, Huang W, Paré PW, Zhang H. Bacteria-derived diacetyl enhances Arabidopsis phosphate starvation responses partially through the DELLA-dependent gibberellin signaling pathway. PLANT SIGNALING & BEHAVIOR 2020; 15:1740872. [PMID: 32183580 PMCID: PMC7194389 DOI: 10.1080/15592324.2020.1740872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil microorganisms that colonize roots and stimulate plant growth. Some PGPR strains can directly regulate plant growth in the absence of physical contact with the plant, via volatile organic compounds (VOCs) emissions. Recently, we have described that Arabidopsis thaliana respond differentially to diacetyl, a VOC from Bacillus amyloliquefaciens strain GB03 (GB03), through integral modulation of the immune system and the phosphate-starvation response (PSR) system, resulting in either mutualism or immunity. Under phosphate deficient conditions, diacetyl enhances salicylic acid- and jasmonic acid-mediated immunity and consequently causes plant hyper-sensitivity to phosphate deficiency. Here, we show that application of exogenous gibberellin (GA) partially alleviates the deleterious effect caused by either B. amyloliquefaciens GB03 VOCs or diacetyl in Arabidopsis under phosphate deficient conditions, while DELLA quadruple mutant exposed to GB03 VOCs exhibits a partial reduction on the stress symptoms. Moreover, diacetyl appears to enhance DELLA protein accumulation and increase the expression of several GA deactivation-related genes. These findings suggest that the DELLA-mediated GA signaling pathway is involved in the bi-faceted role of GB03 VOCs in regulating plant growth.
Collapse
Affiliation(s)
- Rafael J. L. Morcillo
- PSC, Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| | - Sunil K. Singh
- PSC, Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Danxia He
- PSC, Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan I. Vílchez
- PSC, Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Richa Kaushal
- PSC, Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- Research Centre, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Weichang Huang
- Research Centre, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Huiming Zhang
- PSC, Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CONTACT Huiming Zhang PSC,Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
23
|
The DOF Transcription Factors in Seed and Seedling Development. PLANTS 2020; 9:plants9020218. [PMID: 32046332 PMCID: PMC7076670 DOI: 10.3390/plants9020218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/28/2023]
Abstract
The DOF (DNA binding with one finger) family of plant-specific transcription factors (TF) was first identified in maize in 1995. Since then, DOF proteins have been shown to be present in the whole plant kingdom, including the unicellular alga Chlamydomonas reinhardtii. The DOF TF family is characterised by a highly conserved DNA binding domain (DOF domain), consisting of a CX2C-X21-CX2C motif, which is able to form a zinc finger structure. Early in the study of DOF proteins, their relevance for seed biology became clear. Indeed, the PROLAMIN BINDING FACTOR (PBF), one of the first DOF proteins characterised, controls the endosperm-specific expression of the zein genes in maize. Subsequently, several DOF proteins from both monocots and dicots have been shown to be primarily involved in seed development, dormancy and germination, as well as in seedling development and other light-mediated processes. In the last two decades, the molecular network underlying these processes have been outlined, and the main molecular players and their interactions have been identified. In this review, we will focus on the DOF TFs involved in these molecular networks, and on their interaction with other proteins.
Collapse
|
24
|
Yang L, Jiang Z, Liu S, Lin R. Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:1593-1605. [PMID: 31580487 DOI: 10.1111/nph.16236] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/26/2019] [Indexed: 05/22/2023]
Abstract
Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2-SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. Our study reveals a novel regulatory mechanism in which the RVE1-RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
25
|
Hauvermale AL, Steber CM. GA signaling is essential for the embryo-to-seedling transition during Arabidopsis seed germination, a ghost story. PLANT SIGNALING & BEHAVIOR 2020; 15:1705028. [PMID: 31960739 PMCID: PMC7012099 DOI: 10.1080/15592324.2019.1705028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The plant hormone gibberellin (GA) stimulates developmental transitions including seed germination, flowering, and the transition from juvenile to adult growth stage. This study provided evidence that GA and the GA receptor GID1 (GA-INSENSITIVE DWARF1) are also needed for the embryo-to-seedling transition in Arabidopsis. The ga1-3 GA biosynthesis mutant fails to germinate unless GA is applied, whereas the gid1abc triple mutant fails to germinate because it cannot perceive endogenous or applied GA. Overexpression of the GID1a, GID1b, and GID1c GA receptors rescued the germination of a small percentage of ga1-3 seeds without GA application, and this rescue was improved by dormancy-breaking treatments, after-ripening and cold stratification. While GID1 overexpression stimulated ga1-3 seed germination, this germination was aberrant suggesting incomplete rescue of the germination process. Cotyledons emerged before the radicle, and the resulting "ghost" seedlings failed to develop a primary root, lost green coloration, and eventually died. The development of ga1-3 seedlings overexpressing GID1 was rescued by pre-germinative but not post-germinative GA application. Since the gid1abc mutant also exhibited a ghost phenotype after germination was rescued by cutting the seed coat, we concluded that both GA and GID1 are needed for the embryo-to-seedling transition prior to emergence from the seed coat.
Collapse
Affiliation(s)
- Amber L. Hauvermale
- Department of Crop and Soil Sciences and the Molecular Plant Sciences program, Washington State University, Pullman, WA, USA
| | - Camille M. Steber
- Department of Crop and Soil Sciences and the Molecular Plant Sciences program, Washington State University, Pullman, WA, USA
- Wheat Health, Quality and Genetics Unit, USDA-ARS, Pullman, WA, USA
- CONTACT Camille M. Steber USDA-ARS, Washington State University, 209 Johnson Hall, Pullman, WA, USA
| |
Collapse
|
26
|
Li Y, Yang Y, Hu Y, Liu H, He M, Yang Z, Kong F, Liu X, Hou X. DELLA and EDS1 Form a Feedback Regulatory Module to Fine-Tune Plant Growth-Defense Tradeoff in Arabidopsis. MOLECULAR PLANT 2019; 12:1485-1498. [PMID: 31382023 DOI: 10.1016/j.molp.2019.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/04/2019] [Accepted: 07/27/2019] [Indexed: 05/03/2023]
Abstract
Plants maintain a dynamic balance between growth and defense , and optimize allocation of resources for survival under constant pathogen infections. However, the underlying molecular regulatory mechanisms, especially in response to biotrophic bacterial infection, remain elusive. Here, we demonstrate that DELLA proteins and EDS1, an essential resistance regulator, form a central module modulating plant growth-defense tradeoffs via direct interaction. When infected by Pst DC3000, EDS1 rapidly promotes salicylic acid (SA) biosynthesis and resistance-related gene expression to prime defense response, while pathogen infection stabilizes DELLA proteins RGA and RGL3 to restrict growth in a partially EDS1-dependent manner, which facilitates plants to develop resistance to pathogens. However, the increasingly accumulated DELLAs interact with EDS1 to suppress SA overproduction and excessive resistance response. Taken together, our findings reveal a DELLA-EDS1-mediated feedback regulatory loop by which plants maintain the subtle balance between growth and defense to avoid excessive growth or defense in response to constant biotrophic pathogen attack.
Collapse
Affiliation(s)
- Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yilong Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hailun Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ming He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
27
|
Barros-Galvão T, Dave A, Cole A, Harvey D, Langer S, Larson TR, Vaistij FE, Graham IA. cis-12-Oxo-phytodienoic acid represses Arabidopsis seed germination in shade conditions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5919-5927. [PMID: 31326997 PMCID: PMC6812700 DOI: 10.1093/jxb/erz337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 05/07/2023]
Abstract
Light-dependent seed germination is induced by gibberellins (GA) and inhibited by abscisic acid (ABA). The widely accepted view of the GA/ABA ratio controlling germination does not, however, explain the fact that seeds deficient in ABA still germinate poorly under shade conditions that repress germination. In Arabidopsis, MOTHER-OF-FT-AND-TFL1 (MFT) acts as a key negative regulator of germination, modulating GA and ABA responses under shade conditions. Under full light the oxylipin cis-12-oxo-phytodienoic acid (OPDA), a precursor of the stress-related phytohormone jasmonic acid, interacts with ABA and MFT to repress germination. Here, we show that under shade conditions both OPDA and ABA repress germination to varying extents. We demonstrate that the level of shade-induced MFT expression influences the ability of OPDA and/or ABA to fully repress germination. We also found that MFT expression decreases with seed age and this again correlates with the response of seeds to OPDA and ABA. We conclude that OPDA plays an essential role alongside ABA in repressing germination in response to shade and the combined effect of these phytohormones is integrated to a significant extent through MFT.
Collapse
Affiliation(s)
- Thiago Barros-Galvão
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Adama Cole
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - David Harvey
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Swen Langer
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Tony R Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
- Correspondence:
| |
Collapse
|
28
|
Marciniak K, Przedniczek K. Comprehensive Insight into Gibberellin- and Jasmonate-Mediated Stamen Development. Genes (Basel) 2019; 10:genes10100811. [PMID: 31618967 PMCID: PMC6827089 DOI: 10.3390/genes10100811] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
In flowering plants, proper development of male generative organs is required for successful sexual reproduction. Stamen primordia arise in the third whorl of floral organs and subsequently differentiate into filaments and anthers. The early phase of stamen development, in which meiosis occurs, is followed by a late developmental phase, which consists of filament elongation coordinated with pollen maturation, anther dehiscence and finally viable pollen grain release. Stamen development and function are modulated by phytohormones, with a key role of gibberellins (GAs) and jasmonates (JAs). Long-term, extensive investigations, mainly involving GA/JA-deficient and GA/JA-response mutants, have led to a better understanding of the hormone-dependent molecular mechanisms of stamen development. In several species, the principal functions of GAs are to stimulate filament elongation through increased cell elongation and to promote anther locule opening. In the GA-dependent regulation of early stamen development, both the tapetum and developing pollen were identified as major targets. JAs mainly control the late stages of stamen development, such as filament elongation, viable pollen formation and anther dehiscence. A hierarchical relationship between GAs and JAs was recognized mainly in the control of late stamen development. By repressing DELLA proteins, GAs modulate the transcriptional activity of JA biosynthesis genes to promote JA production. A high level of JAs induces a complex of transcription factors crucial for normal stamen development.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| | - Krzysztof Przedniczek
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| |
Collapse
|
29
|
Auge GA, Penfield S, Donohue K. Pleiotropy in developmental regulation by flowering-pathway genes: is it an evolutionary constraint? THE NEW PHYTOLOGIST 2019; 224:55-70. [PMID: 31074008 DOI: 10.1111/nph.15901] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/28/2019] [Indexed: 05/11/2023]
Abstract
Pleiotropy occurs when one gene influences more than one trait, contributing to genetic correlations among traits. Consequently, it is considered a constraint on the evolution of adaptive phenotypes because of potential antagonistic selection on correlated traits, or, alternatively, preservation of functional trait combinations. Such evolutionary constraints may be mitigated by the evolution of different functions of pleiotropic genes in their regulation of different traits. Arabidopsis thaliana flowering-time genes, and the pathways in which they operate, are among the most thoroughly studied regarding molecular functions, phenotypic effects, and adaptive significance. Many of them show strong pleiotropic effects. Here, we review examples of pleiotropy of flowering-time genes and highlight those that also influence seed germination. Some genes appear to operate in the same genetic pathways when regulating both traits, whereas others show diversity of function in their regulation, either interacting with the same genetic partners but in different ways or potentially interacting with different partners. We discuss how functional diversification of pleiotropic genes in the regulation of different traits across the life cycle may mitigate evolutionary constraints of pleiotropy, permitting traits to respond more independently to environmental cues, and how it may even contribute to the evolutionary divergence of gene function across taxa.
Collapse
Affiliation(s)
- Gabriela A Auge
- Fundación Instituto Leloir, IIBBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1405BWE3, Argentina
| | - Steven Penfield
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kathleen Donohue
- Department of Biology, Duke University, Box 90338, Durham , NC 27708-0338, USA
| |
Collapse
|
30
|
Sánchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gómez L, Holdsworth MJ, Bassel G, Oñate-Sánchez L. A Regulatory Module Controlling GA-Mediated Endosperm Cell Expansion Is Critical for Seed Germination in Arabidopsis. MOLECULAR PLANT 2019; 12:71-85. [PMID: 30419294 PMCID: PMC7086157 DOI: 10.1016/j.molp.2018.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 05/19/2023]
Abstract
A key component of seed germination is the interplay of mechanical forces governing embryo growth and the surrounding restraining endosperm tissue. Endosperm cell separation is therefore thought to play a critical role in the control of this developmental transition. Here we demonstrate that in Arabidopsis thaliana seeds, endosperm cell expansion is a key component of germination. Endosperm cells expand to accommodate embryo growth prior to germination. We show that this is an actively regulated process supported by spatiotemporal control of the cell expansion gene EXPANSIN 2 (EXPA2). The NAC transcription factors NAC25 and NAC1L were identified as upstream regulators of EXPA2 expression, gibberellin-mediated endosperm expansion, and seed germination. The DELLA protein RGL2 repressed activation of the EXPA2 promoter by NAC25/NAC1L. Taken together, our findings uncover a key role of the GA/DELLA-NAC25/NAC1L-EXPA2 network in regulating endosperm cell expansion to control the seed-to-seedling transition.
Collapse
Affiliation(s)
- Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Laura Bouza-Morcillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Julietta Marquez
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Melania Ghita
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | | | - Luis Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain; Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Forestal y del Medio Natural, Campus de Moncloa, 28040 Madrid, Spain
| | | | - George Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain.
| |
Collapse
|
31
|
Staszak AM, Rewers M, Sliwinska E, Klupczynska EA, Pawlowski TA. DNA synthesis pattern, proteome, and ABA and GA signalling in developing seeds of Norway maple (Acer platanoides). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:152-164. [PMID: 32172757 DOI: 10.1071/fp18074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Mature seeds of Norway maple exhibit desiccation tolerance and deep physiological dormancy. Flow cytometry, proteomics, and immunodetection have been combined to investigate seed development of this species. DNA content analysis revealed that cell cycle/endoreduplication activity differs between seed organs and developmental stages. In the embryo axis, the proportion of the nuclei with the highest DNA content (4C) increases at the beginning of maturation (17 weeks after flowering; WAF), and then is stable until the end of maturation, to increase again after drying. In cotyledons, during maturation endopolyploid nuclei (8C) occur and the intensity of endoreduplication increases up to 21 WAF, and then is stable until development is completed. In dry mature seeds, the proportion of 4C nuclei is high, and reaches 36% in the embryo axis and 52% in cotyledons. Proteomic studies revealed that energy and carbon metabolism, fatty acid biosynthesis, storage and antioxidant proteins are associated with seed development. Study of the ABI5 protein, a transcription factor involved in ABA signalling, and the RGL2 protein, a repressor of the GA signalling indicates that the highest accumulation of these proteins occurs in fully-matured and dried seeds. It is suggested that this increase in accumulation can be associated with completion of maturation, mainly with desiccation and dormancy acquisition.
Collapse
Affiliation(s)
- Aleksandra M Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Monika Rewers
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego Avenue. 7, 85-789 Bydgoszcz, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego Avenue. 7, 85-789 Bydgoszcz, Poland
| | - Ewelina A Klupczynska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Tomasz A Pawlowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
32
|
MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2018; 115:8442-8447. [PMID: 30061395 PMCID: PMC6099910 DOI: 10.1073/pnas.1806460115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seed germination in many plant species is triggered by sunlight, which is rich in the red (R) wavelength and repressed by under-the-canopy light rich in far red (FR). R:FR ratios are sensed by phytochromes to regulate levels of gibberellins (GAs) and abscisic acid (ABA), which induce and inhibit germination respectively. In this study we have discovered that, under FR light conditions, germination is repressed by MOTHER-OF-FT-AND-TFL1 (MFT) through the regulation of the ABA and GA signaling pathways. We also show that MFT gene expression is tightly regulated by light quality. Previous work has shown that under FR light conditions the transcription factor PHYOCHROME-INTERACTING-FACTOR1 (PIF1) accumulates and promotes expression of SOMNUS (SOM) that, in turn, leads to increased ABA and decreased GA levels. PIF1 also promotes expression of genes encoding ABA-INSENSITIVE5 (ABI5) and DELLA growth-repressor proteins, which act in the ABA and GA signaling pathways, respectively. Here we show that MFT gene expression is promoted by FR light through the PIF1/SOM/ABI5/DELLA pathway and is repressed by R light via the transcription factor SPATULA (SPT). Consistent with this, we also show that SPT gene expression is repressed under FR light in a PIF1-dependent manner. Furthermore, transcriptomic analyses presented in this study indicate that MFT exerts its function by promoting expression of known ABA-induced genes and repressing cell wall expansion-related genes.
Collapse
|
33
|
Shen W, Yao X, Ye T, Ma S, Liu X, Yin X, Wu Y. Arabidopsis Aspartic Protease ASPG1 Affects Seed Dormancy, Seed Longevity and Seed Germination. PLANT & CELL PHYSIOLOGY 2018; 59:1415-1431. [PMID: 29648652 DOI: 10.1093/pcp/pcy070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Seed storage proteins (SSPs) provide free amino acids and energy for the process of seed germination. Although degradation of SSPs by the aspartic proteases isolated from seeds has been documented in vitro, there is still no genetic evidence for involvement of aspartic proteases in seed germination. Here we report that the aspartic protease ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) plays an important role in the process of dormancy, viability and germination of Arabidopsis seeds. We show that aspg1-1 mutants have enhanced seed dormancy and reduced seed viability. A significant increase in expression of DELLA genes which act as repressors in the gibberellic acid signal transduction pathway were detected in aspg1-1 during seed germination. Seed germination of aspg1-1 mutants was more sensitive to treatment with paclobutrazol (PAC; a gibberellic acid biosynthesis inhibitor). In contrast, seed germination of ASPG1 overexpression (OE) transgenic lines showed resistant to PAC. The degradation of SSPs in germinating seeds was severely impaired in aspg1-1 mutants. Moreover, the development of aspg1-1 young seedlings was arrested when grown on the nutrient-free medium. Thus ASPG1 is important for seed dormancy, seed longevity and seed germination, and its function is associated with degradation of SSPs and regulation of gibberellic acid signaling in Arabidopsis.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sheng Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Heyman J, Canher B, Bisht A, Christiaens F, De Veylder L. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci 2018; 131:jcs.208215. [PMID: 29242229 DOI: 10.1242/jcs.208215] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
Plants react to wounding through the activation of both defense and repair pathways, but how these two responses are coordinated is unclear. Here, we put forward the hypothesis that diverse members of the subfamily X of the plant-specific ethylene response factor (ERF) transcription factors coordinate stress signaling with the activation of wound repair mechanisms. Moreover, we highlight the observation that tissue repair is strongly boosted through the formation of a heterodimeric protein complex that comprises ERF and transcription factors of the GRAS domain type. This interaction turns ERFs into highly potent and stress-responsive activators of cell proliferation. The potency to induce stem cell identity suggests that these heterodimeric transcription factor complexes could become valuable tools to increase crop regeneration and transformation efficiency.
Collapse
Affiliation(s)
- Jefri Heyman
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Balkan Canher
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Anchal Bisht
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Fien Christiaens
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Lieven De Veylder
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| |
Collapse
|
35
|
Gras DE, Vidal EA, Undurraga SF, Riveras E, Moreno S, Dominguez-Figueroa J, Alabadi D, Blázquez MA, Medina J, Gutiérrez RA. SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:619-631. [PMID: 29309650 PMCID: PMC5853263 DOI: 10.1093/jxb/erx423] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/15/2017] [Indexed: 05/04/2023]
Abstract
The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Diana E Gras
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Paraje El Pozo, Santa Fe, Argentina
| | - Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - Soledad F Undurraga
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eleodoro Riveras
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián Moreno
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Dominguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, (UPM-INIA) Campus de Montegancedo, Madrid, Spain
| | - David Alabadi
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, (UPM-INIA) Campus de Montegancedo, Madrid, Spain
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Correspondence:
| |
Collapse
|
36
|
Nelson SK, Ariizumi T, Steber CM. Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant. FRONTIERS IN PLANT SCIENCE 2017; 8:2158. [PMID: 29312402 PMCID: PMC5744475 DOI: 10.3389/fpls.2017.02158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Plant embryos can survive years in a desiccated, quiescent state within seeds. In many species, seeds are dormant and unable to germinate at maturity. They acquire the capacity to germinate through a period of dry storage called after-ripening (AR), a biological process that occurs at 5-15% moisture when most metabolic processes cease. Because stored transcripts are among the first proteins translated upon water uptake, they likely impact germination potential. Transcriptome changes associated with the increased seed dormancy of the GA-insensitive sly1-2 mutant, and with dormancy loss through long sly1-2 after-ripening (19 months) were characterized in dry seeds. The SLY1 gene was needed for proper down-regulation of translation-associated genes in mature dry seeds, and for AR up-regulation of these genes in germinating seeds. Thus, sly1-2 seed dormancy may result partly from failure to properly regulate protein translation, and partly from observed differences in transcription factor mRNA levels. Two positive regulators of seed dormancy, DELLA GAI (GA-INSENSITIVE) and the histone deacetylase HDA6/SIL1 (MODIFIERS OF SILENCING1) were strongly AR-down-regulated. These transcriptional changes appeared to be functionally relevant since loss of GAI function and application of a histone deacetylase inhibitor led to decreased sly1-2 seed dormancy. Thus, after-ripening may increase germination potential over time by reducing dormancy-promoting stored transcript levels. Differences in transcript accumulation with after-ripening correlated to differences in transcript stability, such that stable mRNAs appeared AR-up-regulated, and unstable transcripts AR-down-regulated. Thus, relative transcript levels may change with dry after-ripening partly as a consequence of differences in mRNA turnover.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
| | - Tohru Ariizumi
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture–Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
37
|
Sheerin DJ, Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2509-2529. [PMID: 28102581 DOI: 10.1111/pce.12915] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed.
Collapse
Affiliation(s)
- David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
38
|
Ravindran P, Verma V, Stamm P, Kumar PP. A Novel RGL2-DOF6 Complex Contributes to Primary Seed Dormancy in Arabidopsis thaliana by Regulating a GATA Transcription Factor. MOLECULAR PLANT 2017; 10:1307-1320. [PMID: 28917589 DOI: 10.1016/j.molp.2017.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 05/17/2023]
Abstract
The DELLA protein RGA-LIKE2 (RGL2) is a key transcriptional repressor of gibberellic acid (GA) signaling that regulates seed germination. We identified GATA12, a gene encoding a GATA-type zinc finger transcription factor, as one of the downstream targets of RGL2 in Arabidopsis thaliana. Our data show that freshly harvested (unstratified) seeds of GATA12 antisense suppression lines have reduced dormancy compared with the wild-type, while ectopic expression lines show enhanced seed dormancy. We show that GATA12 expression is negatively regulated by GA, and its transcript levels decline dramatically under dormancy-breaking conditions such as dry storage and cold stratification of seeds. GATA12 promoter has several GAMYB- and DOF-associated motifs that are known to be GA- and RGL2-responsive, respectively. Chromatin immunoprecipitation assay showed that a protein complex containing RGL2 can bind to GATA12 promoter and thereby regulate its expression. RGL2 lacks a DNA binding domain and requires a transcription factor to induce GATA12 expression. Our data show that this RGL2-containing protein complex includes DNA BINDING1 ZINC FINGER6 (DOF6), which is a known negative regulator of germination in freshly harvested seeds. We further show that this novel RGL2-DOF6 complex is required for activating GATA12 expression, thus revealing a molecular mechanism to enforce primary seed dormancy.
Collapse
Affiliation(s)
- Pratibha Ravindran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Vivek Verma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Petra Stamm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
39
|
Nelson SK, Steber CM. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana. PLoS One 2017. [PMID: 28628628 PMCID: PMC5476249 DOI: 10.1371/journal.pone.0179143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While widespread transcriptome changes were previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 gene encodes the F-box subunit of an SCF E3 ubiquitin ligase needed for GA-triggered proteolysis of DELLA repressors of seed germination. DELLA overaccumulation in sly1-2 seeds leads to increased dormancy that can be rescued without DELLA protein destruction either by overexpression of the GA receptor, GA-INSENSITIVE DWARF1b (GID1b-OE) (74% germination) or by extended dry after-ripening (11 months, 51% germination). After-ripening of sly1 resulted in different transcriptional changes in early versus late Phase II of germination that were consistent with the processes known to occur. Approximately half of the transcriptome changes with after-ripening appear to depend on SLY1-triggered DELLA proteolysis. Given that many of these SLY1/GA-dependent changes are genes involved in protein translation, it appears that GA signaling increases germination capacity in part by activating translation. While sly1-2 after-ripening was associated with transcript-level changes in 4594 genes over two imbibition timepoints, rescue of sly1-2 germination by GID1b-OE was associated with changes in only 23 genes. Thus, a big change in sly1-2 germination phenotype can occur with relatively little change in the global pattern of gene expression during the process of germination. Most GID1b-OE-responsive transcripts showed similar changes with after-ripening in early Phase II of imbibition, but opposite changes with after-ripening by late Phase II. This suggests that GID1b-OE stimulates germination early in imbibition, but may later trigger negative feedback regulation.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington, United States of America
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington, United States of America
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, Washington, United States of America
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kim SI, Kwak JS, Song JT, Seo HS. The E3 SUMO ligase AtSIZ1 functions in seed germination in Arabidopsis. PHYSIOLOGIA PLANTARUM 2016; 158:256-271. [PMID: 27130140 DOI: 10.1111/ppl.12462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/16/2016] [Accepted: 03/22/2016] [Indexed: 05/20/2023]
Abstract
Seed germination is an important stage in the lifecycle of a plant because it determines subsequent vegetative growth and reproduction. Here, we show that the E3 SUMO ligase AtSIZ1 regulates seed dormancy and germination. The germination rates of the siz1 mutants were less than 50%, even after a short period of ripening. However, their germination rates increased to wild-type levels after cold stratification or long periods of ripening. In addition, exogenous gibberellin (GA) application improved the germination rates of the siz1 mutants to the wild-type level. In transgenic plants, suppression of AtSIZ1 caused rapid post-translational decay of SLEEPY1 (SLY1), a positive regulator of GA signaling, during germination, and inducible AtSIZ1 overexpression led to increased SLY1 levels. In addition, overexpressing wild-type SLY1 in transgenic sly1 mutants increased their germination ratios to wild-type levels, whereas the germination ratio of transgenic sly1 mutants overexpressing mSLY1 was similar to that of sly1. The germination ratios of siz1 mutant seeds in immature developing siliques were much lower than those of the wild-type. Moreover, SLY1 and DELAY OF GERMINATION 1 (DOG1) transcript levels were reduced in the siz1 mutants, whereas the transcript levels of DELLA and ABSCISIC ACID INSENSITIVE 3 (ABI3) were higher than those of the wild-type. Taken together, these results indicate that the reduced germination of the siz1 mutants results from impaired GA signaling due to low SLY1 levels and activity, as well as hyperdormancy due to high levels of expression of dormancy-related genes including DOG1.
Collapse
Affiliation(s)
- Sung-Il Kim
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Jun Soo Kwak
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Hak Soo Seo
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 151-818, Korea.
| |
Collapse
|
41
|
Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat Commun 2016; 7:12768. [PMID: 27624486 PMCID: PMC5027291 DOI: 10.1038/ncomms12768] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/30/2016] [Indexed: 12/18/2022] Open
Abstract
The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. Crosstalk between gibberellic acid (GA) and abscisic acid (ABA) regulates seed germination. Here the authors show that NF-YC transcription factors can interact with the RGL2 DELLA protein to regulate expression of ABI5 and therefore modulate ABA- and GA-responsive gene expression.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Pengwei Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mingkun Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Tang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ling Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
42
|
Liu S, Xuan L, Xu LA, Huang M, Xu M. Molecular cloning, expression analysis and subcellular localization of four DELLA genes from hybrid poplar. SPRINGERPLUS 2016; 5:1129. [PMID: 27478746 PMCID: PMC4951394 DOI: 10.1186/s40064-016-2728-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/30/2016] [Indexed: 01/06/2023]
Abstract
Gibberellic acid (GA) signaling regulates diverse aspects of plant growth and developmental processes. The DELLA repressors of GA signaling are named for an N-terminal conserved DELLA domain. In this study, four genes encoding DELLA proteins, PeRGA1, PeRGA2, PeGAI1 and PeGAI2, were isolated and characterized in poplar. A gene structural analysis revealed that the DELLA genes were all intron-free. Multiple protein sequence alignments revealed that these proteins contained seven highly conserved domains: the DELLA domain, the TVHYNP domain, leucine heptad repeat I (LHR I), the VHIID domain, leucine heptad repeat II (LHR II), the PFYRE domain, and the SAM domain. Temporal expression patterns of these genes were profiled during the adventitious root development of poplar. The four DELLA genes were expressed in root, stem and leaf in a dynamic manner. The subcellular localization demonstrated that these DELLA genes were mainly localized to the nucleus. These results suggest that the four DELLA genes may play diverse regulatory roles in the adventitious root, stem and leaf development of poplar, and contribute to improving our understanding of conserved and divergent aspects of DELLA proteins that restrain GA signaling in various species.
Collapse
Affiliation(s)
- Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Lei Xuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Minren Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
43
|
Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2277-84. [PMID: 26873978 PMCID: PMC4809285 DOI: 10.1093/jxb/erw028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.
Collapse
Affiliation(s)
- Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alison D Gilday
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Steven D Penfield
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
44
|
Davière JM, Achard P. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. MOLECULAR PLANT 2016; 9:10-20. [PMID: 26415696 DOI: 10.1016/j.molp.2015.09.011] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 05/20/2023]
Abstract
Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways.
Collapse
Affiliation(s)
- Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, associé avec l'Université de Strasbourg, 12, rue Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, associé avec l'Université de Strasbourg, 12, rue Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
45
|
Hauvermale AL, Tuttle KM, Takebayashi Y, Seo M, Steber CM. Loss of Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors. PLANT & CELL PHYSIOLOGY 2015; 56:1773-85. [PMID: 26136598 DOI: 10.1093/pcp/pcv084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/02/2015] [Indexed: 05/23/2023]
Abstract
Dormancy prevents seeds from germinating under favorable conditions until they have experienced dormancy-breaking conditions, such as after-ripening through a period of dry storage or cold imbibition. Abscisic acid (ABA) hormone signaling establishes and maintains seed dormancy, whereas gibberellin (GA) signaling stimulates germination. ABA levels decrease and GA levels increase with after-ripening and cold stratification. However, increasing GA sensitivity may also be critical to dormancy loss since increasing seed GA levels are detectable only with long periods of after-ripening and imbibition. After-ripening and cold stratification act additively to enhance GA hormone sensitivity in ga1-3 seeds that cannot synthesize GA. Since the overexpression of the GA receptor GID1 (GIBBERELLIN-INSENSITIVE DWARF1) enhanced this dormancy loss, and because gid1a gid1b gid1c triple mutants show decreased germination, the effects of dormancy-breaking treatments on GID1 mRNA and protein accumulation were examined. Partial after-ripening resulted in increased GID1b, but not GID1a or GID1c mRNA levels. Cold imbibition stimulated the accumulation of all three GID1 transcripts, but resulted in no increase in GA sensitivity during ga1-3 seed germination unless seeds were also partially after-ripened. This is probably because after-ripening was needed to enhance GID1 protein accumulation, independently of transcript abundance. The rise in GID1b transcript with after-ripening was not associated with decreased ABA levels, suggesting there is ABA-independent GID1b regulation by after-ripening and the 26S proteasome. GA and the DELLA RGL2 repressor of GA responses differentially regulated the three GID1 transcripts. Moreover, DELLA RGL2 appeared to switch between positive and negative regulation of GID1 expression in response to dormancy-breaking treatments.
Collapse
Affiliation(s)
- Amber L Hauvermale
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164-6420, USA
| | - Keiko M Tuttle
- Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164-6420, USA
| | - Yumiko Takebayashi
- RIKEN, Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Mitsunori Seo
- RIKEN, Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Camille M Steber
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164-6420, USA Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164-6420, USA USDA-ARS, Wheat Genetics, Quality, Physiology, and Disease Research Unit, Pullman, WA, USA
| |
Collapse
|
46
|
Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Proc Natl Acad Sci U S A 2015; 112:E2477-86. [PMID: 25918418 DOI: 10.1073/pnas.1500605112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maize is a major crop and a model plant for studying C4 photosynthesis and leaf development. However, a genomewide regulatory network of leaf development is not yet available. This knowledge is useful for developing C3 crops to perform C4 photosynthesis for enhanced yields. Here, using 22 transcriptomes of developing maize leaves from dry seeds to 192 h post imbibition, we studied gene up- and down-regulation and functional transition during leaf development and inferred sets of strongly coexpressed genes. More significantly, we developed a method to predict transcription factor binding sites (TFBSs) and their cognate transcription factors (TFs) using genomic sequence and transcriptomic data. The method requires not only evolutionary conservation of candidate TFBSs and sets of strongly coexpressed genes but also that the genes in a gene set share the same Gene Ontology term so that they are involved in the same biological function. In addition, we developed another method to predict maize TF-TFBS pairs using known TF-TFBS pairs in Arabidopsis or rice. From these efforts, we predicted 1,340 novel TFBSs and 253 new TF-TFBS pairs in the maize genome, far exceeding the 30 TF-TFBS pairs currently known in maize. In most cases studied by both methods, the two methods gave similar predictions. In vitro tests of 12 predicted TF-TFBS interactions showed that our methods perform well. Our study has significantly expanded our knowledge on the regulatory network involved in maize leaf development.
Collapse
|
47
|
Lee HG, Lee K, Seo PJ. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. PLANT MOLECULAR BIOLOGY 2015; 87:371-81. [PMID: 25616734 DOI: 10.1007/s11103-015-0283-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/07/2015] [Indexed: 05/18/2023]
Abstract
Seed dormancy facilitates to endure environmental disadvantages by confining embryonic growth until the seeds encounter favorable environmental conditions for germination. Abscisic acid (ABA) and gibberellic acid (GA) play a pivotal role in the determination of the seed dormancy state. ABA establishes seed dormancy, while GA triggers seed germination. Here, we demonstrate that MYB96 contributes to the fine-tuning of seed dormancy regulation through the coordination of ABA and GA metabolism. The MYB96-deficient myb96-1 seeds germinated earlier than wild-type seeds, whereas delayed germination was observed in the activation-tagging myb96-1D seeds. The differences in germination rate disappeared after stratification or after-ripening. The MYB96 transcription factor positively regulates ABA biosynthesis genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE 2 (NCED2), NCED5, NCED6, and NCED9, and also affects GA biosynthetic genes GA3ox1 and GA20ox1. Notably, MYB96 directly binds to the promoters of NCED2 and NCED6, primarily modulating ABA biosynthesis, which subsequently influences GA metabolism. In agreement with this, hyperdormancy of myb96-1D seeds was recovered by an ABA biosynthesis inhibitor fluridone, while hypodormancy of myb96-1 seeds was suppressed by a GA biosynthesis inhibitor paclobutrazol (PAC). Taken together, the metabolic balance of ABA and GA underlies MYB96 control of primary seed dormancy.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | |
Collapse
|
48
|
Behringer C, Schwechheimer C. B-GATA transcription factors - insights into their structure, regulation, and role in plant development. FRONTIERS IN PLANT SCIENCE 2015; 6:90. [PMID: 25755661 PMCID: PMC4337238 DOI: 10.3389/fpls.2015.00090] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/03/2015] [Indexed: 05/17/2023]
Abstract
GATA transcription factors are evolutionarily conserved transcriptional regulators that recognize promoter elements with a G-A-T-A core sequence. In comparison to animal genomes, the GATA transcription factor family in plants is comparatively large with approximately 30 members. Here, we review the current knowledge on B-GATAs, one of four GATA factor subfamilies from Arabidopsis thaliana. We show that B-GATAs can be subdivided based on structural features and their biological function into family members with a C-terminal LLM- (leucine-leucine-methionine) domain or an N-terminal HAN- (HANABA TARANU) domain. The paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED) and CGA1/GNL (CYTOKININ-INDUCED GATA1/GNC-LIKE) are introduced as LLM-domain containing B-GATAs from Arabidopsis that control germination, greening, senescence, and flowering time downstream from several growth regulatory signals. Arabidopsis HAN and its monocot-specific paralogs from rice (NECK LEAF1), maize (TASSEL SHEATH1), and barley (THIRD OUTER GLUME) are HAN-domain-containing B-GATAs with a predominant role in embryo development and floral development. We also review GATA23, a regulator of lateral root initiation from Arabidopsis that is closely related to GNC and GNL but has a degenerate LLM-domain that is seemingly specific for the Brassicaceae family. The Brassicaceae-specific GATA23 and the monocot-specific HAN-domain GATAs provide evidence that neofunctionalization of B-GATAs was used during plant evolution to expand the functional repertoire of these transcription factors.
Collapse
Affiliation(s)
| | - Claus Schwechheimer
- *Correspondence: Claus Schwechheimer, Department of Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 4, 85354 Freising, Germany e-mail:
| |
Collapse
|
49
|
Wu N, Zhu Y, Song W, Li Y, Yan Y, Hu Y. Unusual tandem expansion and positive selection in subgroups of the plant GRAS transcription factor superfamily. BMC PLANT BIOLOGY 2014; 14:373. [PMID: 25524588 PMCID: PMC4279901 DOI: 10.1186/s12870-014-0373-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 12/08/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND GRAS proteins belong to a plant transcription factor family that is involved with multifarious roles in plants. Although previous studies of this protein family have been reported for Arabidopsis, rice, Chinese cabbage and other species, investigation of expansion patterns and evolutionary rate on the basis of comparative genomics in different species remains inadequate. RESULTS A total of 289 GRAS genes were identified in Arabidopsis, B. distachyon, rice, soybean, S. moellendorffii, and P. patens and were grouped into seven subfamilies, supported by the similarity of their exon-intron patterns and structural motifs. All of tandem duplicated genes were found in group II except one cluster of rice, indicating that tandem duplication greatly promoted the expansion of group II. Furthermore, segment duplications were mainly found in the soybean genome, whereas no single expansion pattern dominated in other plant species indicating that GRAS genes from these five species might be subject to a more complex evolutionary mechanism. Interestingly, branch-site model analyses of positive selection showed that a number of sites were positively selected under foreground branches I and V. These results strongly indicated that these groups were experiencing higher positive selection pressure. Meanwhile, the site-specific model revealed that the GRAS genes were under strong positive selection in P. patens. DIVERGE v2.0 was used to detect critical amino acid sites, and the results showed that the shifted evolutionary rate was mainly attributed to the functional divergence between the GRAS genes in the two groups. In addition, the results also demonstrated the expression divergence of the GRAS duplicated genes in the evolution. In short, the results above provide a solid foundation for further functional dissection of the GRAS gene superfamily. CONCLUSIONS In this work, differential expression, evolutionary rate, and expansion patterns of the GRAS gene family in the six species were predicted. Especially, tandem duplication events played an important role in expansion of group II. Together, these results contribute to further functional analysis and the molecular evolution of the GRAS gene superfamily.
Collapse
Affiliation(s)
- Ningning Wu
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yan Zhu
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Wanlu Song
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
50
|
Boccaccini A, Santopolo S, Capauto D, Lorrai R, Minutello E, Belcram K, Palauqui JC, Costantino P, Vittorioso P. Independent and interactive effects of DOF affecting germination 1 (DAG1) and the Della proteins GA insensitive (GAI) and Repressor of ga1-3 (RGA) in embryo development and seed germination. BMC PLANT BIOLOGY 2014; 14:200. [PMID: 25064446 PMCID: PMC4222566 DOI: 10.1186/s12870-014-0200-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/16/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND The transcription factor DOF AFFECTING GERMINATION1 (DAG1) is a repressor of seed germination acting downstream of the master repressor PHYTOCROME INTERACTING FACTOR3-LIKE 5 (PIL5). Among others, PIL5 induces the expression of the genes encoding the two DELLA proteins GA INSENSITIVE 1 (GAI) and REPRESSOR OF ga1-3 (RGA). RESULTS Based on the properties of gai-t6 and rga28 mutant seeds, we show here that the absence of RGA severely increases dormancy, while lack of GAI only partially compensates RGA inactivation. In addition, the germination properties of the dag1rga28 double mutant are different from those of the dag1 and rga28 single mutants, suggesting that RGA and DAG1 act in independent branches of the PIL5-controlled germination pathway. Surprisingly, the dag1gai-t6 double mutant proved embryo-lethal, suggesting an unexpected involvement of (a possible complex between) DAG1 and GAI in embryo development. CONCLUSIONS Rather than overlapping functions as previously suggested, we show that RGA and GAI play distinct roles in seed germination, and that GAI interacts with DAG1 in embryo development.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Silvia Santopolo
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Davide Capauto
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Riccardo Lorrai
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Emanuele Minutello
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Bâtiment 2, INRA, Centre de Versailles-Grignon, Route de St-Cyr (RD10), Versailles Cedex, 78026, France
| | - Jean-Cristophe Palauqui
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Bâtiment 2, INRA, Centre de Versailles-Grignon, Route de St-Cyr (RD10), Versailles Cedex, 78026, France
| | - Paolo Costantino
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Paola Vittorioso
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|