1
|
Pérez-Pérez J, Ezquerro M, Lim S, Ha SH, López-Gresa MP, Rodríguez-Concepción M, Lisón P. Loss of tomato geranylgeranyl diphosphate synthase 2 increases monoterpenoid levels and enhances immune responses to bacterial infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644926. [PMID: 40196493 PMCID: PMC11974751 DOI: 10.1101/2025.03.24.644926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Many plastidial isoprenoids, including diterpenes and photosynthesis-related isoprenoids such as carotenoids and chlorophylls, derive from C20 geranylgeranyl diphosphate (GGPP), produced by GGPP synthase (GGPPS) enzymes. Heterodimers of GGPPS and non-catalytic type I small subunit (SSU-I) proteins produce C10 geranyl diphosphate (GPP), the precursor of monoterpenes. Three plastidial GGPPS isoforms, referred to as SlG1-3, are present in tomato (Solanum lycopersicum). Here we explored their contribution to the production of volatile organic compounds (VOCs) of isoprenoid origin under normal conditions and in response to infection with Pseudomonas syringae pathovar tomato (Pst). Edited lines lacking SlG2 showed a distinctive VOC profile compared to unedited (WT) plants and mutants impaired in SlG1 or SlG3. In particular, only slg2 mutants showed constitutively increased levels of GPP-derived hydroxylated monoterpenes (HMTPs). Upon Pst infection, slg2 plants accumulated higher levels of salicylic acid (SA) and exhibited increase resistance compared to WT controls, resulting in reduced levels of VOCs associated to cell death. Our findings suggest that SlG2 regulates GPP synthesis, potentially by specifically competing with other GGPPS isoforms for heterodimerization with SSU-I. Increased GPP production in slg2 plants could lead to higher HMTPs levels, which may result in elevated SA content, and subsequently enhanced protection against bacterial infection.
Collapse
Affiliation(s)
- Julia Pérez-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación (CPI) 8 E, 46022 Valencia, Spain
| | - Miguel Ezquerro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación (CPI) 8 E, 46022 Valencia, Spain
| | - Sooyeon Lim
- Department of Genetics and Biotechnology, Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, 17104 Yongin, South Korea
| | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, 17104 Yongin, South Korea
| | - Mª Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación (CPI) 8 E, 46022 Valencia, Spain
| | - Manuel Rodríguez-Concepción
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación (CPI) 8 E, 46022 Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación (CPI) 8 E, 46022 Valencia, Spain
| |
Collapse
|
2
|
Yang F, Huang T, Tong H, Shi X, Zhang R, Gu W, Li Y, Han P, Zhang X, Yang Y, Zhou Z, Wu Q, Zhang Y, Su Q. Herbivore-induced volatiles reduce the susceptibility of neighboring tomato plants to transmission of a whitefly-borne begomovirus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6663-6675. [PMID: 39126232 DOI: 10.1093/jxb/erae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Plant viruses exist in a broader ecological community that includes non-vector herbivores that can impact vector abundance, behavior, and virus transmission within shared host plants. However, little is known about the effects of non-vector herbivore infestation on virus transmission by vector insects on neighboring plants through inter-plant airborne chemicals. In this study, we investigated how volatiles emitted from tomato plants infested with the two-spotted spider mite (Tetranychus urticae) affect the infection of neighboring plants by tomato yellow leaf curl virus (TYLCV) transmitted by whitefly (Bemisia tabaci). Exposure of neighboring tomato plants to volatiles released from T. urticae-infested tomato plants reduced subsequent herbivory as well as TYLCV transmission and infection, and the jasmonic acid signaling pathway was essential for generation of the inter-plant defense signals. We also demonstrated that (E)-β-ocimene and methyl salicylic acid were two volatiles induced by T. urticae that synergistically attenuated TYLCV transmission and infection in tomato. Thus, our findings suggest that plant-plant communication via volatiles likely represents a widespread defensive mechanism that substantially contributes to plant fitness. Understanding such phenomena may help us to predict the occurrence and epidemics of multiple herbivores and viruses in agroecosystems, and ultimately to manage pest and virus outbreaks.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Tianyu Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xiaobin Shi
- Yuelushan Laboratory, Changsha, Hunan 410125, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weina Gu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Peng Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
| | - Xiaoming Zhang
- College of Plant Protection, Yunnan Agricultural University, National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, Kunming 650201, China
| | - Yuting Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Zhixiong Zhou
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
3
|
Chen L, Shu Z, Zhou D, Zhou H, Wang J, Feng Y, Zheng S, He W. Metabolite profiling and transcriptome analyses reveal defense regulatory network against pink tea mite invasion in tea plant. BMC Genomics 2024; 25:989. [PMID: 39438821 PMCID: PMC11520189 DOI: 10.1186/s12864-024-10877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The tea plant Camellia sinensis (L.) O. Kuntze is a perennial crop, invaded by diversity of insect pest species, and pink tea mite is one of the most devastating pests for sustainable tea production. However, molecular mechanism of defense responses against pink tea mites in tea is still unknown. In this study, metabolomics and transcriptome profiles of susceptible and resistant tea varieties were compared before and after pink tea mite infestation. RESULTS Metabolomics analysis revealed that abundance levels of polyphenol-related compounds changed significantly before and after infestation. At the transcript level, nearly 8 GB of clean reads were obtained from each sequenced library, and a comparison of infested plants of resistant and susceptible tea varieties revealed 9402 genes with significant differential expression. An array of genes enriched in plant pathogen interaction and biosynthetic pathways of phenylpropanoids showed significant differential regulation in response to pink tea mite invasion. In particular, the functional network linkage of disease resistant proteins, phenylalanine ammonia lyase, flavanone -3-hydroxylase, hydroxycinnamoyl-CoA shikimate transferase, brassinosteroid-6-oxidase 1, and gibberellin 2 beta-dioxygenase induced dynamic defense signals to suppress prolonged pink tea mite attacks. Further integrated analyses identified a complex network of transcripts and metabolites interlinked with precursors of various flavonoids that are likely modulate resistance against to pink tea mite. CONCLUSIONS Our results characterized the profiles of insect induced metabolic and transcript reprogramming and identified a defense regulatory network that can potentially be used to fend off pink tea mites damage.
Collapse
Affiliation(s)
- Limin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zaifa Shu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Dayun Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Huijuan Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China
| | - Yaqi Feng
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Shenghong Zheng
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Weizhong He
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
4
|
Wei RR, Lin QY, Adu M, Huang HL, Yan ZH, Shao F, Zhong GY, Zhang ZL, Sang ZP, Cao L, Ma QG. The sources, properties, extraction, biosynthesis, pharmacology, and application of lycopene. Food Funct 2023; 14:9974-9998. [PMID: 37916682 DOI: 10.1039/d3fo03327a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lycopene is an important pigment with an alkene skeleton from Lycopersicon esculentum, which is also obtained from some red fruits and vegetables. Lycopene is used in the food field with rich functions and serves in the medical field with multiple clinical values because it has dual functions of both medicine and food. It was found that lycopene was mainly isolated by solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction, high-intensity pulsed electric field-assisted extraction, enzymatic-assisted extraction, and microwave-assisted extraction. Meanwhile, it was also obtained via 2 synthetic pathways: chemical synthesis and biosynthesis. Pharmacological studies revealed that lycopene has anti-oxidant, hypolipidemic, anti-cancer, immunity-enhancing, hepatoprotective, hypoglycemic, cardiovascular-protective, anti-inflammatory, neuroprotective, and osteoporosis-inhibiting effects. The application of lycopene mainly includes food processing, animal breeding, and medical cosmetology fields. It is hoped that this review will provide some useful information and guidance for future study and exploitation of lycopene.
Collapse
Affiliation(s)
- Rong-Rui Wei
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Qing-Yuan Lin
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Mozili Adu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Hui-Lian Huang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhi-Hong Yan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Feng Shao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Guo-Yue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhong-Li Zhang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lan Cao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Qin-Ge Ma
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
5
|
Ezquerro M, Li C, Pérez-Pérez J, Burbano-Erazo E, Barja MV, Wang Y, Dong L, Lisón P, López-Gresa MP, Bouwmeester HJ, Rodríguez-Concepción M. Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress-triggered production of diterpenes in leaves and strigolactones in roots. THE NEW PHYTOLOGIST 2023; 239:2292-2306. [PMID: 37381102 DOI: 10.1111/nph.19109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.
Collapse
Affiliation(s)
- Miguel Ezquerro
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Changsheng Li
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Julia Pérez-Pérez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Esteban Burbano-Erazo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Yanting Wang
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Purificación Lisón
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Pilar López-Gresa
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
6
|
Feng W, Mehari TG, Fang H, Ji M, Qu Z, Jia M, Wang D, Ditta A, Khan MKR, Cao Y, Wu J, Wang B. Genome-wide identification of the geranylgeranyl pyrophosphate synthase (GGPS) gene family involved in chlorophyll synthesis in cotton. BMC Genomics 2023; 24:176. [PMID: 37020266 PMCID: PMC10077690 DOI: 10.1186/s12864-023-09249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Geranylgeranyl pyrophosphate synthase (GGPS) is a structural enzyme of the terpene biosynthesis pathway that is involved in regulating plant photosynthesis, growth and development, but this gene family has not been systematically studied in cotton. RESULTS In the current research, genome-wide identification was performed, and a total of 75 GGPS family members were found in four cotton species, Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii. The GGPS genes were divided into three subgroups by evolutionary analysis. Subcellular localization prediction showed that they were mainly located in chloroplasts and plastids. The closely related GGPS contains a similar gene structure and conserved motif, but some genes are quite different, resulting in functional differentiation. Chromosome location analysis, collinearity and selection pressure analysis showed that many fragment duplication events occurred in GGPS genes. Three-dimensional structure analysis and conservative sequence analysis showed that the members of the GGPS family contained a large number of α-helices and random crimps, and all contained two aspartic acid-rich domains, DDxxxxD and DDxxD (x is an arbitrary amino acid), suggesting its key role in function. Cis-regulatory element analysis showed that cotton GGPS may be involved in light response, abiotic stress and other processes. A GGPS gene was silenced successfully by virus-induced gene silencing (VIGS), and it was found that the chlorophyll content in cotton leaves decreased significantly, suggesting that the gene plays an important role in plant photosynthesis. CONCLUSIONS In total, 75 genes were identified in four Gossypium species by a series of bioinformatics analysis. Gene silencing from GGPS members of G. hirsutum revealed that GGPS plays an important regulatory role in photosynthesis. This study provides a theoretical basis for the biological function of GGPS in cotton growth and development.
Collapse
Affiliation(s)
- Wenxiang Feng
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | | | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Meijun Ji
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zijian Qu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Mengxue Jia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Dongmei Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Muhammad K R Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
7
|
Duduit JR, Kosentka PZ, Miller MA, Blanco-Ulate B, Lenucci MS, Panthee DR, Perkins-Veazie P, Liu W. Coordinated transcriptional regulation of the carotenoid biosynthesis contributes to fruit lycopene content in high-lycopene tomato genotypes. HORTICULTURE RESEARCH 2022; 9:uhac084. [PMID: 35669706 PMCID: PMC9160729 DOI: 10.1093/hr/uhac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Lycopene content in tomato fruit is largely under genetic control and varies greatly among genotypes. Continued improvement of lycopene content in elite varieties with conventional breeding has become challenging, in part because little is known about the underlying molecular mechanisms in high-lycopene tomatoes (HLYs). We collected 42 HLYs with different genetic backgrounds worldwide. High-performance liquid chromatography (HPLC) analysis revealed lycopene contents differed among the positive control wild tomato Solanum pimpinellifolium, HLYs, the normal lycopene cultivar "Moneymaker", and the non-lycopene cultivar NC 1Y at the pink and red ripe stages. Real-time RT-PCR analysis of expression of the 25 carotenoid biosynthesis pathway genes of each genotype showed a significantly higher expression in nine upstream genes (GGPPS1, GGPPS2, GGPPS3, TPT1, SSU II, PSY2, ZDS, CrtISO and CrtISO-L1 but not the well-studied PSY1, PDS and Z-ISO) at the breaker and/or red ripe stages in HLYs compared to Moneymaker, indicating a higher metabolic flux flow into carotenoid biosynthesis pathway in HLYs. Further conversion of lycopene to carotenes may be prevented via the two downstream genes (β-LCY2 and ε-LCY), which had low-abundance transcripts at either or both stages. Additionally, the significantly higher expression of four downstream genes (BCH1, ZEP, VDE, and CYP97C11) at either or both ripeness stages leads to significantly lower fruit lycopene content in HLYs than in the wild tomato. This is the first systematic investigation of the role of the complete pathway genes in regulating fruit lycopene biosynthesis across many HLYs, and enables tomato breeding and gene editing for increased fruit lycopene content.
Collapse
Affiliation(s)
| | | | - Morgan A Miller
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | | | - Marcello S Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Via Prov.le Lecce-Monteroni, Lecce, 73100 Italy
| | - Dilip R Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC 28759, USA
| | - Penelope Perkins-Veazie
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | |
Collapse
|
8
|
Srivastava Y, Tripathi S, Mishra B, Sangwan NS. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis. PLANTA 2022; 256:4. [PMID: 35648276 DOI: 10.1007/s00425-022-03912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content. Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.
Collapse
Affiliation(s)
- Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | | | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, 123031, India.
| |
Collapse
|
9
|
Cao Y, Liu L, Ma K, Wang W, Lv H, Gao M, Wang X, Zhang X, Ren S, Zhang N, Guo YD. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1102-1115. [PMID: 35293128 DOI: 10.1111/jipb.13248] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/27/2023]
Abstract
Jasmonic acid (JA) is a key regulator of plant defense responses. Although the transcription factor MYC2, the master regulator of the JA signaling pathway, orchestrates a hierarchical transcriptional cascade that regulates the JA responses, only a few transcriptional regulators involved in this cascade have been described. Here, we identified the basic helix-loop-helix (bHLH) transcription factor gene in tomato (Solanum lycopersicum), METHYL JASMONATE (MeJA)-INDUCED GENE (SlJIG), the expression of which was strongly induced by MeJA treatment. Genetic and molecular biology experiments revealed that SlJIG is a direct target of MYC2. SlJIG knockout plants generated by gene editing had lower terpene contents than the wild type from the lower expression of TERPENE SYNTHASE (TPS) genes, rendering them more appealing to cotton bollworm (Helicoverpa armigera). Moreover, SlJIG knockouts exhibited weaker JA-mediated induction of TPSs, suggesting that SlJIG may participate in JA-induced terpene biosynthesis. Knocking out SlJIG also resulted in attenuated expression of JA-responsive defense genes, which may contribute to the observed lower resistance to cotton bollworm and to the fungus Botrytis cinerea. We conclude that SlJIG is a direct target of MYC2, forms a MYC2-SlJIG module, and functions in terpene biosynthesis and resistance against cotton bollworm and B. cinerea.
Collapse
Affiliation(s)
- Yunyun Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinman Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, 23806, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
10
|
Huang Y, Xie FJ, Cao X, Li MY. Research progress in biosynthesis and regulation of plant terpenoids. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ying Huang
- Department of Horticulture, College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, PR China
| | - Fang-Jie Xie
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xue Cao
- Department of Horticulture, College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, PR China
| | - Meng-Yao Li
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
11
|
Yuan H, Cao G, Hou X, Huang M, Du P, Tan T, Zhang Y, Zhou H, Liu X, Liu L, Jiangfang Y, Li Y, Liu Z, Fang C, Zhao L, Fernie AR, Luo J. Development of a widely targeted volatilomics method for profiling volatilomes in plants. MOLECULAR PLANT 2022; 15:189-202. [PMID: 34509640 DOI: 10.1016/j.molp.2021.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 05/26/2023]
Abstract
Volatile organic compounds play essential roles in plant environment interactions as well as determining the fragrance of plants. Although gas chromatography-mass spectrometry-based untargeted metabolomics is commonly used to assess plant volatiles, it suffers from high spectral convolution, low detection sensitivity, a limited number of annotated metabolites, and relatively poor reproducibility. Here, we report a widely targeted volatilomics (WTV) method that involves using a "targeted spectra extraction" algorithm to address spectral convolution, constructing a high-coverage MS2 spectral tag library to expand volatile annotation, adapting a multiple reaction monitoring mode to improve sensitivity, and using regression models to adjust for signal drift. The newly developed method was used to profile the volatilome of rice grains. Compared with the untargeted method, the newly developed WTV method shows higher sensitivity (for example, the signal-to-noise ratio of guaicol increased from 4.1 to 18.8), high annotation coverage (the number of annotated volatiles increased from 43 to 132), and better reproducibility (the number of volatiles in quality control samples with relative standard deviation value below 30.0% increased from 14 to 92 after normalization). Using the WTV method, we studied the metabolic responses of tomato to environmental stimuli and profiled the volatilomes of different rice accessions. The results identified benzothiazole as a potential airborne signal priming tomato plants for enhanced defense and 2-nonanone and 2-heptanone as novel aromatic compounds contributing to rice fragrance. These case studies suggest that the widely targeted volatilomics method is more efficient than those currently used and may considerably promote plant volatilomics studies.
Collapse
Affiliation(s)
- Honglun Yuan
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Guangping Cao
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xiaodong Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Menglan Huang
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Pengmeng Du
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Tingting Tan
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Youjin Zhang
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Haihong Zhou
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yiding Jiangfang
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenhuan Liu
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570288, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Edwards MB, Choi GPT, Derieg NJ, Min Y, Diana AC, Hodges SA, Mahadevan L, Kramer EM, Ballerini ES. Genetic architecture of floral traits in bee- and hummingbird-pollinated sister species of Aquilegia (columbine). Evolution 2021; 75:2197-2216. [PMID: 34270789 DOI: 10.1111/evo.14313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
Interactions with animal pollinators have helped shape the stunning diversity of flower morphologies across the angiosperms. A common evolutionary consequence of these interactions is that some flowers have converged on suites of traits, or pollination syndromes, that attract and reward specific pollinator groups. Determining the genetic basis of these floral pollination syndromes can help us understand the processes that contributed to the diversification of the angiosperms. Here, we characterize the genetic architecture of a bee-to-hummingbird pollination shift in Aquilegia (columbine) using QTL mapping of 17 floral traits encompassing color, nectar composition, and organ morphology. In this system, we find that the genetic architectures underlying differences in floral color are quite complex, and we identify several likely candidate genes involved in anthocyanin and carotenoid floral pigmentation. Most morphological and nectar traits also have complex genetic underpinnings; however, one of the key floral morphological phenotypes, nectar spur curvature, is shaped by a single locus of large effect.
Collapse
Affiliation(s)
- Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Gary P T Choi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142
| | - Nathan J Derieg
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Angie C Diana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Scott A Hodges
- Department of Ecology, Evolutionary, and Marine Biology, University of California Santa Barbara, Santa Babara, California, 93106
| | - L Mahadevan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138.,School of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138.,Department of Physics, Harvard University, Cambridge, Massachusetts, 02138
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Evangeline S Ballerini
- Department of Ecology, Evolutionary, and Marine Biology, University of California Santa Barbara, Santa Babara, California, 93106.,Dept. of Biological Sciences, California State University Sacramento, Sacramento, California, 95819
| |
Collapse
|
13
|
Barja MV, Ezquerro M, Beretta S, Diretto G, Florez-Sarasa I, Feixes E, Fiore A, Karlova R, Fernie AR, Beekwilder J, Rodríguez-Concepción M. Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato. THE NEW PHYTOLOGIST 2021; 231:255-272. [PMID: 33590894 DOI: 10.1111/nph.17283] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 05/28/2023]
Abstract
Geranylgeranyl diphosphate (GGPP) produced by GGPP synthase (GGPPS) serves as a precursor for many plastidial isoprenoids, including carotenoids. Phytoene synthase (PSY) converts GGPP into phytoene, the first committed intermediate of the carotenoid pathway. Here we used biochemical, molecular, and genetic tools to characterise the plastidial members of the GGPPS family in tomato (Solanum lycopersicum) and their interaction with PSY isoforms. The three tomato GGPPS isoforms found to localise in plastids (SlG1, 2 and 3) exhibit similar kinetic parameters. Gene expression analyses showed a preferential association of individual GGPPS and PSY isoforms when carotenoid biosynthesis was induced during root mycorrhization, seedling de-etiolation and fruit ripening. SlG2, but not SlG3, physically interacts with PSY proteins. By contrast, CRISPR-Cas9 mutants defective in SlG3 showed a stronger impact on carotenoid levels and derived metabolic, physiological and developmental phenotypes compared with those impaired in SlG2. Double mutants defective in both genes could not be rescued. Our work demonstrates that the bulk of GGPP production in tomato chloroplasts and chromoplasts relies on two cooperating GGPPS paralogues, unlike other plant species such as Arabidopsis thaliana, rice or pepper, which produce their essential plastidial isoprenoids using a single GGPPS isoform.
Collapse
Affiliation(s)
- M Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Miguel Ezquerro
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Stefano Beretta
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Elisenda Feixes
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Jules Beekwilder
- BU Bioscience, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, València, 46022, Spain
| |
Collapse
|
14
|
Yang JN, Wei JN, Kang L. Feeding of pea leafminer larvae simultaneously activates jasmonic and salicylic acid pathways in plants to release a terpenoid for indirect defense. INSECT SCIENCE 2021; 28:811-824. [PMID: 32432392 DOI: 10.1111/1744-7917.12820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The pea leafminer, Liriomyza huidobrensis, is an important pest species affecting ornamental crops worldwide. Plant damage consists of oviposition and feeding punctures created by female adult flies as well as larva-bored mines in leaf mesophyll tissues. How plants indirectly defend themselves from these two types of leafminer damage has not been sufficiently investigated. In this study, we compared the indirect defense responses of bean plants infested by either female adults or larvae. Puncturing of leaves by adults released green leaf volatiles and terpenoids, while larval feeding caused plants to additionally emit methyl salicylate and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). Puncturing of plants by female adults induced increases in jasmonic acid (JA) and JA-related gene expressions but reduced the expressions of salicylic acid (SA)-related genes. In contrast, JA and SA and their-related gene expression levels were increased significantly by larval feeding. The exogenous application of JA+SA significantly triggered TMTT emission, thereby significantly inducing the orientation behavior of parasitoids. Our study has confirmed that larval feeding can trigger TMTT emission through the activation of both JA and SA pathways to attract parasitoids; however, TMTT alone is less attractive than the complete blend of volatiles released by infested plants.
Collapse
Affiliation(s)
- Jun-Nan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ning Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Chattopadhyay T, Hazra P, Akhtar S, Maurya D, Mukherjee A, Roy S. Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. PLANT CELL REPORTS 2021; 40:767-782. [PMID: 33388894 DOI: 10.1007/s00299-020-02650-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 05/22/2023]
Abstract
The genetics underlying the fruit colour variation in tomato is an interesting area of both basic and applied research in plant biology. There are several factors, like phytohormones, environmental signals and epistatic interactions between genes, which modulate the ripe fruit colour in tomato. However, three aspects: genetic regulation of skin pigmentation, carotenoid biosynthesis and ripening-associated chlorophyll degradation in tomato fruits are of pivotal importance. Different genes along with their mutant alleles governing the aforementioned characters have been characterized in detail. Moreover, the interaction of these mutant alleles has been explored, which has paved the way for developing novel tomato genotypes with unique fruit colour and beneficial phytonutrient composition. In this article, we review the genes and the corresponding mutant alleles underlying the variation in tomato skin pigmentation, carotenoid biosynthesis and ripening-associated chlorophyll degradation. The possibility of generating novel fruit colour-variants using different combinations of these mutant alleles is documented. Furthermore, the involvement of some other mutant alleles (like those governing purple fruit colour and high fruit pigmentation), not belonging to the aforementioned three categories, are discussed in brief. The simplified representation of the assembled information in this article should not only help a broad range of readers in their basic understanding of this complex phenomenon but also trigger them for further exploration of the same. The article would be useful for genetic characterization of fruit colour-variants and molecular breeding for fruit colour improvement in tomato using the well-characterized mutant alleles.
Collapse
Affiliation(s)
- Tirthartha Chattopadhyay
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| | - Pranab Hazra
- Department of Vegetable Science, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Shirin Akhtar
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Deepak Maurya
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Arnab Mukherjee
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Sheuli Roy
- Alumna, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
- Bihar Agricultural College, Bihar Agricultural University, Qtr. No. C1/14, Sabour, Bhagalpur, Bihar, 813210, India
| |
Collapse
|
16
|
The Non-Pathogenic Fusarium oxysporum Fo47 Induces Distinct Responses in Two Closely Related Solanaceae Plants against the Pathogen Verticillium dahliae. J Fungi (Basel) 2021; 7:jof7050344. [PMID: 33925134 PMCID: PMC8146752 DOI: 10.3390/jof7050344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The non-pathogenic Fusarium oxysporum Fo47 is able to protect Capsicum annuum (pepper) but not in Solanum lycopersicum (tomato) against the pathogen Verticillium dahliae. Transcriptomics of the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47. Ethylene related genes were present among the DE genes in both plants, and the up-regulation of ethylene biosynthetic genes was observed to be triggered during the interaction of both plants with Fo47. The treatment with MCP (1-Methylcyclopropene, an ethylene-competitive inhibitor) reduced the Fo47 protection in pepper against Verticillium dahliae. Intriguingly, Fo47 was able to protect the ethylene-insensitive tomato mutant Never-ripe (Nr) against Verticillium dahliae, but not the tomato wilt type cv Pearson. Overall, ethylene is shown to be an important player in the response to Fo47, but its role depends on the host species.
Collapse
|
17
|
Weinblum N, Cna'ani A, Yaakov B, Sadeh A, Avraham L, Opatovsky I, Tzin V. Tomato Cultivars Resistant or Susceptible to Spider Mites Differ in Their Biosynthesis and Metabolic Profile of the Monoterpenoid Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:630155. [PMID: 33719301 PMCID: PMC7952643 DOI: 10.3389/fpls.2021.630155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/19/2021] [Indexed: 05/24/2023]
Abstract
The two-spotted spider mite (TSSM; Tetranychus urticae) is a ubiquitous polyphagous arthropod pest that has a major economic impact on the tomato (Solanum lycopersicum) industry. Tomato plants have evolved broad defense mechanisms regulated by the expression of defense genes, phytohormones, and secondary metabolites present constitutively and/or induced upon infestation. Although tomato defense mechanisms have been studied for more than three decades, only a few studies have compared domesticated cultivars' natural mite resistance at the molecular level. The main goal of our research was to reveal the molecular differences between two tomato cultivars with similar physical (trichome morphology and density) and agronomic traits (fruit size, shape, color, cluster architecture), but with contrasting TSSM susceptibility. A net house experiment indicated a mite-resistance difference between the cultivars, and a climate-controlled performance and oviposition bioassay supported these findings. A transcriptome analysis of the two cultivars after 3 days of TSSM infestation, revealed changes in the genes associated with primary and secondary metabolism, including salicylic acid and volatile biosynthesis (volatile benzenoid ester and monoterpenes). The Terpene synthase genes, TPS5, TPS7, and TPS19/20, encoding enzymes that synthesize the monoterpenes linalool, β-myrcene, limonene, and β-phellandrene were highly expressed in the resistant cultivar. The volatile profile of these cultivars upon mite infestation for 1, 3, 5, and 7 days, revealed substantial differences in monoterpenoid and phenylpropanoid volatiles, results consistent with the transcriptomic data. Comparing the metabolic changes that occurred in each cultivar and upon mite-infestation indicated that monoterpenes are the main metabolites that differ between cultivars (constitutive levels), while only minor changes occurred upon TSSM attack. To test the effect of these volatile variations on mites, we subjected both the TSSM and its corresponding predator, Phytoseiulus persimilis, to an olfactory choice bioassay. The predator mites were only significantly attracted to the TSSM pre-infested resistant cultivar and not to the susceptible cultivar, while the TSSM itself showed no preference. Overall, our findings revealed the contribution of constitutive and inducible levels of volatiles on mite performance. This study highlights monoterpenoids' function in plant resistance to pests and may inform the development of new resistant tomato cultivars.
Collapse
Affiliation(s)
- Nati Weinblum
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Alon Cna'ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Adi Sadeh
- Southern R&D MOP-Darom, Negev, Israel
| | - Lior Avraham
- Agriculture Extension Service, Ministry of Agriculture and Rural Development, Bet Dagan, Israel
| | | | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
18
|
Moore BM, Wang P, Fan P, Lee A, Leong B, Lou YR, Schenck CA, Sugimoto K, Last R, Lehti-Shiu MD, Barry CS, Shiu SH. Within- and cross-species predictions of plant specialized metabolism genes using transfer learning. IN SILICO PLANTS 2020; 2:diaa005. [PMID: 33344884 PMCID: PMC7731531 DOI: 10.1093/insilicoplants/diaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like Arabidopsis thaliana have extensive, experimentally derived annotations, whereas many non-model species do not. Here we employed a machine learning strategy, transfer learning, where knowledge from A. thaliana is transferred to predict gene functions in cultivated tomato with fewer experimentally annotated genes. The first tomato SM/GM prediction model using only tomato data performs well (F-measure = 0.74, compared with 0.5 for random and 1.0 for perfect predictions), but from manually curating 88 SM/GM genes, we found many mis-predicted entries were likely mis-annotated. When the SM/GM prediction models built with A. thaliana data were used to filter out genes where the A. thaliana-based model predictions disagreed with tomato annotations, the new tomato model trained with filtered data improved significantly (F-measure = 0.92). Our study demonstrates that SM/GM genes can be better predicted by leveraging cross-species information. Additionally, our findings provide an example for transfer learning in genomics where knowledge can be transferred from an information-rich species to an information-poor one.
Collapse
Affiliation(s)
- Bethany M Moore
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Aaron Lee
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Bryan Leong
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Science Research Center, Yamaguchi University, Yamaguchi, Japan
| | - Robert Last
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI
| |
Collapse
|
19
|
Hivert G, Davidovich-Rikanati R, Bar E, Sitrit Y, Schaffer A, Dudareva N, Lewinsohn E. Prenyltransferases catalyzing geranyldiphosphate formation in tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110504. [PMID: 32540020 DOI: 10.1016/j.plantsci.2020.110504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Monoterpenes contribute either favorably or adversely to the flavor of tomato, yet modern tomato varieties generally lack monoterpenes in their fruit. The main immediate biosynthetic precursor of monoterpenes is geranyldiphosphate (GPP), produced by the action of GPP synthases (GPPSs). Plant GPPSs are often heteromeric enzymes consisting of a non-catalytic small subunit (GPPS.SSU) and a large subunit (GPPS.LSU), the latter similar to geranylgeranyldiphosphate synthases (GGPPSs) which generate longer prenylphosphate chains. We show here that LeGGPPS2, an enzyme previously reported to support carotenoid biosynthesis, can synthesize farnesyldiphosphate (FPP) and GPP in vitro, in addition to geranylgeranyldiphosphate, depending on the assay conditions. Moreover, GPP formation is favored in vitro by the interaction of LeGGPPS2 with GPPS.SSU from either Anthirrhinum majus (AmGPPS.SSU) or from a newly discovered GPPS.SSU ortholog present in the genome of M82 tomato. SlGPPS.SSU is not expressed in M82 tomato fruit but its orthologs are expressed in fruit of wild tomato relatives, such as Solanum pimpinelifollium and S. cheesmaniae that accumulate monoterpenes.
Collapse
Affiliation(s)
- Gal Hivert
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100001 Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yaron Sitrit
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Arthur Schaffer
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, P.O Box 6, Bet Dagan 50250, Israel
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100001 Israel.
| |
Collapse
|
20
|
Zhou F, Pichersky E. The complete functional characterisation of the terpene synthase family in tomato. THE NEW PHYTOLOGIST 2020; 226:1341-1360. [PMID: 31943222 PMCID: PMC7422722 DOI: 10.1111/nph.16431] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 05/14/2023]
Abstract
Analysis of the updated reference tomato genome found 34 full-length TPS genes and 18 TPS pseudogenes. Biochemical analysis has now identified the catalytic activities of all enzymes encoded by the 34 TPS genes: one isoprene synthase, 10 exclusively or predominantly monoterpene synthases, 17 sesquiterpene synthases and six diterpene synthases. Among the monoterpene and sesquiterpene and diterpene synthases, some use trans-prenyl diphosphates, some use cis-prenyl diphosphates and some use both. The isoprene synthase is cytosolic; six monoterpene synthases are plastidic, and four are cytosolic; the sesquiterpene synthases are almost all cytosolic, with the exception of one found in the mitochondria; and three diterpene synthases are found in the plastids, one in the cytosol and two in the mitochondria. New trans-prenyltransferases (TPTs) were characterised; together with previously characterised TPTs and cis-prenyltransferases (CPTs), tomato plants can make all cis and trans C10 , C15 and C20 prenyl diphosphates. Every type of plant tissue examined expresses some TPS genes and some TPTs and CPTs. Phylogenetic comparison of the TPS genes from tomato and Arabidopsis shows expansions in each clade of the TPS gene family in each lineage (and inferred losses), accompanied by changes in subcellular localisations and substrate specificities.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
21
|
Characterization of Solanum melongena Thioesterases Related to Tomato Methylketone Synthase 2. Genes (Basel) 2019; 10:genes10070549. [PMID: 31323901 PMCID: PMC6678348 DOI: 10.3390/genes10070549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
2-Methylketones are involved in plant defense and fragrance and have industrial applications as flavor additives and for biofuel production. We isolated three genes from the crop plant Solanum melongena (eggplant) and investigated these as candidates for methylketone production. The wild tomato methylketone synthase 2 (ShMKS2), which hydrolyzes β-ketoacyl-acyl carrier proteins (ACP) to release β-ketoacids in the penultimate step of methylketone synthesis, was used as a query to identify three homologs from S. melongena: SmMKS2-1, SmMKS2-2, and SmMKS2-3. Expression and functional characterization of SmMKS2s in E. coli showed that SmMKS2-1 and SmMKS2-2 exhibited the thioesterase activity against different β-ketoacyl-ACP substrates to generate the corresponding saturated and unsaturated β-ketoacids, which can undergo decarboxylation to form their respective 2-methylketone products, whereas SmMKS2-3 showed no activity. SmMKS2-1 was expressed at high level in leaves, stems, roots, flowers, and fruits, whereas expression of SmMKS2-2 and SmMKS2-3 was mainly in flowers and fruits, respectively. Expression of SmMKS2-1 was induced in leaves by mechanical wounding, and by methyl jasmonate or methyl salicylate, but SmMKS2-2 and SmMKS2-3 genes were not induced. SmMKS2-1 is a candidate for methylketone-based defense in eggplant, and both SmMKS2-1 and SmMKS2-2 are novel MKS2 enzymes for biosynthesis of methylketones as feedstocks to biofuel production.
Collapse
|
22
|
Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR. Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. Int J Mol Sci 2018; 19:E3265. [PMID: 30347842 PMCID: PMC6214137 DOI: 10.3390/ijms19103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Collapse
Affiliation(s)
- Bernardus C J Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Nicky Wybouw
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Tomas T Meijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands.
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Wang WW, Zheng C, Hao WJ, Ma CL, Ma JQ, Ni DJ, Chen L. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. PLoS One 2018; 13:e0201670. [PMID: 30067831 PMCID: PMC6070272 DOI: 10.1371/journal.pone.0201670] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022] Open
Abstract
Tea plant (Camellia sinensis (L) O. Kuntze) respond to herbivore attack through large changes in defense related metabolism and gene expression. Ectropis oblique (Prout) is one of the most devastating insects that feed on tea leaves and tender buds, which can cause severe production loss and deteriorate the quality of tea. To elucidate the biochemicals and molecular mechanism of defense against tea geometrid (TG), transcriptome and metabolome of TG interaction with susceptible (SG) and resistance (RG) tea genotypes were analyzed by using UPLC-Q-TOF-MS, GC-MS, and RNA-seq technologies. This revealed that jasmonic acid was highly induced in RG, following a plethora of secondary metabolites involved in defense against TG could be induced by jasmonic acid signaling pathway. However, the constitutively present of salicylic acid in SG might be a suppressor of jasmonate signaling and thus misdirect tea plants against TG. Furthermore, flavonoids and terpenoids biosynthesis pathways were highly activated in RG to constitute the chemical barrier on TG feeding behavior. In contrast, fructose and theanine, which can act as feeding stimulants were observed to highly accumulate in SG. Being present in the major hub, 39 transcription factors or protein kinases among putative candidates were identified as master regulators from protein-protein interaction network analysis. Together, the current study provides a comprehensive gene expression and metabolite profiles, which can shed new insights into the molecular mechanism of tea defense against TG. The candidate genes and specific metabolites identified in the present study can serve as a valuable resource for unraveling the possible defense mechanism of plants against various biotic stresses.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wan-Jun Hao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - De-Jiang Ni
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- * E-mail: (LC); (DJN)
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (LC); (DJN)
| |
Collapse
|
24
|
Liao P, Chen X, Wang M, Bach TJ, Chye M. Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE1 in transgenic tomato. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:784-796. [PMID: 28881416 PMCID: PMC5814594 DOI: 10.1111/pbi.12828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/20/2017] [Accepted: 08/26/2017] [Indexed: 05/20/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild-type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up-regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10-fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE-S359A over OE-wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA-derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)-derived α-tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS-OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up-regulated. In OE-S359A tomato fruits, increased squalene and phytosterol contents over OE-wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE-wtBjHMGS1 and OE-S359A fruits, the up-regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α-tocopherol and carotenoid accumulation indicated cross-talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health-promoting squalene, phytosterols, α-tocopherol and carotenoids in tomato, an edible fruit.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
- Partner State Key Laboratory of AgrobiotechnologyCUHKShatinHong KongChina
| | - Xinjian Chen
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
| | - Mingfu Wang
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
| | - Thomas J. Bach
- Centre National de la Recherche ScientifiqueUPR 2357Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | - Mee‐Len Chye
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
- Partner State Key Laboratory of AgrobiotechnologyCUHKShatinHong KongChina
| |
Collapse
|
25
|
Pappas ML, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas GD, Papadopoulou KK. The Beneficial Endophytic Fungus Fusarium solani Strain K Alters Tomato Responses Against Spider Mites to the Benefit of the Plant. FRONTIERS IN PLANT SCIENCE 2018; 9:1603. [PMID: 30459791 PMCID: PMC6232530 DOI: 10.3389/fpls.2018.01603] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 05/23/2023]
Abstract
Beneficial microorganisms are known to promote plant growth and confer resistance to biotic and abiotic stressors. Soil-borne beneficial microbes in particular have shown potential in protecting plants against pathogens and herbivores via the elicitation of plant responses. In this study, we evaluated the role of Fusarium solani strain K (FsK) in altering plant responses to the two spotted spider mite Tetranychus urticae in tomato. We found evidence that FsK, a beneficial endophytic fungal strain isolated from the roots of tomato plants grown on suppressive compost, affects both direct and indirect tomato defenses against spider mites. Defense-related genes were differentially expressed on FsK-colonized plants after spider mite infestation compared to clean or spider mite-infested un-colonized plants. In accordance, spider mite performance was negatively affected on FsK-colonized plants and feeding damage was lower on these compared to control plants. Notably, FsK-colonization led to increased plant biomass to both spider mite-infested and un-infested plants. FsK was shown to enhance indirect tomato defense as FsK-colonized plants attracted more predators than un-colonized plants. In accordance, headspace volatile analysis revealed significant differences between the volatiles emitted by FsK-colonized plants in response to attack by spider mites. Our results highlight the role of endophytic fungi in shaping plant-mite interactions and may offer the opportunity for the development of a novel tool for spider mite control.
Collapse
Affiliation(s)
- Maria L. Pappas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Maria L. Pappas,
| | - Maria Liapoura
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Dimitra Papantoniou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Marianna Avramidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nektarios Kavroulakis
- Laboratory of Phytopathology, Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization – DEMETER, Chania, Greece
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - George D. Broufas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
26
|
Stauder R, Welsch R, Camagna M, Kohlen W, Balcke GU, Tissier A, Walter MH. Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family. FRONTIERS IN PLANT SCIENCE 2018; 9:255. [PMID: 29545815 PMCID: PMC5838088 DOI: 10.3389/fpls.2018.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are apocarotenoid phytohormones synthesized from carotenoid precursors. They are produced most abundantly in roots for exudation into the rhizosphere to cope with mineral nutrient starvation through support of root symbionts. Abscisic acid (ABA) is another apocarotenoid phytohormone synthesized in roots, which is involved in responses to abiotic stress. Typically low carotenoid levels in roots raise the issue of precursor supply for the biosynthesis of these two apocarotenoids in this organ. Increased ABA levels upon abiotic stress in Poaceae roots are known to be supported by a particular isoform of phytoene synthase (PSY), catalyzing the rate-limiting step in carotenogenesis. Here we report on novel PSY3 isogenes from Medicago truncatula (MtPSY3) and Solanum lycopersicum (SlPSY3) strongly expressed exclusively upon root interaction with symbiotic arbuscular mycorrhizal (AM) fungi and moderately in response to phosphate starvation. They belong to a widespread clade of conserved PSYs restricted to dicots (dPSY3) distinct from the Poaceae-PSY3s involved in ABA formation. An ancient origin of dPSY3s and a potential co-evolution with the AM symbiosis is discussed in the context of PSY evolution. Knockdown of MtPSY3 in hairy roots of M. truncatula strongly reduced SL and AM-induced C13 α-ionol/C14 mycorradicin apocarotenoids. Inhibition of the reaction subsequent to phytoene synthesis revealed strongly elevated levels of phytoene indicating induced flux through the carotenoid pathway in roots upon mycorrhization. dPSY3 isogenes are coregulated with upstream isogenes and downstream carotenoid cleavage steps toward SLs (D27, CCD7, CCD8) suggesting a combined carotenoid/apocarotenoid pathway, which provides "just in time"-delivery of precursors for apocarotenoid formation.
Collapse
Affiliation(s)
- Ron Stauder
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Ralf Welsch
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maurizio Camagna
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Gerd U. Balcke
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Michael H. Walter
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
- *Correspondence: Michael H. Walter,
| |
Collapse
|
27
|
Leng X, Wang P, Wang C, Zhu X, Li X, Li H, Mu Q, Li A, Liu Z, Fang J. Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development. Sci Rep 2017; 7:4216. [PMID: 28652583 PMCID: PMC5484692 DOI: 10.1038/s41598-017-04004-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Carotenoids not only play indispensable roles in plant growth and development but also enhance nutritional value and health benefits for humans. In this study, total carotenoids progressively decreased during fruit ripening. Fifty-four genes involving in mevalonate (MVA), 2-C-methyl-D-erythritol 4-phosphate (MEP), carotenoid biosynthesis and catabolism pathway were identified. The expression levels of most of the carotenoid metabolism related genes kept changing during fruit ripening generating a metabolic flux toward carotenoid synthesis. Down regulation of VvDXS, VvDXR, VvGGPPS and VvPSY and a dramatic increase in the transcription levels of VvCCD might be responsible for the reduction of carotenoids content. The visible correlation between carotenoid content and gene expression profiles suggested that transcriptional regulation of carotenoid biosynthesis pathway genes is a key mechanism of carotenoid accumulation. In addition, the decline of carotenoids was also accompanied with the reduction of chlorophyll content. The reduction of chlorophyll content might be due to the obstruction in chlorophyll synthesis and acceleration of chlorophyll degradation. These results will be helpful for better understanding of carotenoid biosynthesis in grapevine fruit and contribute to the development of conventional and transgenic grapevine cultivars for further enrichment of carotenoid content.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Hongyan Li
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Daxuedong Road 174, Nanning, 530007, P.R. China
| | - Qian Mu
- Shandong Aacademy of Grape, Gongyenan Road 103, Jinan, 250110, P.R. China
| | - Ao Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China.
| |
Collapse
|
28
|
Liu G, Yang X, Xu J, Zhang M, Hou Q, Zhu L, Huang Y, Xiong A. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock. Acta Biochim Biophys Sin (Shanghai) 2017; 49:216-227. [PMID: 28040679 DOI: 10.1093/abbs/gmw132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Watermelon is an important and economical horticultural crop in China, where ~20% of the plants are grafted. The development of grafted watermelon fruit involves a diverse range of gene interactions that results in dynamic changes in fruit. However, the molecular mechanisms underlying grafting-induced fruit quality change are unclear. In the present study, we measured the lycopene content by high-performance liquid chromatography and used RNA-Seq (quantification) to perform a genome-wide transcript analysis of fruits from watermelon grafted onto pumpkin rootstock (pumpkin-grafted watermelon, PGW), self-grafted watermelon (SGW), and non-grafted watermelon (NGW). The results showed variation in the lycopene content in the flesh of PGW fruits, first increasing and then decreasing in the four stages, which was different from the trend in the flesh of NGW and SGW fruits. The transcriptome profiling data provided new information on the grafting-induced gene regulation of lycopene biosynthesis during fruit growth and development. The expression levels of 33 genes from 8 gene families (GGPS, PSY, PDS, ZDS, CRTISO, LCYb, LCYe, and CHY) related to lycopene biosynthesis, which play critical roles in fruit coloration and contribute significantly to fruit phytonutrient values, were monitored during the four periods of fruit development in watermelon. Compared with those of NGW and SGW, 14 genes were differentially expressed in PGW during fruit development, suggesting that these genes possibly help to mediate lycopene biosynthesis in grafted watermelon fruit. Our work provides some novel insights into grafting-responsive carotenoid metabolism and its potential roles during PGW fruit development and ripening.
Collapse
Affiliation(s)
- Guang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xingping Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinhua Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Man Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qian Hou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lingli Zhu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Ozawa R, Endo H, Iijima M, Sugimoto K, Takabayashi J, Gotoh T, Arimura GI. Intraspecific variation among Tetranychid mites for ability to detoxify and to induce plant defenses. Sci Rep 2017; 7:43200. [PMID: 28240222 PMCID: PMC5327432 DOI: 10.1038/srep43200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/23/2017] [Indexed: 02/04/2023] Open
Abstract
Two genotypes coexist among Kanzawa spider mites, one of which causes red scars and the other of which causes white scars on leaves, and they elicit different defense responses in host plants. Based on RNA-Seq analysis, we revealed here that the expression levels of genes involved in the detoxification system were higher in Red strains than White strains. The corresponding enzyme activities as well as performances for acaricide resistance and host adaptation toward Laminaceae were also higher in Red strains than White strains, indicating that Red strains were superior in trait(s) of the detox system. In subsequent generations of strains that had survived exposure to fenpyroximate, both strains showed similar resistance to this acaricide, as well as similar detoxification activities. The endogenous levels of salicylic acid and jasmonic acid were increased similarly in bean leaves damaged by original Red strains and their subsequent generations that inherited high detox activity. Jasmonic acid levels were increased in leaves damaged by original White strains, but not by their subsequent generations that inherited high detox activity. Together, these data suggest the existence of intraspecific variation - at least within White strains - with respect to their capacity to withstand acaricides and host plant defenses.
Collapse
Affiliation(s)
- Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Hiroki Endo
- Department of Biological Science &Technology, Faculty of Industrial Science &Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Mei Iijima
- Department of Biological Science &Technology, Faculty of Industrial Science &Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Koichi Sugimoto
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Tetsuo Gotoh
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science &Technology, Faculty of Industrial Science &Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
30
|
Santamaría ME, Martinez M, Arnaiz A, Ortego F, Grbic V, Diaz I. MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:975. [PMID: 28649257 PMCID: PMC5466143 DOI: 10.3389/fpls.2017.00975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The defense response of the plants against herbivores relies on a complex network of interconnected signaling pathways. In this work, we characterized a new key player in the response of Arabidopsis against the two-spotted spider mite Tetranychus urticae, the MATI (Mite Attack Triggered Immunity) gene. This gene was differentially induced in resistant Bla-2 strain relative to susceptible Kon Arabidopsis accessions after mite attack, suggesting a potential role in the control of spider mites. To study the MATI gene function, it has been performed a deep molecular characterization of the gene combined with feeding bioassays using modified Arabidopsis lines and phytophagous arthropods. The MATI gene belongs to a new gene family that had not been previously characterized. Biotic assays showed that it confers a high tolerance not only to T. urticae, but also to the chewing lepidopteran Spodoptera exigua. Biochemical analyses suggest that MATI encodes a protein involved in the accumulation of reducing agents upon herbivore attack to control plant redox homeostasis avoiding oxidative damage and cell death. Besides, molecular analyses demonstrated that MATI is involved in the modulation of different hormonal signaling pathways, affecting the expression of genes involved in biosynthesis and signaling of the jasmonic acid and salicylic acid hormones. The fact that MATI is also involved in defense through the modulation of the levels of photosynthetic pigments highlights the potential of MATI proteins to be exploited as biotechnological tools for pest control.
Collapse
Affiliation(s)
- M. Estrella Santamaría
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Félix Ortego
- Departamento de Biología Medioambiental, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|
31
|
Hou J, Liu X, Cui B, Bai J, Wang X. Microarray analysis and real-time PCR assay developed to find biomarkers for mercury-contaminated soil. Toxicol Res (Camb) 2016; 5:1539-1547. [PMID: 30090455 PMCID: PMC6062303 DOI: 10.1039/c6tx00210b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
The evaluation of mercury (Hg) toxicity in agricultural soil is of great concern because its bioavailability and bioaccumulation in organisms through the food chain can have adverse effects on human health. Therefore, the aim of this study was to develop sensitive biomarkers for Hg stress in agricultural soil. With the results obtained from a high-throughput cDNA microarray, 12 Hg-responsive genes were selected to examine their concentration-dependent responses to Hg stress at different Hg concentrations. The lowest observable adverse effect concentrations (LOAECs) of Hg were 0.8 mg kg-1 for seed germination, 1.6 mg kg-1 for root biomass, 0.8 mg kg-1 for root elongation, and 0.8 mg kg-1 for root morphology, respectively, whereas the lowest Hg treatments (0.1-0.4 mg kg-1) could generally induce differential expression of genes. These results indicated that the detection of Hg in soil at the molecular level is a highly sensitive method. Moreover, the Hg soil content exhibited a significant positive correlation with the relative expression of probable glutathione S-transferase parA (r = 0.637, p = 0.05), chlorophyll a-b binding protein 13, chloroplastic-like (r = 0.689, p = 0.05) and geranylgeranyl pyrophosphate synthase 1 (r = 0.682, p = 0.05), implying that the three genes are good candidates to detect Hg-contaminated soil.
Collapse
Affiliation(s)
- Jing Hou
- School of Environment and Chemical Engineering , North China Electric Power University , Beijing 102206 , China . ; ; Tel: +86-10-61772890
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation , School of Environment , Beijing Normal University , Beijing 100875 , China . ; ; Tel: +86-10-58802996
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation , School of Environment , Beijing Normal University , Beijing 100875 , China . ; ; Tel: +86-10-58802996
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation , School of Environment , Beijing Normal University , Beijing 100875 , China . ; ; Tel: +86-10-58802996
| | - Xiangke Wang
- School of Environment and Chemical Engineering , North China Electric Power University , Beijing 102206 , China . ; ; Tel: +86-10-61772890
| |
Collapse
|
32
|
Zhong Y, Cheng C, Jiang B, Jiang N, Zhang Y, Hu M, Zhong G. Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection. Int J Mol Sci 2016; 17:ijms17071063. [PMID: 27384559 PMCID: PMC4964439 DOI: 10.3390/ijms17071063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
Citrus Huanglongbing (HLB), the most destructive citrus disease, can be transmitted by psyllids and diseased budwoods. Although the final symptoms of the two main HLB transmission ways were similar and hard to distinguish, the host responses might be different. In this study, the global gene changes in leaves of ponkan (Citrus reticulata) mandarin trees following psyllid-transmission of HLB were analyzed at the early symptomatic stage (13 weeks post inoculation, wpi) and late symptomatic stage (26 wpi) using digital gene expression (DGE) profiling. At 13 wpi, 2452 genes were downregulated while only 604 genes were upregulated in HLB infected ponkan leaves but no pathway enrichment was identified. Gene function analysis showed impairment in defense at the early stage of infection. At late stage of 26 wpi, however, differentially expressed genes (DEGs) involved in carbohydrate metabolism, plant defense, hormone signaling, secondary metabolism, transcription regulation were overwhelmingly upregulated, indicating that the defense reactions were eventually activated. The results indicated that HLB bacterial infection significantly influenced ponkan gene expression, and a delayed response of the host to the fast growing bacteria might be responsible for its failure in fighting against the bacteria.
Collapse
Affiliation(s)
- Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chunzhen Cheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization Ministry of Agriculture, Guangzhou 510640, China.
| | - Nonghui Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization Ministry of Agriculture, Guangzhou 510640, China.
| | - Yongyan Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Minlun Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization Ministry of Agriculture, Guangzhou 510640, China.
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization Ministry of Agriculture, Guangzhou 510640, China.
| |
Collapse
|
33
|
Abstract
Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits.
Collapse
Affiliation(s)
- M Gutensohn
- Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, United States
| | - N Dudareva
- Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
34
|
Capel C, Fernández del Carmen A, Alba JM, Lima-Silva V, Hernández-Gras F, Salinas M, Boronat A, Angosto T, Botella MA, Fernández-Muñoz R, Granell A, Capel J, Lozano R. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2019-35. [PMID: 26163766 DOI: 10.1007/s00122-015-2563-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/13/2015] [Indexed: 05/05/2023]
Abstract
QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding. The study of genetic, physiological, and molecular pathways involved in fruit development and ripening has considered tomato as the model fleshy-fruited species par excellence. Fruit quality traits regarding organoleptic and nutritional properties are major goals for tomato breeding programs since they largely decide the acceptance of tomato in both fresh and processing markets. Here we report the genetic mapping of single-locus and epistatic quantitative trait loci (QTL) associated to the fruit size and content of sugars, acids, vitamins, and carotenoids from the characterization of a RIL population derived from the wild-relative Solanum pimpinellifolium TO-937. A genetic map composed of 353 molecular markers including 13 genes regulating fruit and developmental traits was generated, which spanned 1007 cM with an average distance between markers of 2.8 cM. Genetic analyses indicated that fruit quality traits analyzed in this work exhibited transgressive segregation and that additive and epistatic effects are the major genetic basis of fruit quality traits. Moreover, most mapped QTL showed environment interaction effects. FrW7.1 fruit size QTL co-localized with QTL involved in soluble solid, vitamin C, and glucose contents, dry weight/fresh weight, and most importantly with the Sucrose Phosphate Synthase gene, suggesting that polymorphisms in this gene could influence genetic variation in several fruit quality traits. In addition, 1-deoxy-D-xylulose 5-phosphate synthase and Tocopherol cyclase genes were identified as candidate genes underlying QTL variation in beta-carotene and vitamin C. Together, our results provide useful genetic and molecular information regarding fruit quality and new chances for tomato breeding by implementing marker-assisted selection.
Collapse
Affiliation(s)
- Carmen Capel
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Asunción Fernández del Carmen
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Juan Manuel Alba
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Viviana Lima-Silva
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Francesc Hernández-Gras
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Barcelona, 08028, Barcelona, Spain
| | - María Salinas
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Albert Boronat
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Barcelona, 08028, Barcelona, Spain
| | - Trinidad Angosto
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Juan Capel
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Rafael Lozano
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|
35
|
Chen W, He S, Liu D, Patil GB, Zhai H, Wang F, Stephenson TJ, Wang Y, Wang B, Valliyodan B, Nguyen HT, Liu Q. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana. PLoS One 2015; 10:e0137623. [PMID: 26376432 PMCID: PMC4574098 DOI: 10.1371/journal.pone.0137623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Degao Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Gunvant B. Patil
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| | - Hong Zhai
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Feibing Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Troy J. Stephenson
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| | - Yannan Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Bing Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Tsaballa A, Nikolaidis A, Trikka F, Ignea C, Kampranis SC, Makris AM, Argiriou A. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis. BMC Genomics 2015; 16:504. [PMID: 26149407 PMCID: PMC4492009 DOI: 10.1186/s12864-015-1738-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
Background Solanum elaeagnifolium, an invasive weed of the Solanaceae family, is poorly studied although it poses a significant threat to crops. Here the analysis of the transcriptome of S. elaeagnifolium is presented, as a means to explore the biology of this species and to identify genes related to its adaptation to environmental stress. One of the basic mechanisms by which plants respond to environmental stress is through the synthesis of specific secondary metabolites that protect the plant from herbivores and microorganisms, or serve as signaling molecules. One important such group of secondary metabolites are terpenes. Results By next-generation sequencing, the flower/leaf transcriptome of S. elaeagnifolium was sequenced and de novo assembled into 75,618 unigenes. Among the unigenes identified, several corresponded to genes involved in terpene biosynthesis; these included terpene synthases (TPSs) and genes of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways. Functional characterization of two of the TPSs showed that one produced the sesquiterpene (E)-caryophyllene and the second produced the monoterpene camphene. Analysis of wounded S. elaeagnifolium leaves has shown significant increase of the concentration of (E)-caryophyllene and geranyl linalool, two terpenes implicated in stress responses. The increased production of (E)-caryophyllene was matched to the induced expression of the corresponding TPS gene. Wounding also led to the increased expression of the putative 1-deoxy-D-xylulose-5-phosphate synthase 2 (DXS2) gene, a key enzyme of the MEP pathway, corroborating the overall increased output of terpene biosynthesis. Conclusions The reported S. elaeagnifolium de novo transcriptome provides a valuable sequence database that could facilitate study of this invasive weed and contribute to our understanding of the highly diverse Solanaceae family. Analysis of genes and pathways involved in the plant’s interaction with the environment will help to elucidate the mechanisms that underly the intricate features of this unique Solanum species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1738-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aphrodite Tsaballa
- Institute of Applied Biosciences, Center for Research and Technology Hellas (CERTH), P.O. Box 60361, Thessaloniki, 57001, Greece.
| | - Alexandros Nikolaidis
- Institute of Applied Biosciences, Center for Research and Technology Hellas (CERTH), P.O. Box 60361, Thessaloniki, 57001, Greece.
| | - Foteini Trikka
- Institute of Applied Biosciences, Center for Research and Technology Hellas (CERTH), P.O. Box 60361, Thessaloniki, 57001, Greece.
| | - Codruta Ignea
- Department of Biochemistry, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Greece.
| | - Sotirios C Kampranis
- Department of Biochemistry, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Greece.
| | - Antonios M Makris
- Institute of Applied Biosciences, Center for Research and Technology Hellas (CERTH), P.O. Box 60361, Thessaloniki, 57001, Greece.
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas (CERTH), P.O. Box 60361, Thessaloniki, 57001, Greece.
| |
Collapse
|
37
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|
38
|
Liu L, Shao Z, Zhang M, Wang Q. Regulation of carotenoid metabolism in tomato. MOLECULAR PLANT 2015; 8:28-39. [PMID: 25578270 DOI: 10.1016/j.molp.2014.11.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/14/2014] [Indexed: 05/20/2023]
Abstract
Carotenoids serve diverse functions in vastly different organisms that both produce and consume them. Enhanced carotenoid accumulation is of great importance in the visual and functional properties of fruits and vegetables. Significant progress has been achieved in recent years in our understanding of carotenoid biosynthesis in tomato (Solanum lycopersicum) using biochemical and genetics approaches. The carotenoid metabolic network is temporally and spatially controlled, and plants have evolved strategic tactics to regulate carotenoid metabolism in response to various developmental and environmental factors. In this review, we summarize the current status of studies on transcription factors and phytohormones that regulate carotenoid biosynthesis, catabolism, and storage capacity in plastids, as well as the responses of carotenoid metabolism to environmental cues in tomato fruits. Transcription factors function either in cooperation with or independently of phytohormone signaling to regulate carotenoid metabolism, providing novel approaches for metabolic engineering of carotenoid composition and content in tomato.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Falara V, Alba JM, Kant MR, Schuurink RC, Pichersky E. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds. PLANT PHYSIOLOGY 2014; 166:428-41. [PMID: 25052853 PMCID: PMC4149726 DOI: 10.1104/pp.114.243246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/21/2014] [Indexed: 05/22/2023]
Abstract
Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a tomato (Solanum lycopersicum) TPS-e/f gene, TPS46, encoding GLS (SlGLS) and its homolog (NaGLS) from Nicotiana attenuata. The Km value of SlGLS for geranylgeranyl diphosphate was 18.7 µm, with a turnover rate value of 6.85 s(-1). In leaves and flowers of N. attenuata, which constitutively synthesize 17-hydroxygeranyllinalool glycosides, NaGLS is expressed constitutively, but the gene can be induced in leaves with methyl jasmonate. In tomato, SlGLS is not expressed in any tissue under normal growth but is induced in leaves by alamethicin and methyl jasmonate treatments. SlGLS, NaGLS, AtGLSs, and several other GLSs characterized only in vitro come from four different eudicot families and constitute a separate branch of the TPS-e/f clade that diverged from kaurene synthases, also in the TPS-e/f clade, before the gymnosperm-angiosperm split. The early divergence of this branch and the GLS activity of genes in this branch in diverse eudicot families suggest that GLS activity encoded by these genes predates the angiosperm-gymnosperm split. However, although a TPS sequence belonging to this GLS lineage was recently reported from a basal dicot, no representative sequences have yet been found in monocot or nonangiospermous plants.
Collapse
Affiliation(s)
- Vasiliki Falara
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
40
|
Tahmasebi Z, Mohammadi H, Arimura GI, Muroi A, Kant MR. Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:217-39. [PMID: 24531863 DOI: 10.1007/s10493-014-9770-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/25/2014] [Indexed: 05/14/2023]
Abstract
We tested the extent to which resistance of common bean (Phaseolus vulgaris) cultivars to the spider mite Tetranychus urticae parallels the extent to which these plants display indirect defenses via the induced attraction of the predatory mite Phytoseiulus persimilis. First, via field and greenhouse trials on 19 commercial bean cultivars, we selected two spider mite-resistant (Naz and Ks41128) and two susceptible (Akthar and G11867) cultivars and measured the spider mite-induced volatiles and the subsequently induced attraction of predatory mites via olfactory choice assays. The two major volatiles, 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) and (Z)-3-hexenyl-acetate, were induced in the resistant but not in the susceptible cultivars. However, uninfested susceptible cultivars emitted these volatiles at levels similar to those of mite-infested resistant cultivars. Significant induction of several minor components was observed for all four cultivars except for the infested-susceptible cultivar G11867. Both, the spider mite-resistant cultivar Naz and the susceptible cultivar G11867, attracted more predatory mites when they were infested. In contrast, spider mites induced increased emission of two major and five minor volatiles in Ks41128, but predatory mites did not discriminate between infested and uninfested plants. Overall, the attraction of predatory mites appeared to correlate positively with the presence of TMTT and (Z)-3-hexenyl acetate and negatively with β-caryophyllene and α-pinene in the bean headspace. Taken together, our data suggest that resistance and attraction of natural enemies via induced volatiles are independent traits. We argue that it should be possible to cross predator-attraction promoting traits into resistant cultivars that lack sufficiently inducible indirect defenses.
Collapse
Affiliation(s)
- Zahra Tahmasebi
- Department of Agronomy and Plant Breeding, Agricultural College, Ilam University, Ilam, Iran,
| | | | | | | | | |
Collapse
|
41
|
Spyropoulou EA, Haring MA, Schuurink RC. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 2014; 15:402. [PMID: 24884371 PMCID: PMC4041997 DOI: 10.1186/1471-2164-15-402] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/09/2014] [Indexed: 12/02/2022] Open
Abstract
Background Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant’s defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases. Results A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter. Conclusions High-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-402) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
| |
Collapse
|
42
|
Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Metab Eng 2014; 24:107-16. [PMID: 24831707 DOI: 10.1016/j.ymben.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 01/30/2023]
Abstract
Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism.
Collapse
|
43
|
Coman D, Altenhoff A, Zoller S, Gruissem W, Vranová E. Distinct evolutionary strategies in the GGPPS family from plants. FRONTIERS IN PLANT SCIENCE 2014; 5:230. [PMID: 24904625 PMCID: PMC4034038 DOI: 10.3389/fpls.2014.00230] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/09/2014] [Indexed: 05/07/2023]
Abstract
Multiple geranylgeranyl diphosphate synthases (GGPPS) for biosynthesis of geranylgeranyl diphosphate (GGPP) exist in plants. GGPP is produced in the isoprenoid pathway and is a central precursor for various primary and specialized plant metabolites. Therefore, its biosynthesis is an essential regulatory point in the isoprenoid pathway. We selected 119 GGPPSs from 48 species representing all major plant lineages, based on stringent homology criteria. After the diversification of land plants, the number of GGPPS paralogs per species increases. Already in the moss Physcomitrella patens, GGPPS appears to be encoded by multiple paralogous genes. In gymnosperms, neofunctionalization of GGPPS may have enabled optimized biosynthesis of primary and specialized metabolites. Notably, lineage-specific expansion of GGPPS occurred in land plants. As a representative species we focused here on Arabidopsis thaliana, which retained the highest number of GGPPS paralogs (twelve) among the 48 species we considered in this study. Our results show that the A. thaliana GGPPS gene family is an example of evolution involving neo- and subfunctionalization as well as pseudogenization. We propose subfunctionalization as one of the main mechanisms allowing the maintenance of multiple GGPPS paralogs in A. thaliana genome. Accordingly, the changes in the expression patterns of the GGPPS paralogs occurring after gene duplication led to developmental and/or condition specific functional evolution.
Collapse
Affiliation(s)
- Diana Coman
- Department of Biology, ETH ZurichZurich, Switzerland
| | - Adrian Altenhoff
- Department of Computer Science, ETH ZurichZurich, Switzerland
- Swiss Institute of BioinformaticsZurich, Switzerland
| | - Stefan Zoller
- Department of Computer Science, ETH ZurichZurich, Switzerland
- Swiss Institute of BioinformaticsZurich, Switzerland
| | | | - Eva Vranová
- Department of Biology, ETH ZurichZurich, Switzerland
- Institute of Biology and Ecology, Pavol Jozef Šafárik UniversityKošice, Slovakia
- *Correspondence: Eva Vranová, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia e-mail:
| |
Collapse
|
44
|
Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gómez-Cadenas A, Van de Peer Y, Grbić M, Clark RM, Van Leeuwen T, Grbić V. Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. PLANT PHYSIOLOGY 2014; 164:384-99. [PMID: 24285850 PMCID: PMC3875816 DOI: 10.1104/pp.113.231555] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spider mite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressed mite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.
Collapse
|
45
|
Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA. Heteromeric and Homomeric Geranyl Diphosphate Synthases from Catharanthus roseus and Their Role in Monoterpene Indole Alkaloid Biosynthesis. MOLECULAR PLANT 2013; 6:1531-49. [PMID: 0 DOI: 10.1093/mp/sst058] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
46
|
Gutensohn M, Orlova I, Nguyen TTH, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:351-63. [PMID: 23607888 DOI: 10.1111/tpj.12212] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 05/20/2023]
Abstract
Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.
Collapse
Affiliation(s)
- Michael Gutensohn
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hua W, Song J, Li C, Wang Z. Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Mol Biol Rep 2012; 39:5775-83. [PMID: 22203482 DOI: 10.1007/s11033-011-1388-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. It regulates the formation of diterpenoid, such as tanshinones. We cloned a gene for GGPP synthase SmGGPPs involved in diterpenoid biosynthesis from Salvia miltiorrhiza. At 2,767 bp long, this gene comprises an intron and two exons that encode a polypeptide of 364 amino acid residues. Then the 5' flanking sequence of SmGGPPs was characterized by bioinformatics method. Deletion analysis of the promoter of SmGGPPs using tobacco plant displayed that the promoter was induced by heat and cold. To further search these cis-elements involved in induction regulation in the 5' flanking sequence of SmGGPPs, many putative cis-elements were predicted with the PlantCARE and PLACE databases. A group of putative cis-acting elements are involved in induction regulation, including G-Box, WRKY, MYC and ATCT motifs. Real-time PCR analysis revealed that SmGGPPs is mainly expressed in the leaves and can also be induced by various factors, such as NaCl, wounding, high temperature, darkness, pathogen, methyl jasmonate, abscisic acid, salicylic acid, and gibberellins. This study provides useful information for further study of SmGGPPs and its regulator effect on the biosynthetic process of tanshinones so that researchers can improve the tanshinone contents in S. miltiorrhiza.
Collapse
Affiliation(s)
- Wenping Hua
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Bleeker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, Schuurink RC, Pichersky E. The tomato terpene synthase gene family. PLANT PHYSIOLOGY 2011; 157:770-89. [PMID: 21813655 PMCID: PMC3192577 DOI: 10.1104/pp.111.179648] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 05/18/2023]
Abstract
Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far.
Collapse
|
49
|
Tholl D, Sohrabi R, Huh JH, Lee S. The biochemistry of homoterpenes--common constituents of floral and herbivore-induced plant volatile bouquets. PHYTOCHEMISTRY 2011; 72:1635-46. [PMID: 21334702 DOI: 10.1016/j.phytochem.2011.01.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 05/02/2023]
Abstract
Volatile organic compounds emitted by plants mediate a variety of interactions between plants and other organisms. The irregular acyclic homoterpenes, 4,8-dimethylnona-1,3,7-triene (DMNT) and 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), are among the most widespread volatiles produced by angiosperms with emissions from flowers and from vegetative tissues upon herbivore feeding. Special attention has been placed on the role of homoterpenes in attracting parasitoids and predators of herbivores and has sparked interest in engineering homoterpene formation to improve biological pest control. The biosynthesis of DMNT and TMTT proceeds in two enzymatic steps: the formation of the tertiary C₁₅₋, and C₂₀₋ alcohols, (E)-nerolidol and (E,E)-geranyl linalool, respectively, catalyzed by terpene synthases, and the subsequent oxidative degradation of both alcohols by a single cytochrome P450 monooxygenase (P450). In Arabidopsis thaliana, the herbivore-induced biosynthesis of TMTT is catalyzed by the concerted activities of the (E,E)-geranyllinalool synthase, AtGES, and CYP82G1, a P450 of the so far uncharacterized plant CYP82 family. TMTT formation is in part controlled at the level of AtGES expression. Co-expression of AtGES with CYP82G1 at wound sites allows for an efficient conversion of the alcohol intermediate. The identified homoterpene biosynthesis genes in Arabidopsis and related genes from other plant species provide tools to engineer homoterpene formation and to address questions of the regulation and specific activities of homoterpenes in plant-herbivore interactions.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, 408 Latham Hall, AgQuad Lane, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
50
|
Almeida J, Quadrana L, Asís R, Setta N, de Godoy F, Bermúdez L, Otaiza SN, Corrêa da Silva JV, Fernie AR, Carrari F, Rossi M. Genetic dissection of vitamin E biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3781-98. [PMID: 21527625 PMCID: PMC3134339 DOI: 10.1093/jxb/err055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 05/20/2023]
Abstract
Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for α-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (α, β, γ, and δ) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.
Collapse
Affiliation(s)
- Juliana Almeida
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Leandro Quadrana
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - Ramón Asís
- CIBICI, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Córdoba, Argentina
| | - Nathalia Setta
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Fabiana de Godoy
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Luisa Bermúdez
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Santiago N. Otaiza
- CIBICI, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Córdoba, Argentina
| | | | - Alisdair R. Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - Magdalena Rossi
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
- To whom correspondence should be addressed. E-mail: ; E-mail:
| |
Collapse
|