1
|
Lu S, Qiao Y, Pan X, Chen X, Su W, Li A, Li X, Liao W. Genome-Wide identification and expression analysis of CsABF/AREB gene family in cucumber (Cucumis sativus L.) and in response to phytohormonal and abiotic stresses. Sci Rep 2025; 15:15757. [PMID: 40328839 PMCID: PMC12056173 DOI: 10.1038/s41598-025-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Abscisic acid (ABA)-responsive element binding factors (ABF)/ABA-responsive element binding proteins (AREB)/ABA insensitive protein 5 (ABI5) all belong to the basic leucine zipper (bZIP) transcription factor A subfamily. The bZIP transcription factor family contains 13 subfamilies, namely groups A, B, C, D, E, F, G, H, I, J, K, M and S, and the ABF/AREB/ABI5 gene belongs to A subfamily of the bZIP transcription factor. However, genomic analysis of CsABF/AREB in cucumber (Cucumis sativus L.) has not been systematically studied. In this study, we analyzed the characterization of CsABF/AREB family members and their response to phytohormonal and abiotic stresses. The results showed that a total of 8 genes family members were identified in cucumber. Structural domain analysis showed that the proteins of these family members are highly similar, and all of them belong to the bZIP structural domain. qRT-PCR analysis showed that CsABF/AREB members are expressed in root, stem, and leaf, with the highest expression in root, followed by stem and leaf. In addition, all 8 CsABF/AREB genes respond to ABA and methyl jasmonate (Me-JA). Among them, CsABF7 has the highest expression under both ABA and Me-JA treatments. Drought and salt stress significantly induce CsABF1, CsABF2, CsABF7, and CsABF8 expression. Drought and NaC1 stresses significantly induce the expression of CsABF1, CsABF2, CsABF7, and CsABF8. This study provides a basis for a further understanding of the role of CsABF/AREB homologous genes in response to abiotic stress and lays the foundation for further research on the function of CsABF/AREB.
Collapse
Affiliation(s)
- Siting Lu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yali Qiao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xinfang Chen
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Wanyi Su
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Ailing Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuelian Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Zhai T, Guo Y, Yang M, Zhang X, Lin Y, Cai D, Lan S, Tang M, Ma W, Wang S, Chen Y, Lai Z, Lin Y. The bZIP20 transcription factor enhances thermotolerance in Dimocarpus longan by maintaining ROS homeostasis and involving the MeJA pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109869. [PMID: 40209333 DOI: 10.1016/j.plaphy.2025.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
The basic-leucine zipper (bZIP) transcription factor (TF), which is abundant and highly conserved in eukaryotes, mainly participates in plant growth, development and adverse stress processes. However, the regulatory mechanisms of bZIP TFs under heat stress in Dimocarpus longan remain unclear. In this study, we reported a nuclear-localized bZIP TF, DlbZIP20, which was confirmed to be a positive regulator of thermotolerance in D. longan. It was identified as a strong interplay with hormone signalling pathways and oxidoreductase-related families. The transient overexpression DlbZIP20 could improve the thermotolerance of D. longan embryogenic callus (EC) and reduce the damage of cells under heat stress. Overexpression of DlbZIP20 in hairy roots significantly promoted roots elongation and photosystem II (PS II) responses in leaves, and significantly increased SOD and POD activities, promoted H2O2 scavenging, improved thermotolerance of D. longan by maintaining ROS homeostasis under heat stress. In addition, overexpression of DlbZIP20 increased endogenous MeJA content under heat stress. MeJA hormone synthesis genes DlMYC2 and DlCOI1 were up-regulated and DlJAZ3 was down-regulated in expression. This signalling pathway may play a role in the regulation of thermotolerance in D. longan. These results will provide a new insight into the molecular function of bZIP20 TF in response to heat stress in D. longan.
Collapse
Affiliation(s)
- Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yueru Guo
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengmeng Yang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiyao Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danfeng Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuoxian Lan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjie Tang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wentao Ma
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangjie Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
4
|
Wang C, Liu Y, Li Y, Guo L, Li C. Analysis of bZIP transcription factors in Rhododendron simsii and functional study of RsbZIP6 in regulating anthocyanin biosynthesis. Int J Biol Macromol 2024; 280:135889. [PMID: 39307497 DOI: 10.1016/j.ijbiomac.2024.135889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors play a critical role in various plant biological processes, including anthocyanin biosynthesis. This study focuses on Rhododendron simsii, a notable ornamental species with insufficiently explored bZIP transcription factors. We identified 66 bZIP transcription factors in the R. simsii genome and conducted comprehensive bioinformatics analyses to determine their gene localization, phylogenetic relationships, grouping, gene/protein structure, duplication events, synteny, and expression profiles. Our analysis identified RsbZIP6, a homolog of HY5 known to influence anthocyanin biosynthesis in many plants, as a potential regulator of this pathway. We cloned the complete coding sequence of RsbZIP6, which encodes a 170-amino acid protein spanning 510 bp. Subcellular localization analysis verified the nuclear presence of the RsbZIP6 protein. RT-qPCR analysis revealed the highest expression of RsbZIP6 in petals, which correlated with anthocyanin accumulation. Transgenic experiments indicated that overexpressing RsbZIP6 in Arabidopsis enhanced anthocyanin accumulation by upregulating genes involved in anthocyanin biosynthesis (4CL, CHS, CHI, DFR, F3H, F3'H, ANS and UF3GT). Our findings enhance understanding of the bZIP transcription factor family in R. simsii and underscore the vital role of RsbZIP6 in anthocyanin biosynthesis, providing insights for future genetic enhancement strategies.
Collapse
Affiliation(s)
- Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| | - Yilin Liu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai 264200, China
| | - Lifan Guo
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China.
| |
Collapse
|
5
|
Lin Y, Huo X, Xu J, Li Y, Zhu H, Yu Y, Tang L, Wang X. A soybean bZIP transcription factor is involved in submergence resistance. Biochem Biophys Res Commun 2024; 722:150151. [PMID: 38801801 DOI: 10.1016/j.bbrc.2024.150151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Although the functions of basic leucine zipper (bZIP) family transcription factors in the regulation of various abiotic stresses are beginning to be unveiled, the precise roles of bZIP proteins in plants coping with submergence stress remain unclear. Here we identified a bZIP gene GmbZIP71-4 from soybean, which localized in the nucleus. The GmbZIP71-4 over-expressed tabocco line showed reduced submergence resistance due to the decreased abscisic acid (ABA) content. GO and KEGG pathway analysis based on chromatin immunoprecipitation assay sequencing (ChIP-seq) indicated that the differences expressed genes between submergence treatment and control groups were specially enriched in plant hormone signal transduction items, especially those in response to ABA. Electrophoretic mobility shift assays (EMSA) demonstrated that GmbZIP71-4 bound to the promoter of GmABF2 gene, which is consistent with the ChIP-qPCR results. GmbZIP71-4 function as a negative regulator of soybean in responding to submergence stress through manipulating ABA signaling pathway. This findings will set a solid foundation for the understanding of submergence resistance in plants.
Collapse
Affiliation(s)
- Yanhui Lin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding/Hainan Scientific Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Haikou, 571100, China.
| | - Xing Huo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Jing Xu
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding/Hainan Scientific Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Haikou, 571100, China.
| | - Yapeng Li
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding/Hainan Scientific Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Haikou, 571100, China; Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya, 572000, China.
| | - Honglin Zhu
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding/Hainan Scientific Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Haikou, 571100, China.
| | - Yongmei Yu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Liqiong Tang
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding/Hainan Scientific Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Haikou, 571100, China.
| | - Xiaoning Wang
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding/Hainan Scientific Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Haikou, 571100, China; Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
6
|
Aizaz M, Lubna, Jan R, Asaf S, Bilal S, Kim KM, Al-Harrasi A. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. BIOLOGY 2024; 13:673. [PMID: 39336100 PMCID: PMC11429359 DOI: 10.3390/biology13090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt. This study investigates the complex mechanisms of several significant TF families that influence plant responses to salt stress, involving AP2/ERF, bZIP, NAC, MYB, and WRKY. It demonstrates how these transcription factors (TFs) help plants respond to the detrimental effects of salinity by modulating gene expression through mechanisms including hormone signaling, osmotic stress pathway activation, and ion homeostasis. Additionally, it explores the hormonal imbalances triggered by salt stress, which entail complex interactions among phytohormones like jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) within the hormonal regulatory networks. This review highlights the regulatory role of key transcription factors in salt-stress response, and their interaction with plant hormones is crucial for developing genome-edited crops that can enhance agricultural sustainability and address global food security challenges.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
7
|
He S, Xu S, He Z, Hao X. Genome-wide identification, characterization and expression analysis of the bZIP transcription factors in garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1391248. [PMID: 39148621 PMCID: PMC11324451 DOI: 10.3389/fpls.2024.1391248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction The bZIP genes (bZIPs) are essential in numerous biological processes, including development and stress responses. Despite extensive research on bZIPs in many plants, a comprehensive genome-wide analysis of bZIPs in garlic has yet to be undertaken. Methods In this study, we identified and classified 64 AsbZIP genes (AsbZIPs) into 10 subfamilies. A systematic analysis of the evolutionary characteristics of these AsbZIPs, including chromosome location, gene structure, conserved motifs, and gene duplication, was conducted. Furthermore, we also examined the nucleotide diversity, cis-acting elements, and expression profiles of AsbZIPs in various tissues and under different abiotic stresses and hormone treatments. Results and Discussion Our findings revealed that gene replication plays a crucial role in the expansion of AsbZIPs, with a minor genetic bottleneck observed during domestication. Moreover, the identification of cis-acting elements suggested potential associations of AsbZIPs with garlic development, hormone, and stress responses. Several AsbZIPs exhibited tissue-preferential and stress/hormone-responsive expression patterns. Additionally, Asa7G01972 and Asa7G01379 were notably differentially expressed under various stresses and hormone treatments. Subsequent yeast two-hybridization and yeast induction experiments validated their interactions with Asa1G01577, a homologue of ABI5, reinforcing their importance in hormone and abiotic stress responses. This study unveiled the characteristics of the AsbZIP superfamily and lays a solid foundation for further functional analysis of AsbZIP in garlic.
Collapse
Affiliation(s)
- Shutao He
- Institute of Neurobiology, Jining Medical University, Jining, China
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China
| | - Sen Xu
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Zhengjie He
- Rehabilitation Department, Traditional Chinese Medicine Hospital of Yanzhou District of Jining City, Jining, China
| | - Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| |
Collapse
|
8
|
Wang Z, Wang P, Cao H, Liu M, Kong L, Wang H, Ren W, Fu Q, Ma W. Genome-wide identification of bZIP transcription factors and their expression analysis in Platycodon grandiflorus under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1403220. [PMID: 38863542 PMCID: PMC11165138 DOI: 10.3389/fpls.2024.1403220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
The Basic Leucine Zipper (bZIP) transcription factors (TFs) family is among of the largest and most diverse gene families found in plant species, and members of the bZIP TFs family perform important functions in plant developmental processes and stress response. To date, bZIP genes in Platycodon grandiflorus have not been characterized. In this work, a number of 47 PgbZIP genes were identified from the genome of P. grandiflorus, divided into 11 subfamilies. The distribution of these PgbZIP genes on the chromosome and gene replication events were analyzed. The motif, gene structure, cis-elements, and collinearity relationships of the PgbZIP genes were simultaneously analyzed. In addition, gene expression pattern analysis identified ten candidate genes involved in the developmental process of different tissue parts of P. grandiflorus. Among them, Four genes (PgbZIP5, PgbZIP21, PgbZIP25 and PgbZIP28) responded to drought and salt stress, which may have potential biological roles in P. grandiflorus development under salt and drought stress. Four hub genes (PgbZIP13, PgbZIP30, PgbZIP32 and PgbZIP45) mined in correlation network analysis, suggesting that these PgbZIP genes may form a regulatory network with other transcription factors to participate in regulating the growth and development of P. grandiflorus. This study provides new insights regarding the understanding of the comprehensive characterization of the PgbZIP TFs for further exploration of the functions of growth and developmental regulation in P. grandiflorus and the mechanisms for coping with abiotic stress response.
Collapse
Affiliation(s)
- Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huiyan Cao
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honggang Wang
- Research Office of Development and Utilization of Medicinal Plants, Heilongjiang Academy of Forestry, Yichun, China
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qifeng Fu
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Sarmah P, Das B, Verma JS, Banik D. The functional and structural characterisation of the bZIP transcription factors from Myristica fragrans Houtt. associated to plant disease-resistant defence: An insight from transcriptomics and computational modelling. Int J Biol Macromol 2024; 268:131817. [PMID: 38670182 DOI: 10.1016/j.ijbiomac.2024.131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
The bZIP transcription factors play crucial roles in various aspects of plant biology, including development, defence mechanisms, senescence, and responses to both biotic and abiotic environmental stresses. Myristica fragrans Houtt. transcriptome analysis has identified 15 bZIP transcription factors, each exhibiting major conserved domains and motifs such as BRLZ, MFMR, and DOG1. Functional characterisation of these identified MfbZIP factors indicates their predominant localisation within the nucleus. Phylogenetic analysis reveals that MfbZIP factors cluster into three subgroups alongside annotated bZIP sequences from Magnolia sinica and Arabidopsis thaliana. Moreover, gene ontology (GO) analysis highlights several key functions of MfbZIP, including involvement in defence responses, abscisic acid-induced signalling pathways, and DNA-binding transcription factor activity. Further investigation through KEGG pathway analysis reveals that the amino acid sequences of MfbZIP contain binding motifs for proteins such as TGA, implicated in plant hormone signal transduction pathways associated with disease resistance. To confirm the disease-defence-related activity of the TGA binding protein within MfbZIP, we employed amino acid sequences for 3-D ab initio modelling. Subsequently, we analysed TGA-NPR1 interactions using docking and molecular dynamics simulation analysis. These analyses shed light on the functional and structural aspects of TGA, demonstrating its stable association with NPR1 protein and its significance in the expression of PR1 protein, thus playing a pivotal role in defence responses against pathogens.
Collapse
Affiliation(s)
- Prasanna Sarmah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bikas Das
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jitendra Singh Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785 006, Assam, India.
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Ahmed R, Dey KK, Senthil-Kumar M, Modi MK, Sarmah BK, Bhorali P. Comparative transcriptome profiling reveals differential defense responses among Alternaria brassicicola resistant Sinapis alba and susceptible Brassica rapa. FRONTIERS IN PLANT SCIENCE 2024; 14:1251349. [PMID: 38304451 PMCID: PMC10831657 DOI: 10.3389/fpls.2023.1251349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.
Collapse
Affiliation(s)
- Reshma Ahmed
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Kuntal Kumar Dey
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Biotechnology - Northeast Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
11
|
Yang W, Liu C, Fu Q, Jia X, Deng L, Feng C, Wang Y, Yang Z, Yang H, Xu X. Knockout of SlbZIP68 reduces late blight resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111861. [PMID: 37689280 DOI: 10.1016/j.plantsci.2023.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most widely cultivated vegetable crop species in the world. Tomato late blight caused by Phytophthora infestans is a severe disease, which can cause serious losses in tomato production. In this study, tomato SlbZIP68 was identified as a transcription factor that can be induced by P. infestans, salicylic acid (SA) and jasmonic acid (JA). Knockout of SlbZIP68 via clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) technology revealed a significant decrease in tomato resistance to P. infestans. Furthermore, knockout of SlbZIP68 reduced the activity of defense enzymes and increased the accumulation of reactive oxygen species (ROS). Our findings also indicated that SlbZIP68 can activate the expression of the PR genes and enhance resistance to P. infestans. In addition, SlbZIP68 can bind to the PR3 and PR5 promoters and induce gene expression, as revealed by yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays. These findings not only elucidate the mechanisms of response to P. infestans but also enable targeted breeding strategies for tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Wenhui Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chunxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Qingjun Fu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyi Jia
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Liping Deng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chunying Feng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhenru Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Zhou P, Li J, Jiang H, Jin Q, Wang Y, Xu Y. Analysis of bZIP gene family in lotus (Nelumbo) and functional study of NnbZIP36 in regulating anthocyanin synthesis. BMC PLANT BIOLOGY 2023; 23:429. [PMID: 37710161 PMCID: PMC10503039 DOI: 10.1186/s12870-023-04425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) family is a predominant group of transcription factors in plants, involved in regulating plant growth, development, and response to stressors. Additionally, the bZIP gene family has a key role in anthocyanin production. Despite the significant role of bZIP genes in plants, their potential contribution in lotus remains understudied. RESULTS A total of 124 bZIP genes (59 NnbZIPs and 65 NlbZIPs) were identified from genomes of two lotus species. These genes were classified into 13 groups according to the grouping principle of the Arabidopsis bZIP gene family. Analysis of promoter cis-acting elements indicated that most bZIP gene family members in lotus are associated with response to abiotic stresses. The promoters of some bZIP genes contain MYB binding sites that regulate anthocyanin synthesis. We examined the anthocyanin content of the petals from three different colored lotus, combined with transcriptome data analysis and qRT-PCR results, showing that the expression trends of NnbZIP36 and the homologous gene NlbZIP38 were significantly correlated with the anthocyanin content in lotus petals. Furthermore, we found that overexpression of NnbZIP36 in Arabidopsis promoted anthocyanin accumulation by upregulating the expression of genes (4CL, CHI, CHS, F3H, F3'H, DFR, ANS and UF3GT) related to anthocyanin synthesis. CONCLUSIONS Our study enhances the understanding of the bZIP gene family in lotus and provides evidence for the role of NnbZIP36 in regulating anthocyanin synthesis. This study also sets the stage for future investigations into the mechanism by which the bZIP gene family regulates anthocyanin biosynthesis in lotus.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingwen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
13
|
Liu Z, Zhou L, Gan C, Hu L, Pang B, Zuo D, Wang G, Wang H, Liu Y. Transcriptomic analysis reveals key genes and pathways corresponding to Cd and Pb in the hyperaccumulator Arabis paniculata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114757. [PMID: 36950987 DOI: 10.1016/j.ecoenv.2023.114757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Soil and water are increasingly at risk of contamination from the toxic heavy metals lead (Pb) and cadmium (Cd). Arabis paniculata (Brassicaceae) is a hyperaccumulator of heavy metals (HMs) found widely distributed in areas impacts by mining activities. However, the mechanism by which A. paniculata tolerates HMs is still uncharacterized. For this experiment, we employed RNA sequencing (RNA-seq) in order to find Cd (0.25 mM)- and Pb (2.50 mM)-coresponsive genes A. paniculata. In total, 4490 and 1804 differentially expressed genes (DEGs) were identified in root tissue, and 955 and 2209 DEGs were identified in shoot tissue, after Cd and Pb exposure, respectively. Interestingly in root tissue, gene expression corresponded similarly to both Cd and Pd exposure, of which 27.48% were co-upregulated and 41.00% were co-downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the co-regulated genes were predominantly involved in transcription factors (TFs), cell wall biosynthesis, metal transport, plant hormone signal transduction, and antioxidant enzyme activity. Many critical Pb/Cd-induced DEGs involved in phytohormone biosynthesis and signal transduction, HM transport, and transcription factors were also identified. Especially the gene ABCC9 was co-downregulated in root tissues but co-upregulated in shoot tissues. The co-downregulation of ABCC9 in the roots prevented Cd and Pb from entering the vacuole rather than the cytoplasm for transporting HMs to shoots. While in shoots, the ABCC9 co-upregulated results in vacuolar Cd and Pb accumulation, which may explain why A. paniculata is a hyperaccumulator. These results will help to reveal the molecular and physiological processes underlying tolerance to HM exposure in the hyperaccumulator A. paniculata, and aid in future efforts to utilize this plant in phytoremediation.
Collapse
Affiliation(s)
- Zhaochao Liu
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Lizhou Zhou
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Chenchen Gan
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Lijuan Hu
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Biao Pang
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Dan Zuo
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Guangyi Wang
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Hongcheng Wang
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China.
| | - Yingliang Liu
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
14
|
Hou F, Zhang N, Ma L, An L, Zhou X, Zou C, Yang C, Pan G, Lübberstedt T, Shen Y. ZmbZIP54 and ZmFDX5 cooperatively regulate maize seedling tolerance to lead by mediating ZmPRP1 transcription. Int J Biol Macromol 2023; 224:621-633. [PMID: 36273546 DOI: 10.1016/j.ijbiomac.2022.10.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Extensive lead (Pb) accumulation in plants exerts toxic effects on plant growth and development and enters the human food chain. Combining linkage mapping, transcriptome analysis, and association studies, we cloned the ZmbZIP54 transcription factor, which confers maize tolerance to Pb. Combined overexpression and knockdown confirmed that ZmbZIP54 mitigates Pb toxicity in maize by alleviating Pb absorption into the roots. Yeast one-hybrid and dual-luciferase assays revealed that ZmbZIP54 binds to the ZmPRP1 promoter and promotes its transcription. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that ZmFdx5 interacts with ZmbZIP54 in the nucleus. ZmFdx5 acts as a switch that controls the regulation of ZmPRP1 expression by ZmbZIP54 when maize encounters Pb stress. Furthermore, we revealed that variation in the 5'-UTR of ZmbZIP54 affects its expression level under Pb stress and contributes to the difference in Pb tolerance among maize lines. Finally, we proposed a model to summarize the role of ZmbZIP54 in Pb tolerance, which involves the cooperative effect of ZmbZIP54 and ZmFdx5 on the ZmPRP1 transcription in maize response to Pb. This study provides novel insights into the development of Pb-tolerant maize varieties and bioremediation of Pb-contaminated soils.
Collapse
Affiliation(s)
- Fengxia Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Na Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijun An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Zhang P, Liu J, Jia N, Wang M, Lu Y, Wang D, Zhang J, Zhang H, Wang X. Genome-wide identification and characterization of the bZIP gene family and their function in starch accumulation in Chinese chestnut ( Castanea mollissima Blume). FRONTIERS IN PLANT SCIENCE 2023; 14:1166717. [PMID: 37077628 PMCID: PMC10106562 DOI: 10.3389/fpls.2023.1166717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The transcription factors of basic leucine zipper (bZIP) family genes play significant roles in stress response as well as growth and development in plants. However, little is known about the bZIP gene family in Chinese chestnut (Castanea mollissima Blume). To better understand the characteristics of bZIPs in chestnut and their function in starch accumulation, a series of analyses were performed including phylogenetic, synteny, co-expression and yeast one-hybrid analyses. Totally, we identified 59 bZIP genes that were unevenly distributed in the chestnut genome and named them CmbZIP01 to CmbZIP59. These CmbZIPs were clustered into 13 clades with clade-specific motifs and structures. A synteny analysis revealed that segmental duplication was the major driving force of expansion of the CmbZIP gene family. A total of 41 CmbZIP genes had syntenic relationships with four other species. The results from the co-expression analyses indicated that seven CmbZIPs in three key modules may be important in regulating starch accumulation in chestnut seeds. Yeast one-hybrid assays showed that transcription factors CmbZIP13 and CmbZIP35 might participate in starch accumulation in the chestnut seed by binding to the promoters of CmISA2 and CmSBE1_2, respectively. Our study provided basic information on CmbZIP genes, which can be utilized in future functional analysis and breeding studies.
Collapse
Affiliation(s)
- Penglong Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Jing Liu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Nan Jia
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Science, Changli, Hebei, China
| | - Meng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
| | - Yi Lu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Jingzheng Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Xuan Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
- *Correspondence: Xuan Wang,
| |
Collapse
|
16
|
Zhang L, Zhong M, Yue L, Chai X, Zhao P, Kang Y, Yang X. Transcriptomic and metabolomic analyses reveal the mechanism of uniconazole inducing hypocotyl dwarfing by suppressing BrbZIP39- BrPAL4 module mediating lignin biosynthesis in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1014396. [PMID: 36589099 PMCID: PMC9794620 DOI: 10.3389/fpls.2022.1014396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Uniconazole, a triazole plant growth regulator, is widely used to regulate plant height and prevent the overgrowth of seedlings. However, the underlying molecular mechanism of uniconazole in inhibiting the hypocotyl elongation of seedlings is still largely unclear, and there has been little research on the integration of transcriptomic and metabolomic data to investigate the mechanisms of hypocotyl elonga-tion. Herein we observed that the hypocotyl elongation of flowering Chinese cabbage seedings was significantly inhibited by uniconazole. Interestingly, based on combined transcriptome and metabolome analyses, we found that the "phenylpropanoid biosynthesis" pathway was significantly affected by uniconazole. In this pathway, only one member of the portal enzyme gene family, named BrPAL4, was remarkably downregulated, which was related to lignin biosynthesis. Furthermore, the yeast one-hybrid and dual-luciferase assays showed that BrbZIP39 could directly bind to the promoter region of BrPAL4 and activate its transcript. The virus-induced gene silencing system further demonstrated that BrbZIP39 could positively regulate hypocotyl elongation and the lignin biosynthesis of hypocotyl. Our findings provide a novel insight into the molecular regulatory mechanism of uniconazole inhibiting hypocotyl elongation in flowering Chinese cabbage and confirm, for the first time, that uniconazole decreases lignin content through repressing the BrbZIP39-BrPAL4 module-mediated phenylpropanoid biosynthesis, which leads to the hypocotyl dwarfing of flowering Chinese cabbage seedlings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xian Yang
- *Correspondence: Yunyan Kang, ; Xian Yang,
| |
Collapse
|
17
|
Transcriptome Analysis and Screening of Genes Associated with Flower Size in Tomato ( Solanum lycopersicum). Int J Mol Sci 2022; 23:ijms232415624. [PMID: 36555271 PMCID: PMC9778759 DOI: 10.3390/ijms232415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Flower development is not only an important way for tomato reproduction but also an important guarantee for tomato fruit production. Although more and more attention has been paid to the study of flower development, there are few studies on the molecular mechanism and gene expression level of tomato flower development. In this study, RNA-seq analysis was performed on two stages of tomato flower development using the Illumina sequencing platform. A total of 8536 DEGs were obtained by sequencing, including 3873 upregulated DEGs and 4663 down-regulated DEGs. These differentially expressed genes are related to plant hormone signaling, starch and sucrose metabolism. The pathways such as pentose, glucuronate interconversion, and Phenylpropanoid biosynthesis are closely related and mainly involved in plant cellular and metabolic processes. According to the enrichment analysis results of DEGs, active energy metabolism can be inferred during flower development, indicating that flower development requires a large amount of energy and material supply. In addition, some plant hormones, such as GA, may also have effects on flower development. Combined with previous studies, the expression levels of Solyc02g087860 and three of bZIPs were significantly increased in the full flowering stage compared with the flower bud stage, indicating that these genes may be closely related to flower development. These genes were previously reported in Arabidopsis but not in tomatoes. Our next work will conduct a detailed functional analysis of the identified bZIP family genes to characterize their association with tomato flower size. This study will provide new genetic resources for flower formation and provide a basis for tomato yield breeding.
Collapse
|
18
|
Yin Z, Meng X, Guo Y, Wei S, Lai Y, Wang Q. The bZIP Transcription Factor Family in Adzuki Bean ( Vigna Angularis): Genome-Wide Identification, Evolution, and Expression Under Abiotic Stress During the Bud Stage. Front Genet 2022; 13:847612. [PMID: 35547244 PMCID: PMC9081612 DOI: 10.3389/fgene.2022.847612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Adzuki bean (Vigna angularis) is an important dietary legume crop that was first cultivated and domesticated in Asia. Currently, little is known concerning the evolution and expression patterns of the basic leucine zipper (bZIP) family transcription factors in the adzuki bean. Through the PFAM search, 72 bZIP members of adzuki bean (VabZIP) were identified from the reference genome. Most of them were located on 11 chromosomes and seven on an unknown chromosome. A comprehensive analysis, including evolutionary, motifs, gene structure, cis-elements, and collinearity was performed to identify VabZIP members. The subcellular localization results showed VabZIPs might locate on the nuclear. Quantitative real-time PCR (qRT-PCR) analysis of the relative expression of VabZIPs in different tissues at the bud stage revealed that VabZIPs had a tissue-specific expression pattern, and its expression was influenced by abiotic stress. These characteristics of VabZIPs provide insights for future research aimed at developing interventions to improve abiotic stress resistance.
Collapse
Affiliation(s)
- Zhengong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Xianxin Meng
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Yifan Guo
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Shuhong Wei
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Yongcai Lai
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Qiang Wang
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Yang S, Zhang X, Zhang X, Bi Y, Gao W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ 2022; 10:e12939. [PMID: 35282281 PMCID: PMC8916028 DOI: 10.7717/peerj.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.
Collapse
Affiliation(s)
- Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoxiao Zhang
- College of Agriculture, Guangxi University, Nanning, China,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Liu L, Zhang Y, Wang Q, Tao X, Fang J, Zheng W, Zhu L, Jia B, Heng W, Li S. Identification of bZIP transcription factors and their responses to brown spot in pear. Genet Mol Biol 2022; 45:e20210175. [PMID: 35099498 PMCID: PMC8802300 DOI: 10.1590/1678-4685-gmb-2021-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Basic leucine zipper (bZIP) is a conserved transcription factor (TF) widely
present in eukaryotes, and it plays an important role in regulating plant growth
and stress responses. To better understand the white pear bZIP
gene family, comprehensive bioinformatics analysis of the pear genome was
performed. A total of 84 PbbZIP genes were identified, which
were divided into 13 subfamilies by phylogenetic analysis. The 84
PbbZIP genes were all located in the nucleus, and 77 of
those genes were unevenly distributed across the 17 chromosomes of white pear.
The other 7 PbbZIP genes were located on the scaffold.
Subsequent expression profile analysis showed that PbbZIP genes
in exocarp were significantly upregulated or downregulated in ‘Huangguan’ pear
with brown spot (BS) compared with healthy pear and in response to hormonal
treatment with gibberellin A3 (GA3). These results provide
helpful insights into the characteristics of PbbZIP genes and
their responses to BS in ‘Huangguan’ pear.
Collapse
Affiliation(s)
- Li Liu
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Yuxin Zhang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Qi Wang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Xingyu Tao
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Jing Fang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Wenjuan Zheng
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Liwu Zhu
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Bing Jia
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Wei Heng
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Shaowen Li
- Anhui Agriculture University, School of Information and Computer Science, Hefei, Anhui, P. R. China
| |
Collapse
|
21
|
Ma M, Chen Q, Dong H, Zhang S, Huang X. Genome-wide identification and expression analysis of the bZIP transcription factors, and functional analysis in response to drought and cold stresses in pear (Pyrus breschneideri). BMC PLANT BIOLOGY 2021; 21:583. [PMID: 34886805 PMCID: PMC8656046 DOI: 10.1186/s12870-021-03356-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/23/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcription factors (TFs) are involved in many important biological processes, including cell stretching, histological differentiation, metabolic activity, seed storage, gene regulation, and response to abiotic and biotic stresses. Little is known about the functions, evolutionary history, and expression patterns of basic region-leucine zipper TF family genes in pear, despite the release of the genome of Chinese white pears ("Dangshansuli"). RESULTS Overall, 92 bZIP genes were identified in the pear genome (Pyrus breschneideri). Of these, 83 were randomly distributed on all 17 chromosomes except chromosome 4, and the other 9 genes were located on loose scaffolding. The genes were divided into 14 subgroups. Whole-genome duplications, dispersed duplication, and purifying selection for whole-genome duplications are the main reasons for the expansion of the PbrbZIP gene family. The analysis of functional annotation enrichment indicated that most of the functions of PbrbZIP genes were enriched in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways involved in the abiotic stress response. Next, expression analysis and virus-induced gene silencing results indicated that PbrbZIP genes might play critical roles in response to drought and cold stresses, especially for the genes from subgroups A, C, G, I, and S. CONCLUSIONS Ninety-two PbrbZIP genes were identified from the pear genome and classified into 14 subgroups. PbrbZIP genes were mainly expanded from whole-genome duplications and dispersed duplications and retained by purifying selection. PbrbZIP genes were induced by cold and drought stresses and played important roles in drought and cold tolerance. These results provided useful information for further increasing the tolerance of pears to stresses and a foundation to study the cold and drought tolerance mechanism of PbrbZIP genes.
Collapse
Affiliation(s)
- Ming Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. PLANT CELL REPORTS 2021; 40:1305-1329. [PMID: 33751168 DOI: 10.1007/s00299-021-02683-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.
Collapse
Affiliation(s)
- Prafull Salvi
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India.
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanika Thakur
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Nishu Gandass
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
23
|
Zhang M, Liu Y, Li Z, She Z, Chai M, Aslam M, He Q, Huang Y, Chen F, Chen H, Song S, Wang B, Cai H, Qin Y. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean. iScience 2021; 24:102642. [PMID: 34151234 PMCID: PMC8188564 DOI: 10.1016/j.isci.2021.102642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Soybean, one of the most valuable oilseed crops, is under constant pressure from pathogens. bZIP transcription factors (TFs) composing one of the largest TF families in plants have diverse functions. Biochemical and physiological analyses were performed to characterize the regulatory roles of soybean bZIP TF GmbZIP15 in response to pathogens. We found that transgenic soybean plants overexpressing GmbZIP15 has increased resistance against Sclerotinia sclerotiorum and Phytophthora sojae. Besides, GmbZIP15 regulates pathogen response by modulating the antioxidant defense system and phytohormone signaling. In addition, we performed chromatin immunoprecipitation sequencing to identify the downstream genes of GmbZIP15 in response to S. sclerotiorum and found that GmbZIP15 can activate or repress the expression of defense-related genes through direct promoter binding. Taken together, these results indicate that GmbZIP15 plays a positive role in pathogen resistance in soybean, and this activity may be dependent on phytohormone signaling. GmbZIP15 improves resistance against pathogen GmbZIP15 modulates the antioxidant defense system GmbZIP15 regulates phytohormone signaling GmbZIP15 can direct bind to G-box
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Mohammad Aslam
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Huihuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Shikui Song
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Bingrui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
24
|
Wang Z, Zhu J, Yuan W, Wang Y, Hu P, Jiao C, Xia H, Wang D, Cai Q, Li J, Wang C, Zhang X, Chen Y, Wang Z, Ou Z, Xu Z, Shi J, Chen J. Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas. Int J Biol Macromol 2021; 181:1207-1223. [PMID: 33971233 DOI: 10.1016/j.ijbiomac.2021.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/18/2022]
Abstract
The basic leucine zipper (bZIP) family is one of the largest families of transcription factors (TFs) in plants and is responsible for various functions, including regulating development and responses to abiotic/biotic stresses. However, the roles of bZIPs in the regulation of responses to drought stress and salinity stress remain poorly understood in Jatropha curcas L., a biodiesel crop. In the present study, 50 JcbZIP genes were identified and classified into ten groups. Cis-element analysis indicated that JcbZIP genes are associated with abiotic stress. Gene expression patterns and quantitative real-time PCR (qRT-PCR) showed that four JcbZIP genes (JcbZIPs 34, 36, 49 and 50) are key resistance-related genes under both drought and salinity stress conditions. On the basis of the results of cis-element and phylogenetic analyses, JcbZIP49 and JcbZIP50 are likely involved in responses to drought and salinity stress; moreover, JcbZIP34 and JcbZIP36 might also play important roles in seed development and response to abiotic stress. These findings advance our understanding of the comprehensive characteristics of JcbZIP genes and provide new insights for functional validation in the further.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Wenya Yuan
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Ying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Hu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Haimeng Xia
- School of Biosciences, University of Nottingham, Sutton Bonington 999020, UK
| | - Dandan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Jie Li
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Xie Zhang
- Institute of Botany, Hunan Academy of Forestry, Changsha 410004, China
| | - Yansong Chen
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zhaoxia Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zulan Ou
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zhongdong Xu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Jisen Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Joo H, Baek W, Lim CW, Lee SC. Post-translational Modifications of bZIP Transcription Factors in Abscisic Acid Signaling and Drought Responses. Curr Genomics 2021; 22:4-15. [PMID: 34045920 PMCID: PMC8142349 DOI: 10.2174/1389202921999201130112116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 11/22/2022] Open
Abstract
Under drought stress, plants have developed various mechanisms to survive in the reduced water supply, of which the regulation of stress-related gene expression is responsible for several transcription factors. The basic leucine zippers (bZIPs) are one of the largest and most diverse transcription factor families in plants. Among the 10 Arabidopsis bZIP groups, group A bZIP transcription factors function as a positive or negative regulator in ABA signal transduction and drought stress response. These bZIP transcription factors, which are involved in the drought response, have also been isolated in various plant species such as rice, pepper, potato, and maize. Recent studies have provided substantial evidence that many bZIP transcription factors undergo the post-translational modifications, through which the regulation of their activity or stability affects plant responses to various intracellular or extracellular stimuli. This review aims to address the modulation of the bZIP proteins in ABA signaling and drought responses through phosphorylation, ubiquitination and sumoylation.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
26
|
Chen Z, Fang X, Yuan X, Zhang Y, Li H, Zhou Y, Cui X. Overexpression of Transcription Factor GmTGA15 Enhances Drought Tolerance in Transgenic Soybean Hairy Roots and Arabidopsis Plants. AGRONOMY 2021; 11:170. [PMID: 0 DOI: 10.3390/agronomy11010170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soybean (Glycine max) is one of the important oil crops worldwide. In recent years, environmental stresses such as drought and soil salinization have severely deteriorated soybean yield and quality. We investigated the overexpression of the transcription factor GmTGA15 in response to drought stress in transgenic soybean hairy roots and Arabidopsis plants. The results of quantitative real time polymerase chain reaction (qRT-PCR) analyses showed that GmTGA15 was greatly induced by salt, PEG6000, salicylic acid (SA), gibberellic acid (GA), abscisic acid (ABA), and methyl jasmonate (MeJA) in soybean. In response to drought stress, the contents of both chlorophyll and proline were significantly increased, while the content of malondialdehyde (MDA) was significantly decreased in the soybean hairy roots with the overexpression of GmTGA15 in comparison to wild type (WT). Under the simulated drought conditions, the transgenic Arabidopsis plants showed significantly longer roots and lower mortality than that of the wild type. These results suggest that GmTGA15 promotes tolerance to drought stress in both soybean and Arabidopsis plants. This study provides the scientific evidence for further functional analysis of soybean TGA transcription factors in drought stress and the breeding of drought-resistance crops.
Collapse
|
27
|
Afrin T, Seok M, Terry BC, Pajerowska-Mukhtar KM. Probing natural variation of IRE1 expression and endoplasmic reticulum stress responses in Arabidopsis accessions. Sci Rep 2020; 10:19154. [PMID: 33154475 PMCID: PMC7645728 DOI: 10.1038/s41598-020-76114-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The environmental effects shape genetic changes in the individuals within plant populations, which in turn contribute to the enhanced genetic diversity of the population as a whole. Thus, individuals within the same species can acquire and accumulate genetic differences in their genomes depending on their local environment and evolutionary history. IRE1 is a universal endoplasmic reticulum (ER) stress sensor that activates an evolutionarily conserved signalling cascade in response to biotic and abiotic stresses. Here, we selected nine different Arabidopsis accessions along with the reference ecotype Columbia-0, based on their geographical origins and differential endogenous IRE1 expression under steady-state conditions to investigate the natural variation of ER stress responses. We cloned and analysed selected upstream regulatory regions of IRE1a and IRE1b, which revealed differential levels of their inducibility. We also subjected these accessions to an array of biotic and abiotic stresses including heat, ER stress-inducing chemical tunicamycin, phytohormone salicylic acid, and pathogen infection. We measured IRE1-mediated splicing of its evolutionarily conserved downstream client as well as transcript accumulation of ER-resident chaperones and co-chaperones. Collectively, our results illustrate the expression polymorphism of a major plant stress receptor and its relationship with molecular and physiological ER stress sensitivity.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Minye Seok
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Brenna C Terry
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | | |
Collapse
|
28
|
Huang J, Shen L, Yang S, Guan D, He S. CaASR1 promotes salicylic acid- but represses jasmonic acid-dependent signaling to enhance the resistance of Capsicum annuum to bacterial wilt by modulating CabZIP63. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6538-6554. [PMID: 32720981 DOI: 10.1093/jxb/eraa350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/22/2020] [Indexed: 05/22/2023]
Abstract
CabZIP63 acts positively in the resistance of pepper (Capsicum annuum) to bacterial wilt caused by Ralstonia solanacearum or tolerance to high-temperature/high-humidity stress, but it is unclear how CabZIP63 achieves its functional specificity against R. solanacearum. Here, CaASR1, an abscisic acid-, stress-, and ripening-inducible protein of C. annuum, was functionally characterized in modulating the functional specificity of CabZIP63 during the defense response of pepper to R. solanacearum. In pepper plants inoculated with R. solanacearum, CaASR1 was up-regulated before 24 h post-inoculation but down-regulated thereafter, and was down-regulated by high-temperature/high-humidity stress. Data from gene silencing and transient overexpression experiments indicated that CaASR1 acts as a positive regulator in the immunity of pepper against R. solanacearum and a negative regulator of thermotolerance. Pull-down combined with mass spectrometry revealed that CaASR1 interacted with CabZIP63 upon R. solanacearum infection; the interaction was confirmed by microscale thermophoresis and bimolecular fluorescence complementation assays.CaASR1 silencing upon R. solanacearum inoculation repressed CabZIP63-mediated transcription from the promoters of the salicylic acid (SA)-dependent CaPR1 and CaNPR1, but derepressed transcription of CaHSP24 and the jasmonic acid (JA)-dependent CaDEF1. Our findings suggest that CaASR1 acts as a positive regulator of the defense response of pepper to R. solanacearum by interacting with CabZIP63, enabling it to promote SA-dependent but repress JA-dependent immunity and thermotolerance during the early stages of infection.
Collapse
Affiliation(s)
- Jinfeng Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
29
|
Lu B, Wang Y, Zhang G, Feng Y, Yan Z, Wu J, Chen X. Genome-Wide Identification and Expression Analysis of the Strawberry FvbZIP Gene Family and the Role of Key Gene FabZIP46 in Fruit Resistance to Gray Mold. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1199. [PMID: 32937812 PMCID: PMC7569810 DOI: 10.3390/plants9091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
A total of 54 FvbZIP genes were identified from the strawberry genome. These genes were found to be unevenly distributed on seven different chromosomes, and two of the genes had no matching chromosomal localization. FvbZIP genes were divided into 10 subfamilies according to protein sequence, and the structures of these genes were found to be highly conserved. Based on the bioinformatics analysis of FvbZIP genes, the expression of FabZIP genes changed during different stages of its growth and of its infection with gray mold disease. FabZIP46 was substantially upregulated, and its expression remained relatively high. FabZIP46 was cloned from cultivated strawberries by homologous cloning. The results of a transient transgenic assay revealed that the damage to the fruit tissue was markedly alleviated in strawberries overexpressing FabZIP46, with the incidence rate being substantially lower than that in the control group. By contrast, a brief silencing of FabZIP46 had the opposite effect. The results revealed that FabZIP46 played a positive role in the resistance of strawberries to Botrytis cinerea. The study findings provide valuable insights into the role of bZIP transcription factors as well as a theoretical reference for the regulation of resistance to gray mold disease in strawberry fruit.
Collapse
Affiliation(s)
- Bei Lu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China;
| | - Yuanhua Wang
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Geng Zhang
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Yingna Feng
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Zhiming Yan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Jianhua Wu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (Y.W.); (G.Z.); (Y.F.); (Z.Y.)
- Engineering and Technical Center for Modern Horticulture, Nanjing 210000, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225000, China;
| |
Collapse
|
30
|
Joo H, Lim CW, Lee SC. The pepper RING-type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1. PLANT, CELL & ENVIRONMENT 2020; 43:1911-1924. [PMID: 32421865 DOI: 10.1111/pce.13789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/06/2020] [Accepted: 05/12/2020] [Indexed: 05/07/2023]
Abstract
Protein degradation by the ubiquitin/26S proteasome system is a critical process that modulates many eukaryotic cellular processes. E3 ligase usually modulates stress response by adjusting the stability of transcription factors. Previous studies have shown that a RING-type E3 ligase, CaASRF1, positively modulates abscisic acid (ABA) signalling and ABA-mediated drought response by modulating the stability of CaAIBZ1 and CaATBZ1. In this study, we conducted yeast two-hybrid (Y2H) screening with CaATBZ1 to isolate an additional modulator, identified as CaATIR1 (Capsicum annuum ATBZ1 Interacting RING finger protein 1). CaATIR1 has E3 ligase activity and promoted CaATBZ1 degradation using the 26S proteasome system. We investigated the loss-of and gain-of functions of this E3 ligase by using silencing pepper and overexpressing (OX) Arabidopsis plants, respectively. In response to ABA and drought treatments, CaATIR1-silenced pepper plants showed ABA insensitive and drought-sensitive phenotypes, while CaATIR1-OX plants showed the opposite phenotypes. Additionally, CaATBZ1-silencing rescued the ABA insensitive and drought-sensitive phenotypes of CaATIR1-silencing pepper plants. Taken together, these data demonstrate that the stability of CaATBZ1 mediated by CaATIR1 has a crucial role in drought stress signalling in pepper plants.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Genome-Wide Identification and Expression Analysis of the bZIP Transcription Factors in the Mycoparasite Coniothyrium minitans. Microorganisms 2020; 8:microorganisms8071045. [PMID: 32674413 PMCID: PMC7409085 DOI: 10.3390/microorganisms8071045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 01/19/2023] Open
Abstract
The basic leucine zipper (bZIP) proteins family is one of the largest and most diverse transcription factors, widely distributed in eukaryotes. However, no information is available regarding the bZIP gene family in Coniothyrium minitans, an important biocontrol agent of the plant pathogen Sclerotinia sclerotiorum. In this study, we identified 34 bZIP genes from the C. minitans genome, which were classified into 8 groups based on their phylogenetic relationships. Intron analysis showed that 28 CmbZIP genes harbored a variable number of introns, and 15 of them shared a feature that intron inserted into the bZIP domain. The intron position in bZIP domain was highly conserved, which was related to recognize the arginine (R) and could be treated as a genomic imprinting. Expression analysis of the CmbZIP genes in response to abiotic stresses indicated that they might play distinct roles in abiotic stress responses. Results showed that 22 CmbZIP genes were upregulated during the later stage of conidial development. Furthermore, transcriptome analysis indicated that CmbZIP genes are involved in different stages of mycoparasitism. Among deletion mutants of four CmbZIPs (CmbZIP07, -09, -13, and -16), only ΔCmbZIP16 mutants significantly reduced its tolerance to the oxidative stress. The other mutants exhibited no significant effects on colony morphology, mycelial growth, conidiation, and mycoparasitism. Taken together, our results suggested that CmbZIP genes play important roles in the abiotic stress responses, conidial development, and mycoparasitism. These results provide comprehensive information of the CmbZIP gene family and lay the foundation for further research on the bZIP gene family regarding their biological functions and evolutionary history.
Collapse
|
32
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
33
|
Gai WX, Ma X, Qiao YM, Shi BH, ul Haq S, Li QH, Wei AM, Liu KK, Gong ZH. Characterization of the bZIP Transcription Factor Family in Pepper ( Capsicum annuum L.): CabZIP25 Positively Modulates the Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:139. [PMID: 32174937 PMCID: PMC7054902 DOI: 10.3389/fpls.2020.00139] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 05/07/2023]
Abstract
The basic leucine zipper (bZIP) proteins compose a family of transcription factors (TFs), which play a crucial role in plant growth, development, and abiotic and biotic stress responses. However, no comprehensive analysis of bZIP family has been reported in pepper (Capsicum annuum L.). In this study, we identified and characterized 60 bZIP TF-encoding genes from two pepper genomes. These genes were divided into 10 groups based on their phylogenetic relationships with bZIP genes from Arabidopsis. Six introns/exons structural patterns within the basic and hinge regions and the conserved motifs were identified among all the pepper bZIP proteins, on the basis of which, we classify them into different subfamilies. Based on the transcriptomic data of Zunla-1 genome, expression analyses of 59 pepper bZIP genes (not including CabZIP25 of CM334 genome), indicated that the pepper bZIP genes were differentially expressed in the pepper tissues and developmental stages, and many of the pepper bZIP genes might be involved in responses to various abiotic stresses and phytohormones. Further, gene expression analysis, using quantitative real-time PCR (qRT-PCR), showed that the CabZIP25 gene was expressed at relatively higher levels in vegetative tissues, and was strongly induced by abiotic stresses and phytohormones. In comparing with wild type Arabidopsis, germination rate, fresh weight, chlorophyll content, and root lengths increased in the CabZIP25-overexpressing Arabidopsis under salt stress. Additionally, CabZIP25-silenced pepper showed lower chlorophyll content than the control plants under salt stress. These results suggested that CabZIP25 improved salt tolerance in plants. Taken together, our results provide new opportunities for the functional characterization of bZIP TFs in pepper.
Collapse
Affiliation(s)
- Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Bu-Hang Shi
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai, China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ke-Ke Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shannxi, China
- *Correspondence: Zhen-Hui Gong,
| |
Collapse
|
34
|
Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, Khan KA, Ghramh HA, He S. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen. Microb Pathog 2019; 137:103758. [DOI: 10.1016/j.micpath.2019.103758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|
35
|
Yan Q, Wu F, Ma T, Zong X, Ma Q, Li J, Zhao Y, Wang Y, Zhang J. Comprehensive analysis of bZIP transcription factors uncovers their roles during dimorphic floret differentiation and stress response in Cleistogenes songorica. BMC Genomics 2019; 20:760. [PMID: 31640558 PMCID: PMC6805689 DOI: 10.1186/s12864-019-6092-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transcription factors act as important regulators of transcription networks. Basic leucine zipper (bZIP) transcription factors have been shown to be involved in multiple biological processes in plants. However, no information is available for the bZIP family in Cleistogenes songorica, which is an important xerophytic and allotetraploid grass in desert grasslands. RESULTS In this study, 86 CsbZIPs were identified in the allotetraploid C. songorica genome. For location analysis, CsbZIPs were distributed evenly across two subgenomes of C. songorica. Phylogenetic tree analysis among three species indicated that CsbZIPs were evolutionarily more closely related to OsbZIPs than AtbZIPs. Syntenic and phylogenetic analyses confirmed that the CsbZIPs were mainly expanded by whole-genome duplication events. Furthermore, it was determined that rice and C. songorica might have undergone purified selection during their long evolutionary history by calculating the Ks values and Ka/Ks ratios of orthologous gene pairs. By analysing the expression patterns of CsbZIPs in different tissues and under abiotic stresses, 21 CsbZIP genes were differentially expressed between chasmogamous (CH) and cleistogamous (CL) flowers, including two FLOWERING LOCUS D (FD) genes. In shoots and roots, 79.1 and 87.2% of the CsbZIP genes, respectively, displayed transcript changes under at least one stress treatment, such as heat, cold, drought and salt. Strikingly, 17 common CsbZIP genes showed differential expression under stress response and during CL flowering. Co-expression network, GO annotation and real-time quantitative reverse transcription PCR (qRT-PCR) analyses revealed a close relationship between CL flowering-associated genes and abiotic stress-related genes. CONCLUSIONS BZIP TFs were comprehensively analysed and identified in allotetraploid C. songorica. Our results provide insights into the evolutionary history of the bZIP family in C. songorica and provide abiotic stress-responsive and CL-associated candidate CsbZIP genes for potential applications in the genetic improvement of plants.
Collapse
Affiliation(s)
- Qi Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Fan Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Tiantian Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xifang Zong
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Qian Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jie Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yufeng Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
36
|
CsBZIP40, a BZIP transcription factor in sweet orange, plays a positive regulatory role in citrus bacterial canker response and tolerance. PLoS One 2019; 14:e0223498. [PMID: 31584990 PMCID: PMC6777757 DOI: 10.1371/journal.pone.0223498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 11/25/2022] Open
Abstract
Citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) is a systemic bacterial disease that affects citrus plantations globally. Biotic stress in plants has been linked to a group of important transcription factors known as Basic Leucine Zippers (BZIPs). In this study, CsBZIP40 was functionally characterized by expression analysis, including induction by Xcc and hormones, subcellular localization, over-expression and RNAi silencing. CsBZIP40 belongs to group D of the CsBZIP family of transcription factors and localizes in the nucleus, potentially serving as a transcriptional regulator. In wild type (WT) plants CsBZIP40 can be induced by plant hormones in addition to infection by Xcc which has given insight into its involvement in CBC. In the present study, over-expression of CsBZIP40 conferred resistance to Xcc while its silencing led to Xcc susceptibility. Both over-expression and RNAi affected salicylic acid (SA) production and expression of the genes involved in the SA synthesis and signaling pathway, in addition to interaction of CsBZIP40 with CsNPR1, as detected by a GST pull-down assay. Taken together, the results of this study confirmed the important role of CsBZIP40 in improving resistance to citrus canker through the SA signaling pathway by the presence of NPR1 to activate PR genes. Our findings are of potential value in the breeding of tolerance to CBC in citrus fruits.
Collapse
|
37
|
Hussain A, Noman A, Khan MI, Zaynab M, Aqeel M, Anwar M, Ashraf MF, Liu Z, Raza A, Mahpara S, Bakhsh A, He S. Molecular regulation of pepper innate immunity and stress tolerance: An overview of WRKY TFs. Microb Pathog 2019; 135:103610. [DOI: 10.1016/j.micpath.2019.103610] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 04/22/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023]
|
38
|
Joo H, Lim CW, Lee SC. Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:399-410. [PMID: 31278798 DOI: 10.1111/tpj.14451] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 05/07/2023]
Abstract
Ubiquitination is a eukaryotic protein modulation system for identifying and affecting proteins that are no longer needed in the cell. In a previous study, we elucidated the biological function of CaASRF1, which contains a RING finger domain and functions as an E3 ligase. We showed that CaASRF1 positively modulates abscisic acid (ABA) signalling and drought stress tolerance by modulating the stability of subgroup D bZIP transcription factor CaAIBZ1. We performed yeast two-hybrid (Y2H) screening to identify an additional target protein of CaASRF1. In this study, we identified pepper CaATBZ1 (Capsicum annuum ASRF1 target bZIP transcription factor 1), which belongs to the subgroup A bZIP transcription factors. We investigated the biological function of this protein using virus-induced gene silencing (VIGS) in pepper plants and by generating overexpressing transgenic Arabidopsis plants. Our loss-of-function and gain-of-function studies revealed that CaATBZ1 negatively modulates ABA signalling and drought stress response. Consistent with CaATBZ1-silenced pepper plants, CaASRF1/CaATBZ1-silenced pepper plants displayed drought-tolerant phenotypes via ABA-mediated signalling. Our results demonstrated that CaASRF1-mediated ubiquitination plays a crucial role in regulating the stability of CaATBZ1. These findings provide valuable insight into the post-translational regulation of transcriptional factors.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
39
|
Baillo EH, Kimotho RN, Zhang Z, Xu P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes (Basel) 2019; 10:E771. [PMID: 31575043 PMCID: PMC6827364 DOI: 10.3390/genes10100771] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Gezira 21111, Sudan.
| | - Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Xu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
40
|
Yang QQ, Feng K, Xu ZS, Duan AQ, Liu JX, Xiong AS. Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1611386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Qing-Qing Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Joo H, Lim CW, Lee SC. A pepper RING-type E3 ligase, CaASRF1, plays a positive role in drought tolerance via modulation of CaAIBZ1 stability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:5-18. [PMID: 30548716 DOI: 10.1111/tpj.14191] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 05/11/2023]
Abstract
Plants have evolved complex defense mechanisms to adapt and survive under adverse growth conditions. Abscisic acid (ABA) is a phytohormone that plays a pivotal role in the stress response, especially regulation of the stomatal aperture in response to drought. Here, we identified the pepper CaASRF1 (Capsicum annuum ABA Sensitive RING Finger E3 ligase 1) gene, which modulates drought stress tolerance via ABA-mediated signaling. CaASRF1 contains a C3H2C3-type RING finger domain, which functions as an E3 ligase by attaching ubiquitins to the target proteins. CaASRF1 expression was enhanced after exposure to ABA, drought and NaCl. Loss-of-function in pepper plants and gain-of-function in Arabidopsis plants revealed that CaASRF1 positively modulates ABA signaling and the drought stress response. Moreover, CaASRF1 interacted with and was associated with degradation of the bZIP transcription factor CaAIBZ1 (Capsicum annuum ASRF1-Interacting bZIP transcription factor 1). Contrary to CaASRF1 phenotypes, CaAIBZ1-silenced pepper and CaAIBZ1-overexpressing Arabidopsis exhibited drought-tolerant and drought-sensitive phenotypes, respectively. Taken together, our data indicate that CaASRF1 positively modulates ABA signaling and the drought stress response via modulation of CaAIBZ1 stability.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
42
|
Lim CW, Baek W, Lee SC. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:452-467. [PMID: 30051516 DOI: 10.1111/tpj.14046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that plays a key role in the environmental stress response, especially the induction of ABA-responsive and stress-responsive genes and modulation of the stomatal aperture in response to drought stress. Here, we identified CaDILZ1 (Capsicum annuum Drought-Induced Leucine Zipper 1) belonging to subgroup D of the bZIP protein family; gene functions of this family in response to ABA and drought signaling still remain unknown. CaDILZ1 expression was significantly induced in pepper leaves after exposure to ABA, drought, and NaCl. The CaDILZ1 protein localized in the nucleus of plant cells. In response to drought stress, CaDILZ1-silenced pepper and CaDILZ1-overexpressing Arabidopsis plants exhibited drought-sensitive and drought-tolerant phenotypes, respectively, via altered ABA content, stomatal closure, and expression of ABA-responsive and drought-responsive marker genes. We isolated the RING finger protein CaDSR1 (Capsicum annuum Drought Sensitive RING finger protein 1), which interacted with CaDILZ1 in the nucleus. The CaDSR1 protein exhibited E3 ligase activity and promoted CaDILZ1 degradation via the 26S proteasome pathway. Under drought stress conditions, CaDSR1-silenced pepper and CaDSR1-overexpressing Arabidopsis plants exhibited contrasting phenotypes to those of CaDILZ1-silenced pepper and CaDILZ1-overexpressing Arabidopsis plants. Taken together, our data suggest that CaDSR1 and CaDILZ1 function in ABA-mediated drought stress signaling in pepper plants.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
43
|
Park JH, Kang CH, Nawkar GM, Lee ES, Paeng SK, Chae HB, Chi YH, Kim WY, Yun DJ, Lee SY. EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis. THE NEW PHYTOLOGIST 2018; 220:163-177. [PMID: 29932218 DOI: 10.1111/nph.15279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/18/2018] [Indexed: 05/16/2023]
Abstract
Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions. The EMR protein purified from bacteria displayed high E3 ligase activity, and tobacco leaf-produced EMR mediated mildew resistance locus O-12 (MLO12) degradation in a proteasome-dependent manner. Subcellular localization and coimmunoprecipitation analyses showed that EMR forms a complex with ubiquitin-conjugating enzyme 32 (UBC32) as a cytosolic interaction partner. Mutation of EMR and RNA interference (RNAi) increased the tolerance of plants to ER stress. EMR RNAi in the bri1-5 background led to partial recovery of the brassinosteroid (BR)-insensitive phenotypes as compared with the original mutant plants and increased ER stress tolerance. The presented results suggest that EMR is involved in the plant ERAD system that affects BR signaling under ER stress conditions as a novel Arabidopsis ring finger E3 ligase mainly present in cytosol while the previously identified ERAD E3 components are typically membrane-bound proteins.
Collapse
Affiliation(s)
- Joung Hun Park
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ganesh M Nawkar
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ho Byoung Chae
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Yong Hun Chi
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yeon Kim
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
44
|
Transcriptome Analysis of Litsea cubeba Floral Buds Reveals the Role of Hormones and Transcription Factors in the Differentiation Process. G3-GENES GENOMES GENETICS 2018; 8:1103-1114. [PMID: 29487185 PMCID: PMC5873901 DOI: 10.1534/g3.117.300481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Litsea cubeba (Lour.) Pers. is an important economic plant that is rich in valuable essential oil. The essential oil is often used as a raw material for perfumes, food additives, insecticides and bacteriostats. Most of the essential oil is contained in the fruit, and the quantity and quality of fruit are dependent on the flowers. To explore the molecular mechanism of floral bud differentiation, high-throughput RNA sequencing was used to detect differences in the gene expression of L. cubeba female and male floral buds at three differentiation stages. RESULTS This study obtained 160.88 Gbp of clean data that were assembled into 100,072 unigenes, and a total of 38,658 unigenes were annotated. A total of 27,521 simple sequence repeats (SSRs) were identified after scanning the assembled transcriptome, and the mono-nucleotide repeats were predominant, followed by di-nucleotide and tri-nucleotide repeats. A total of 12,559 differentially expressed genes (DEGs) were detected from the female (F) and male (M) floral bud comparisons. The gene ontology (GO) databases revealed that these DEGs were primarily contained in "metabolic processes", "cellular processes", and "single-organism processes". The Kyoto Encyclopedia of Genes and Genomes (KEGG) databases suggested that the DEGs belonged to "plant hormone signal transduction" and accounted for a relatively large portion in all of these comparisons. We analyzed the expression level of plant hormone-related genes and detected the contents of several relevant plant hormones in different stages. The results revealed that the dynamic changes in each hormone content were almost consistent with the expression levels of relevant genes. The transcription factors selected from the DEGs were analyzed. Most DEGs of MADS-box were upregulated and most DEGs of bZIP were downregulated. The expression trends of the DEGs were nearly identical in female and male floral buds, and qRT-PCR analysis revealed consistency with the transcriptome data. CONCLUSIONS We sequenced and assembled a high-quality L. cubeba floral bud transcriptome, and the data appeared to be well replicated (n = 3) over three developmental time points during flower development. Our study explored the changes in the contents of several plant hormones during floral bud differentiation using biochemical and molecular biology techniques, and the changes in expression levels of several flower development related transcription factors. These results revealed the role of these factors (i.e., hormones and transcription factors) and may advance our understanding of their functions in flower development in L. cubeba.
Collapse
|
45
|
Pan Y, Hu X, Li C, Xu X, Su C, Li J, Song H, Zhang X, Pan Y. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance. Genes (Basel) 2017; 8:genes8120402. [PMID: 29261143 PMCID: PMC5748720 DOI: 10.3390/genes8120402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling.
Collapse
Affiliation(s)
- Yanglu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Xin Hu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Chunyan Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Xing Xu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Chenggang Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Hongyuan Song
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing 400715, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
46
|
Zheng G, Fan C, Di S, Wang X, Xiang C, Pang Y. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2125. [PMID: 29326737 PMCID: PMC5733502 DOI: 10.3389/fpls.2017.02125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 05/18/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1) gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.
Collapse
Affiliation(s)
- Guangshun Zheng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cunying Fan
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaokang Di
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuemin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengbin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yongzhen Pang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Zhou Y, Xu D, Jia L, Huang X, Ma G, Wang S, Zhu M, Zhang A, Guan M, Lu K, Xu X, Wang R, Li J, Qu C. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus. Genes (Basel) 2017; 8:genes8100288. [PMID: 29064393 PMCID: PMC5664138 DOI: 10.3390/genes8100288] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022] Open
Abstract
The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus.
Collapse
Affiliation(s)
- Yan Zhou
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Daixiang Xu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Ledong Jia
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaohu Huang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Guoqiang Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Shuxian Wang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Meichen Zhu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Aoxiang Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Mingwei Guan
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Kun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Xinfu Xu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Rui Wang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Cunmin Qu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
48
|
Transcription Factors Responding to Pb Stress in Maize. Genes (Basel) 2017; 8:genes8090231. [PMID: 28927013 PMCID: PMC5615364 DOI: 10.3390/genes8090231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022] Open
Abstract
Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs) expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK) or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs) were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs) were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA) mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress.
Collapse
|
49
|
Noman A, Liu Z, Aqeel M, Zainab M, Khan MI, Hussain A, Ashraf MF, Li X, Weng Y, He S. Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett 2017; 39:1779-1791. [DOI: 10.1007/s10529-017-2431-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
|
50
|
Kumar J, Singh S, Singh M, Srivastava PK, Mishra RK, Singh VP, Prasad SM. Transcriptional regulation of salinity stress in plants: A short review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|