1
|
Ki DU, Choi HJ, Song WS, Yoon SI. Structural analysis of the CJ0600 protein from Campylobacter jejuni. Biochem Biophys Res Commun 2024; 735:150810. [PMID: 39418773 DOI: 10.1016/j.bbrc.2024.150810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The Campylobacter jejuni bacterium, which causes foodborne enteritis in humans, expresses the uncharacterized protein CJ0600. Based on sequence analysis, CJ0600 has been proposed to function as a 1-aminocyclopropane-1-carboxylate (ACC) deaminase (AccDA) or cysteine desulfhydrase (CysDS). However, it has never been investigated whether CJ0600 exerts AccDA or CysDS activity or how CJ0600 mediates its enzymatic activity. To reveal the structural features necessary for the function of CJ0600, we determined the crystal structure of CJ0600 and characterized its enzymatic activity. CJ0600 contains two domains and features an interdomain pocket, which accommodates a pyridoxal 5'-phosphate (PLP) molecule as a Schiff base with its lysine residue (K35), as observed in its structural homologs, including AccDA, CysDS, and serine deaminase (SerDA). However, unlike its structural homologs, CJ0600 exists as a monomer and exhibits unique structural features throughout its structure. Moreover, CJ0600 contains unique active site residues that are not observed in AccDA, CysDS, or SerDA. Consistently, phylogenetic analysis indicates that CJ0600 and its orthologs are evolutionarily distinct from AccDA, CysDS, and SerDA. Indeed, CJ0600 showed no CysDS or SerDA activity and extremely weak AccDA activity. These observations suggest that CJ0600 functions as a unique PLP-dependent enzyme that has not been reported.
Collapse
Affiliation(s)
- Dong Uk Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hong Joon Choi
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Seitz VA, McGivern BB, Borton MA, Chaparro JM, Schipanski ME, Prenni JE, Wrighton KC. Cover crop root exudates impact soil microbiome functional trajectories in agricultural soils. MICROBIOME 2024; 12:183. [PMID: 39342284 PMCID: PMC11439266 DOI: 10.1186/s40168-024-01886-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/27/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil-microbiome interactions. Currently, there is limited understanding on the diversity of cover crop phytohormone root exudation patterns and our aim was to understand how phytochemical signals selectively enrich specific microbial taxa and functionalities in agricultural soils. RESULTS Here, we link variability in cover crop root exudate composition to changes in soil microbiome functionality. Exudate chemical profiles from 4 cover crop species (Sorghum bicolor, Vicia villosa, Brassica napus, and Secale cereal) were used as the chemical inputs to decipher microbial responses. These distinct exudate profiles, along with a no exudate control, were amended to agricultural soil microcosms with microbial responses tracked over time using metabolomes and genome-resolved metatranscriptomes. Our findings illustrated microbial metabolic patterns were unique in response to cover crop exudate inputs over time, particularly by sorghum and cereal rye amended microcosms. In these microcosms, we identify novel microbial members (at the genera and family level) who produced IAA and GA4 over time. Additionally, we identified cover crop exudates exclusively enriched for bacterial nitrite oxidizers, while control microcosms were discriminated for nitrogen transport, mineralization, and assimilation, highlighting distinct changes in microbial nitrogen cycling in response to chemical inputs. CONCLUSIONS We highlight that root exudate amendments alter microbial community function (i.e., N cycling) and microbial phytohormone metabolisms, particularly in response to root exudates isolated from cereal rye and sorghum plants. Additionally, we constructed a soil microbial genomic catalog of microorganisms responding to commonly used cover crops, a public resource for agriculturally relevant microbes. Many of our exudate-stimulated microorganisms are representatives from poorly characterized or novel taxa, revealing the yet to be discovered metabolic reservoir harbored in agricultural soils. Our findings emphasize the tractability of high-resolution multi-omics approaches to investigate processes relevant for agricultural soils, opening the possibility of targeting specific soil biogeochemical outcomes through biological precision agricultural practices that use cover crops and the microbiome as levers for enhanced crop production. Video Abstract.
Collapse
Affiliation(s)
- Valerie A Seitz
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Bridget B McGivern
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Meagan E Schipanski
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kelly C Wrighton
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
3
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
4
|
Jin T, Ren J, Bai B, Wu W, Cao Y, Meng J, Zhang L. Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Microbiol Spectr 2024; 12:e0405623. [PMID: 38563743 PMCID: PMC11064500 DOI: 10.1128/spectrum.04056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Wei Wu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Yongqing Cao
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jing Meng
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Lihui Zhang
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
5
|
Contreras-Cornejo HA, Schmoll M, Esquivel-Ayala BA, González-Esquivel CE, Rocha-Ramírez V, Larsen J. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiol Res 2024; 281:127621. [PMID: 38295679 DOI: 10.1016/j.micres.2024.127621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/26/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Trichoderma spp. are free-living fungi present in virtually all terrestrial ecosystems. These soil fungi can stimulate plant growth and increase plant nutrient acquisition of macro- and micronutrients and water uptake. Generally, plant growth promotion by Trichoderma is a consequence of the activity of potent fungal signaling metabolites diffused in soil with hormone-like activity, including indolic compounds as indole-3-acetic acid (IAA) produced at concentrations ranging from 14 to 234 μg l-1, and volatile organic compounds such as sesquiterpene isoprenoids (C15), 6-pentyl-2H-pyran-2-one (6-PP) and ethylene (ET) produced at levels from 10 to 120 ng over a period of six days, which in turn, might impact plant endogenous signaling mechanisms orchestrated by plant hormones. Plant growth stimulation occurs without the need of physical contact between both organisms and/or during root colonization. When associated with plants Trichoderma may cause significant biochemical changes in plant content of carbohydrates, amino acids, organic acids and lipids, as detected in Arabidopsis thaliana, maize (Zea mays), tomato (Lycopersicon esculentum) and barley (Hordeum vulgare), which may improve the plant health status during the complete life cycle. Trichoderma-induced plant beneficial effects such as mechanisms of defense and growth are likely to be inherited to the next generations. Depending on the environmental conditions perceived by the fungus during its interaction with plants, Trichoderma can reprogram and/or activate molecular mechanisms commonly modulated by IAA, ET and abscisic acid (ABA) to induce an adaptative physiological response to abiotic stress, including drought, salinity, or environmental pollution. This review, provides a state of the art overview focused on the canonical mechanisms of these beneficial fungi involved in plant growth promotion traits under different environmental scenarios and shows new insights on Trichoderma metabolites from different chemical classes that can modulate specific plant growth aspects. Also, we suggest new research directions on Trichoderma spp. and their secondary metabolites with biological activity on plant growth.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico.
| | - Monika Schmoll
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Blanca Alicia Esquivel-Ayala
- Laboratorio de Entomología, Facultad de Biología, Edificio B4, Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Ciudad Universitaria, CP 58030 Morelia, Michoacán, Mexico
| | - Carlos E González-Esquivel
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Victor Rocha-Ramírez
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - John Larsen
- Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Mexico; IIES-UNAM, Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| |
Collapse
|
6
|
Seitz VA, McGivem BB, Borton MA, Chaparro JM, Schipanski ME, Prenni JE, Wrighton KC. Cover Crop Root Exudates Impact Soil Microbiome Functional Trajectories in Agricultural Soils. RESEARCH SQUARE 2024:rs.3.rs-3956430. [PMID: 38410449 PMCID: PMC10896397 DOI: 10.21203/rs.3.rs-3956430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Background Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil microbiome interactions. Currently, there is limited understanding on the diversity of cover crop phytohormone root exudation patterns and how these chemical messages selectively enrich specific microbial taxa and functionalities in agricultural soils. Results Here, we link variability in cover crop root exudate composition to changes in soil microbiome functionality. Exudate chemical profiles from 4 cover crop species (Sorghum bicolor, Vicia villosa, Brassica napus, and Secale cereal) were used as the chemical inputs to decipher microbial responses. These distinct exudate profiles, along with a no exudate control, were amended to agricultural soil microcosms with microbial responses tracked over time using metabolomes and genome-resolved metatranscriptomes. Our findings illustrated microbial metabolic patterns were unique in response to cover crop exudate inputs over time, particularly by sorghum and cereal rye amended microcosms where we identify novel microbial members (at the genera and family level) who produced IAA and GA4 over time. We also identify broad changes in microbial nitrogen cycling in response chemical inputs. Conclusions We highlight that root exudate amendments alter microbial community function and phytohormone metabolisms, particularly in response to root exudates isolated from cereal rye and sorghum plants. Additionally, we constructed a soil microbial genomic catalog of microorganisms responding to commonly used cover crops, a public resource for agriculturally-relevant microbes. Many of our exudate-stimulated microorganisms are representatives from poorly characterized or novel taxa, highlighting the yet to be discovered metabolic reservoir harbored in agricultural soils. Our findings emphasize the tractability of high-resolution multiomics approaches to investigate processes relevant for agricultural soils, opening the possibility of targeting specific soil biogeochemical outcomes through biological precision agricultural practices that use cover crops and the microbiome as levers for enhanced crop production.
Collapse
|
7
|
Rajkumari N, Chowrasia S, Nishad J, Ganie SA, Mondal TK. Metabolomics-mediated elucidation of rice responses to salt stress. PLANTA 2023; 258:111. [PMID: 37919614 DOI: 10.1007/s00425-023-04258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
MAIN CONCLUSION Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.
Collapse
Affiliation(s)
- Nitasana Rajkumari
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Soni Chowrasia
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- Department of Bioscience and Biotechnology, Banastahli Vidyapith, Tonk, Rajasthan, 304022, India
| | - Jyoti Nishad
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
| | - Showkat Ahmad Ganie
- Plant Molecular Sciences and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, Surrey, UK
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India.
| |
Collapse
|
8
|
Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, Hou J, Liu T. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e14133. [PMID: 38148197 DOI: 10.1111/ppl.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Trichoderma species have received significant interest as beneficial fungi for boosting plant growth and immunity against phytopathogens. By establishing a mutualistic relationship with plants, Trichoderma causes a series of intricate signaling events that eventually promote plant growth and improve disease resistance. The mechanisms contain the indirect or direct involvement of Trichoderma in enhancing plant growth by modulating phytohormones signaling pathways, improving uptake and accumulation of nutrients, and increasing soil bioavailability of nutrients. They contribute to plant resistance by stimulating systemic acquired resistance through salicylic acid, jasmonic acid, and ethylene signaling. A cascade of signal transduction processes initiated by the interaction of Trichoderma and plants regulate the expression of defense-related genes, resulting in the synthesis of defense hormones and pathogenesis-related proteins (PRPs), which collectively improve plant resistance. Additionally, advancements in omics technologies has led to the identification of key pathways, their regulating genes, and molecular interactions in the plant defense and growth promotion responses induced by Trichoderma. Deciphering the molecular mechanism behind Trichoderma's induction of plant defense and immunity is essential for harnessing the full plant beneficial potential of Trichoderma. This review article sheds light on the molecular mechanisms that underlie the positive effects of Trichoderma-induced plant immunity and growth and opens new opportunities for developing environmentally friendly and innovative approaches to improve plant immunity and growth.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Saba Najeeb
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jumei Hou
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Tong Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
9
|
Gamalero E, Lingua G, Glick BR. Ethylene, ACC, and the Plant Growth-Promoting Enzyme ACC Deaminase. BIOLOGY 2023; 12:1043. [PMID: 37626930 PMCID: PMC10452086 DOI: 10.3390/biology12081043] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Here, a brief summary of the biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) and ethylene in plants, as well as overviews of how ACC and ethylene act as signaling molecules in plants, is presented. Next, how the bacterial enzyme ACC deaminase cleaves plant-produced ACC and thereby decreases or prevents the ethylene or ACC modulation of plant gene expression is considered. A detailed model of ACC deaminase functioning, including the role of indoleacetic acid (IAA), is presented. Given that ACC is a signaling molecule under some circumstances, this suggests that ACC, which appears to have evolved prior to ethylene, may have been a major signaling molecule in primitive plants prior to the evolution of ethylene and ethylene signaling. Due to their involvement in stimulating ethylene production, the role of D-amino acids in plants is then considered. The enzyme D-cysteine desulfhydrase, which is structurally very similar to ACC deaminase, is briefly discussed and the possibility that ACC deaminase arose as a variant of D-cysteine desulfhydrase is suggested.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
10
|
Liao X, Luo Q, Wu C, Zhou D, Li J, Meng Z. A 1-aminocyclopropane-1-carboxylate deaminase MrACCD from Metarhizium robertsii is associated with plant growth promotion for Metarhizium spp. J Invertebr Pathol 2023; 198:107928. [PMID: 37116744 DOI: 10.1016/j.jip.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023]
Abstract
Besides killing insects, Metarhizium spp. have been showing another realistic ecology role as plant associates. Partial genra and groups of these entomopathogenic fungi act as plant growth promoters during root colonization. Here, we report that Metarhizium robertsii produces a 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD encoded by MracdS, MrACCD), which is involved in promoting wheat early vegetative growth, while Metarhizium acridum lacks the genuine ACCD though a MracdS homologue exists in the species. MracdS expression was up-regulated by a max 10.7-fold with 3 mM ACC and high ACCD enzymatic activities were induced by either ACC (7.5-fold) or wheat root (3.2-fold). In contrast, no ACCD activity was detected in M. acridum in the presence of both inducers. In pot assay, wheat seeds were treated with wild-type M. robertsii (Mr23), wild-type M. acridum (Mac324), MracdS disruption mutant (ΔMracdS) and M. acridum transformant harboring heterologous MracdS (Mac324-MracdS). Relative to the control seeds treated with heat-killed conidia, Mr23, ΔMracdS and Mac324-MracdS increased root length (by 66.2, 31.8 and 40.2%), and plant biomass (by 56.6, 42.1 and 40.9%). Nevertheless, ΔMracdS deficient in ACCD activity heavily impaired its capability of wheat growth promotion by decrease of 20.7% in root length relative to Mr23. In addition, Mr23 and Mac324-MracdS also increased shoot growth (by 42.3, and 42.7%) while ΔMracdS failed. Mac324 showed no effect on plant growth during the test. These data suggest a role for ACCD in the plant growth promotion effect by M. robertsii, which is irrelevant to Metarhizium colonization of roots since rhizosphere competency of both Mr23 and Mac324 are unaffected by the change of ACCD activity.
Collapse
Affiliation(s)
- Xinggang Liao
- Guizhou Tea Seed Resource Utilization Engineering Research Center, School of Biological Sciences, Guizhou Education University, Guiyang 550018, China; Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang 550018, China
| | - Qian Luo
- Guizhou Tea Seed Resource Utilization Engineering Research Center, School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Chao Wu
- Guizhou Tea Seed Resource Utilization Engineering Research Center, School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Dan Zhou
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang 550018, China
| | - Jianfeng Li
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang 550018, China
| | - Zebin Meng
- Guizhou Tea Seed Resource Utilization Engineering Research Center, School of Biological Sciences, Guizhou Education University, Guiyang 550018, China.
| |
Collapse
|
11
|
Jin T, Ren J, Li Y, Bai B, Liu R, Wang Y. Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express 2022; 12:101. [PMID: 35917000 PMCID: PMC9346032 DOI: 10.1186/s13568-022-01445-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Plant growth-promoting rhizobacteria are a type of beneficial bacteria which inhabit in the rhizosphere and possess the abilities to promote plant growth. Pseudomonas putida LWPZF is a plant growth-promoting bacterium isolated from the rhizosphere soil of Cercidiphyllum japonicum. Inoculation treatment with LWPZF could significantly promote the growth of C. japonicum seedlings. P. putida LWPZF has a variety of plant growth-promoting properties, including the ability to solubilize phosphate, synthesize ACC deaminase and IAA. The P. putida LWPZF genome contained a circular chromosome (6,259,530 bp) and a circular plasmid (160,969 bp) with G+C contents of 61.75% and 58.25%, respectively. There were 5632 and 169 predicted protein-coding sequences (CDSs) on the chromosome and the plasmid respectively. Genome sequence analysis revealed lots of genes associated with biosynthesis of IAA, pyoverdine, ACC deaminase, trehalose, volatiles acetoin and 2,3-butanediol, 4-hydroxybenzoate, as well as gluconic acid contributing phosphate solubilization. Additionally, we identified many heavy metal resistance genes, including arsenate, copper, chromate, cobalt-zinc-cadmium, and mercury. These results suggest that P. putida LWPZF shows strong potential in the fields of biofertilizer, biocontrol and heavy metal contamination soil remediation. The data presented in this study will allow us to better understand the mechanisms of plant growth promotion, biocontrol, and anti-heavy metal of P. putida LWPZF.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China.
| | - Yunling Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ruixiang Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ying Wang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| |
Collapse
|
12
|
Liu H, Chen GH, Sun JJ, Chen S, Fang Y, Ren JH. Isolation, Characterization, and Tea Growth-Promoting Analysis of JW-CZ2, a Bacterium With 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Activity Isolated From the Rhizosphere Soils of Tea Plants. Front Microbiol 2022; 13:792876. [PMID: 35295310 PMCID: PMC8918981 DOI: 10.3389/fmicb.2022.792876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
One of the major mechanisms underlying plant growth-promoting rhizobacteria (PGPR) is the lowering of ethylene level in plants by deamination of 1-aminocyclopropane-1-carboxylic acid (ACC) in the environment. In the present study, using ACC as the sole nitrogen source, we screened seven ACC deaminase-producing bacterial strains from rhizosphere soils of tea plants. The strain with the highest ACC deaminase activity was identified as Serratia marcescens strain JW-CZ2. Inoculation of this strain significantly increased shoot height and stem diameter of tea seedlings, displaying significant promotive effects. Besides, S. marcescens strain JW-CZ2 displayed high ACC deaminase activities in wide ranges of ACC concentration, pH, and temperature, suggesting the applicable potential of JW-CZ2 as a biofertilizer. Genome sequencing indicated that clusters of orthologous groups of proteins (COG) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of JW-CZ2 mainly included amino acid transport and metabolism, transcription, carbohydrate transport and metabolism, inorganic ion transport and metabolism, and membrane transport. Moreover, genes in relation to phosphate solubilization, indole acetic acid (IAA) production, and siderophore were observed in the genome of JW-CZ2, and further experimental evidence demonstrated JW-CZ2 could promote solubilization of inorganic phosphate, inhibit growth of pathogenic fungi, and produce IAA and siderophore. These aspects might be major reasons underlying the plant growth-promoting function of JW-CZ2. Overall, this study provides a new S. marcescens strain, which has applicable potential as a promising biofertilizer.
Collapse
Affiliation(s)
- Hui Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
- *Correspondence: Hui Liu,
| | - Guang-Hui Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
| | - Jing-Jing Sun
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
| | - Shu Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Wuhu, China
| | - Yong Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jia-Hong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
- Jia-Hong Ren,
| |
Collapse
|
13
|
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci 2022; 23:2329. [PMID: 35216444 PMCID: PMC8875981 DOI: 10.3390/ijms23042329] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network–New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| |
Collapse
|
14
|
Dautt-Castro M, Jijón-Moreno S, Gómez-Hernández N, del Carmen González-López M, Hernández-Hernández EJ, Rosendo-Vargas MM, Rebolledo-Prudencio OG, Casas-Flores S. New Insights on the Duality of Trichoderma as a Phytopathogen Killer and a Plant Protector Based on an Integrated Multi-omics Perspective. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Contreras-Cornejo HA, Macías-Rodríguez L, Larsen J. The Role of Secondary Metabolites in Rhizosphere Competence of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Chlebek D, Płociniczak T, Gobetti S, Kumor A, Hupert-Kocurek K, Pacwa-Płociniczak M. Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Pseudomonas qingdaonensis ZCR6 Strain and Assessment of Its Plant-Growth-Promoting Traits. Int J Mol Sci 2021; 23:ijms23010214. [PMID: 35008639 PMCID: PMC8745256 DOI: 10.3390/ijms23010214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Pseudomonas qingdaonensis ZCR6 strain, isolated from the rhizosphere of Zea mays growing in soil co-contaminated with hydrocarbons and heavy metals, was investigated for its plant growth promotion, hydrocarbon degradation, and heavy metal resistance. In vitro bioassays confirmed all of the abovementioned properties. ZCR6 was able to produce indole acetic acid (IAA), siderophores, and ammonia, solubilized Ca3(PO4)2, and showed surface active properties and activity of cellulase and very high activity of 1-aminocyclopropane-1-carboxylic acid deaminase (297 nmol α-ketobutyrate mg−1 h−1). The strain degraded petroleum hydrocarbons (76.52% of the initial hydrocarbon content was degraded) and was resistant to Cd, Zn, and Cu (minimal inhibitory concentrations reached 5, 15, and 10 mM metal, respectively). The genome of the ZCR6 strain consisted of 5,507,067 bp, and a total of 5055 genes were annotated, of which 4943 were protein-coding sequences. Annotation revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis and uptake, synthesis of IAA, ethylene modulation, heavy metal resistance, exopolysaccharide biosynthesis, and organic compound degradation. Complete characteristics of the ZCR6 strain showed its potential multiway properties for enhancing the phytoremediation of co-contaminated soils. To our knowledge, this is the first analysis of the biotechnological potential of the species P. qingdaonensis.
Collapse
|
17
|
Phomopsis liquidambaris reduces ethylene biosynthesis in rice under salt stress via inhibiting the activity of 1-aminocyclopropane-1-carboxylate deaminase. Arch Microbiol 2021; 203:6215-6229. [PMID: 34609529 DOI: 10.1007/s00203-021-02588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The endophytic fungus Phomopsis liquidambaris is characterized as a plant growth-promoting agent under salt stress, but its mechanism is unknown. Herein, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) from the strain was confirmed that it had the ability of utilizing 1-aminocyclopropane-1-carboxylate as the sole nitrogen source. The full-length ACCD gene was 1152 bp, which encodes a mature protein of 384 amino acids with a molecular mass of 41.53 kDa. The ACCD activity was 3.9-fold in 3 mmol L-1 ACC by qRT-PCR under salt stress comparing with no salt tress. Ethylene production was increased to 34.55-70.60% and reduced the growth of rice by 23-69.73% under salt stress. Inoculation of P. liquidambaris increased root-shoot length, fresh and dry weight, and overall growth of stressed rice seedlings. ACC accumulation, ACC synthase and ACC oxidase activities increased in salt-treated rice seedlings, while they were significantly reduced when P. liquidambaris was inoculated into rice by qRT-PCR. It therefore can be concluded that P. liquidambaris can be used as a plant growth promoting fungus against salt stress and other biotic or abiotic stresses.
Collapse
|
18
|
Variovorax beijingensis sp. nov., a novel plant-associated bacterial species with plant growth-promoting potential isolated from different geographic regions of Beijing, China. Syst Appl Microbiol 2020; 43:126135. [PMID: 32971439 DOI: 10.1016/j.syapm.2020.126135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
Two plant-associated bacterial strains were isolated from Beijing, China. The two strains possessed almost identical 16S rRNA gene sequences. However, REP-PCR fingerprint patterns discriminated that they were not from one clonal origin. The average nucleotide identity (ANI) value and the digital DNA-DNA hybridization (dDDH) value between the two strains were 99.4% and 94.7%, respectively, suggesting that they belonged to the same species. The 16S rRNA gene phylogeny analysis indicated that the two strains belonged to the genus Variovorax and were closely related to V. paradoxus NBRC 15149T and V. boronicumulans BAM-48T. Their phylogenetic relationship were confirmed in both phylogenetic trees constructed with house-keeping gene sequences and concatenated core genes of the genome. The ANI and dDDH comparisons among 502T and the most related type strains showed values below the accepted threshold for species discrimination. The genome sizes of strains 502T and T529 were 6.76 and 6.69 Mbp, respectively. The strain 502T had 6,227 predicted genes with DNA G+C content of 67.4 %. The respiratory quinone was ubiquinone-8 and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphospatidylglycerol. The major fatty acids of strain 502T were C10: 03-OH (26.2%), C16:0 (12.9%), C17:0 cyclo (14.5%) and summed feature 3 (21.4%). Furthermore, both strains showed the potential of plant growth promotion. Based on these results, the two isolates could be considered to represent a novel species of the genus Variovorax, for which the name Variovorax beijingensis sp. nov., is proposed, with 502T (= DSM 106862T = CGMCC 1.16560T) as the type strain.
Collapse
|
19
|
Khan MS, Gao J, Chen X, Zhang M, Yang F, Du Y, Moe TS, Munir I, Xue J, Zhang X. The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects. J Microbiol Biotechnol 2020; 30:668-680. [PMID: 32482932 PMCID: PMC9728359 DOI: 10.4014/jmb.1910.10021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Zeicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2- arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle- 9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse 05151, Myanmar
| | - Iqbal Munir
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| |
Collapse
|
20
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
21
|
Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8650957. [PMID: 32190683 PMCID: PMC7064867 DOI: 10.1155/2020/8650957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacterium that has immense potential to be used as an environmentally friendly replacement of chemical fertilizers and pesticides. In the present study, Paenibacillus polymyxa SK1 was isolated from bulbs of Lilium lancifolium. The isolated endophytic strain showed antifungal activities against important plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea, and Fusarium fujikuroi. The highest percentage of growth inhibition, i.e., 66.67 ± 2.23%, was observed for SK1 against Botryosphaeria dothidea followed by 61.19 ± 3.12%, 60.71 ± 3.53%, and 55.54 ± 2.89% against Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum, respectively. The metabolite profiling of ethyl acetate fraction was assessed through the UHPLC-LTQ-IT-MS/MS analysis, and putative identification was done with the aid of the GNPS molecular networking workflow. A total of 29 compounds were putatively identified which included dipeptides, tripeptides, cyclopeptides (cyclo-(Leu-Leu), cyclo(Pro-Phe)), 2-heptyl-3-hydroxy 4-quinolone, 6-oxocativic acid, anhydrobrazilic acid, 1-(5-methoxy-1H-indol-3-yl)-2-piperidin-1-ylethane-1,2-dione, octadecenoic acid, pyochelin, 15-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid, (Z)-7-[(2R,3S)-3-[(2Z,5E)-Undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid, arginylasparagine, cholic acid, sphinganine, elaidic acid, gossypin, L-carnosine, tetrodotoxin, and ursodiol. The high antifungal activity of SK1 might be attributed to the presence of these bioactive compounds. The isolated strain SK1 showed plant growth-promoting traits such as the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, nitrogen fixation, and phosphate solubilization. IAA production was strongly correlated with the application of exogenous tryptophan concentrations in the medium. Furthermore, inoculation of SK1 enhanced plant growth of two Lilium varieties, Tresor and White Heaven, under greenhouse condition. In the light of these findings, the P. polymyxa SK1 may be utilized as a source of plant growth promotion and disease control in sustainable agriculture.
Collapse
|
22
|
Svoboda T, Parich A, Güldener U, Schöfbeck D, Twaruschek K, Václavíková M, Hellinger R, Wiesenberger G, Schuhmacher R, Adam G. Biochemical Characterization of the Fusarium graminearum Candidate ACC-Deaminases and Virulence Testing of Knockout Mutant Strains. FRONTIERS IN PLANT SCIENCE 2019; 10:1072. [PMID: 31552072 PMCID: PMC6746940 DOI: 10.3389/fpls.2019.01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Fusarium graminearum is a plant pathogenic fungus which is able to infect wheat and other economically important cereal crop species. The role of ethylene in the interaction with host plants is unclear and controversial. We have analyzed the inventory of genes with a putative function in ethylene production or degradation of the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC). F. graminearum, in contrast to other species, does not contain a candidate gene encoding ethylene-forming enzyme. Three genes with similarity to ACC synthases exist; heterologous expression of these did not reveal enzymatic activity. The F. graminearum genome contains in addition two ACC deaminase candidate genes. We have expressed both genes in E. coli and characterized the enzymatic properties of the affinity-purified products. One of the proteins had indeed ACC deaminase activity, with kinetic properties similar to ethylene-stress reducing enzymes of plant growth promoting bacteria. The other candidate was inactive with ACC but turned out to be a d-cysteine desulfhydrase. Since it had been reported that ethylene insensitivity in transgenic wheat increased Fusarium resistance and reduced the content of the mycotoxin deoxynivalenol (DON) in infected wheat, we generated single and double knockout mutants of both genes in the F. graminearum strain PH-1. No statistically significant effect of the gene disruptions on fungal spread or mycotoxin content was detected, indicating that the ability of the fungus to manipulate the production of the gaseous plant hormones ethylene and H2S is dispensable for full virulence.
Collapse
Affiliation(s)
- Thomas Svoboda
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Alexandra Parich
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Ulrich Güldener
- Department of Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Denise Schöfbeck
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Krisztian Twaruschek
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marta Václavíková
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Roland Hellinger
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
23
|
Kumar A, Patel JS, Meena VS, Srivastava R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101271] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
The nematicide Serratia plymuthica M24T3 colonizes Arabidopsis thaliana, stimulates plant growth, and presents plant beneficial potential. Braz J Microbiol 2019; 50:777-789. [PMID: 31177380 DOI: 10.1007/s42770-019-00098-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/27/2019] [Indexed: 01/28/2023] Open
Abstract
Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate μg protein-1 μl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.
Collapse
|
25
|
Saravanakumar K, MubarakAli D, Kathiresan K, Wang MH. An evidence of fungal derived 1-aminocyclopropane-1-carboxylate deaminase promoting the growth of mangroves. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Abolhassani Rad S, Clayton EJ, Cornelius EJ, Howes TR, Kohalmi SE. Moonlighting proteins: putting the spotlight on enzymes. PLANT SIGNALING & BEHAVIOR 2018; 13:e1517075. [PMID: 30252596 PMCID: PMC6204816 DOI: 10.1080/15592324.2018.1517075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
AROGENATE DEHAYDRATASE2 (ADT2) is a member of the Arabidopsis thaliana ADT family. All members of this family act as arogenate dehydratases in phenylalanine biosynthesis, decarboxylating/dehydrating arogenate to phenylalanine. ADT2 is detected in stromules, and as a ring around the equatorial plane of dividing chloroplasts, indicating it has a second, non-enzymatic function in chloroplast division. Here, we provide further evidence for this alternative role of ADT2. First, we demonstrate that ADT2 and FtsZ co-localize around the equatorial plane at the same time. Second, FtsZ expression in an adt2 mutant was analyzed, as well as ADT2 expression in three Arabidopsis chloroplast division mutants, ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3), ARC5 and ARC6. In arc3 and arc6 mutants, ADT2 is misexpressed and resembles the expression of FtsZ in the same mutants. However, in the arc5 mutant, ADT2 ring positioning is observed at constriction points indicating proper relative timing. ADT2 expression in the arc mutants shows that the role of ADT2 in chloroplast division occurs prior to ARC5, but is dependent on ARC3 and ARC6. Abbreviations used: ADT: arogenate dehydratase, ARC: accumulation and replication of chloroplasts, CFP: cyan fluorescent protein, dpi: days post infiltration, FtsZ: filamentous temperature sensitive Z, PD: plastid division, Phe: phenylalanine, YFP: yellow fluorescent protein.
Collapse
|
27
|
Bouffaud ML, Renoud S, Dubost A, Moënne-Loccoz Y, Muller D. 1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. MICROBIOME 2018; 6:114. [PMID: 29925415 PMCID: PMC6011333 DOI: 10.1186/s40168-018-0503-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/14/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Complex plant-microbe interactions have been established throughout evolutionary time, many of them with beneficial effects on the host in terms of plant growth, nutrition, or health. Some of the corresponding modes of action involve a modulation of plant hormonal balance, such as the deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Despite its ecological importance, our understanding of ACC deamination is impaired by a lack of direct molecular tools. Here, we developed PCR primers to quantify the ACC deaminase gene acdS and its mRNA in soil communities and assessed acdS+ microorganisms colonizing maize and other Poaceae species. RESULTS Effective acdS primers suitable for soil microbial communities were obtained, enabling recovery of bona fida acdS genes and transcripts of diverse genetic backgrounds. High numbers of acdS genes and transcripts were evidenced in the rhizosphere of Poaceae, and numbers fluctuated according to plant genotype. Illumina sequencing revealed taxonomic specificities of acdS+ microorganisms according to plant host. The phylogenetic distance between Poaceae genotypes correlated with acdS transcript numbers, but not with acdS gene numbers or the genetic distance between acdS functional groups. CONCLUSION The development of acdS primers enabled the first direct analysis of ACC deaminase functional group in soil and showed that plant ability to interact with soil-inhabiting acdS+ microorganisms could also involve particular plant traits unrelated to the evolutionary history of Poaceae species.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
- Helmholtz Center for Environmental Research UFZ, Theodor-Lieser-Straβe 4, 06120, Halle, Germany
| | - Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622, Villeurbanne, France.
| |
Collapse
|
28
|
Win KT, Tanaka F, Okazaki K, Ohwaki Y. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:599-607. [PMID: 29730579 DOI: 10.1016/j.plaphy.2018.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Plant growth promoting bacteria (PGPB) endophytes that express 1-aminocyclopropane-1-carboxylate (ACC) deaminase reportedly confer plant tolerance to abiotic stresses such as salinity by lowering stress-related ethylene levels. Two preselected ACC deaminase expressing endophytic Pseudomonas spp. strains, OFT2 and OFT5, were compared in terms of their potential to promote plant growth, leaf water contents, photosynthetic performance, and ionic balance of tomato plants under conditions of moderate NaCl stress (75 mM). Salinity stress strongly affected growth, leaf water contents, and photosynthetic performance of tomato seedlings, and inoculation with either OFT2 or OFT5 ameliorated these adverse effects. Decreases in plant biomass due to salinity stress were significant in both uninoculated control plants and in plants inoculated with OFT2 compared with plants without NaCl stress. However, no reductions in total biomass were observed in plants that were inoculated with the OFT5 strain. Strain OFT5 influenced growth, physiological status, and ionic balance of tomato plants more efficiently than strain OFT2 under NaCl stress. In particular, inoculated OFT5 reduced salt-induced ethylene production by tomato seedlings, and although it did not reduce shoot uptake of Na, it promoted shoot uptake of other macronutrients (P, K, and Mg) and micronutrients (Mn, Fe, Cu, and Zn). These nutrients may activate processes that alleviate the effects of salt, suggesting that OFT5 can be used to improve nutrient uptake and plant growth under moderate salt-affected conditions by reducing stress-related ethylene levels.
Collapse
Affiliation(s)
- Khin Thuzar Win
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan
| | - Fukuyo Tanaka
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan
| | - Keiki Okazaki
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan
| | - Yoshinari Ohwaki
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Kanondai 2-1-18, Ibaraki 305-8666, Japan.
| |
Collapse
|
29
|
Ekimova GA, Fedorov DN, Tani A, Doronina NV, Trotsenko YA. Distribution of 1-aminocyclopropane-1-carboxylate deaminase and d-cysteine desulfhydrase genes among type species of the genus Methylobacterium. Antonie van Leeuwenhoek 2018. [DOI: 10.1007/s10482-018-1061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Partovi SE, Mus F, Gutknecht AE, Martinez HA, Tripet BP, Lange BM, DuBois JL, Peters JW. Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily. J Biol Chem 2018; 293:5236-5246. [PMID: 29414784 DOI: 10.1074/jbc.ra117.001234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
For nearly 30 years, coenzyme M (CoM) was assumed to be present solely in methanogenic archaea. In the late 1990s, CoM was reported to play a role in bacterial propene metabolism, but no biosynthetic pathway for CoM has yet been identified in bacteria. Here, using bioinformatics and proteomic approaches in the metabolically versatile bacterium Xanthobacter autotrophicus Py2, we identified four putative CoM biosynthetic enzymes encoded by the xcbB1, C1, D1, and E1 genes. Only XcbB1 was homologous to a known CoM biosynthetic enzyme (ComA), indicating that CoM biosynthesis in bacteria involves enzymes different from those in archaea. We verified that the ComA homolog produces phosphosulfolactate from phosphoenolpyruvate (PEP), demonstrating that bacterial CoM biosynthesis is initiated similarly as the phosphoenolpyruvate-dependent methanogenic archaeal pathway. The bioinformatics analysis revealed that XcbC1 and D1 are members of the aspartase/fumarase superfamily (AFS) and that XcbE1 is a pyridoxal 5'-phosphate-containing enzyme with homology to d-cysteine desulfhydrases. Known AFS members catalyze β-elimination reactions of succinyl-containing substrates, yielding fumarate as the common unsaturated elimination product. Unexpectedly, we found that XcbC1 catalyzes β-elimination on phosphosulfolactate, yielding inorganic phosphate and a novel metabolite, sulfoacrylic acid. Phosphate-releasing β-elimination reactions are unprecedented among the AFS, indicating that XcbC1 is an unusual phosphatase. Direct demonstration of phosphosulfolactate synthase activity for XcbB1 and phosphate β-elimination activity for XcbC1 strengthened their hypothetical assignment to a CoM biosynthetic pathway and suggested functions also for XcbD1 and E1. Our results represent a critical first step toward elucidating the CoM pathway in bacteria.
Collapse
Affiliation(s)
- Sarah E Partovi
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | | - Andrew E Gutknecht
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Hunter A Martinez
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Brian P Tripet
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Bernd Markus Lange
- the Institute of Biological Chemistry and.,M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | |
Collapse
|
31
|
Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. Ecological functions ofTrichodermaspp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 2016; 92:fiw036. [DOI: 10.1093/femsec/fiw036] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
|
32
|
Li Z, Chang S, Ye S, Chen M, Lin L, Li Y, Li S, An Q. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase. FEMS Microbiol Ecol 2015; 91:fiv112. [PMID: 26362924 DOI: 10.1093/femsec/fiv112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Siping Chang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ye
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mingyue Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Li Lin
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yuanyuan Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuying Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianli An
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins. mBio 2015; 6:mBio.00039-15. [PMID: 25805725 PMCID: PMC4453540 DOI: 10.1128/mbio.00039-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont’s activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture.
Collapse
|
34
|
Gao JL, Yuan M, Wang XM, Qiu TL, Li JW, Liu HC, Li XA, Chen J, Sun JG. Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. Antonie van Leeuwenhoek 2014; 107:65-72. [PMID: 25504533 DOI: 10.1007/s10482-014-0304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
A 1-aminocyclopropane-1-carboxylate deaminase producing bacterium, designated GXGD002(T), was isolated from the rhizosphere of banana plants cultivated in Guangxi province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GXGD002(T) is a member of the genus Variovorax. High levels of 16S rRNA gene sequence similarity are found between strain GXGD002(T) and Variovorax paradoxus DSM 30034(T) (99.4 %), Variovorax ginsengisoli KCTC 12583(T) (99.1 %), Variovorax boronicumulans KCTC 22010(T) (99.0 %), Variovorax soli DSM18216(T) (98.7 %), Variovorax defluvii DSM 27259(T) (98.1 %) and Variovorax dokdonensis KCTC 12544(T) (97.4 %) respectively. However, the DNA-DNA hybridization values between strain GXGD002(T) and its closely related species V. paradoxus DSM 30034(T), V. ginsengisoli KCTC 12583(T) and V. boronicumulans KCTC 22010(T) were found to be 40.7, 30.9 and 23.7 %, respectively. The DNA G + C content of strain GXGD002(T) was found to be 67.8 mol%. The major fatty acids of strain GXGD002(T) are C16:0 (20.3 %), C10:0 3OH (18.4 %), C17:0 cyclo (18.9 %), C18:1w7c (12.3 %) and summed feature 3 (13.9 %). The predominant respiratory quinone was identified as ubiquinone-8 (Q-8) and the major polar lipids as phosphatidylethanolamine and phosphatidylglycerol. The results of polyphasic taxonomic study including physiological and biochemical tests, whole-cell SDS-PAGE profiles and chemotaxonomic analysis allowed a clear differentiation of strain GXGD002(T) from the other species in the genus Variovorax. Based on these results, a new species, Variovorax guangxiensis, is proposed. The type strain is GXGD002(T) (=DSM 27352(T) = ACCC 05911(T)).
Collapse
Affiliation(s)
- Jun-lian Gao
- Beijing Agro- Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Science/Beijing Municipal Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 2014; 9:e99168. [PMID: 24905353 PMCID: PMC4048297 DOI: 10.1371/journal.pone.0099168] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications.
Collapse
|
36
|
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2013; 169:30-9. [PMID: 24095256 DOI: 10.1016/j.micres.2013.09.009] [Citation(s) in RCA: 816] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/09/2013] [Accepted: 09/14/2013] [Indexed: 01/25/2023]
Abstract
To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
37
|
Yim W, Seshadri S, Kim K, Lee G, Sa T. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:95-104. [PMID: 23558008 DOI: 10.1016/j.plaphy.2013.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 05/22/2023]
Abstract
Bacteria of genus Methylobacterium have been found to promote plant growth and regulate the level of ethylene in crop plants. This work is aimed to test the induction of defense responses in tomato against bacterial wilt by stress ethylene level reduction mediated by the ACC deaminase activity of Methylobacterium strains. Under greenhouse conditions, the disease index value in Methylobacterium sp. inoculated tomato plants was lower than control plants. Plants treated with Methylobacterium sp. challenge inoculated with Ralstonia solanacearum (RS) showed significantly reduced disease symptoms and lowered ethylene emission under greenhouse condition. The ACC and ACO (1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves were significantly reduced with Methylobacterium strains inoculation. While ACC oxidase gene expression was found higher in plants treated with R. solanacearum than Methylobacterium sp. treatment, PR proteins related to induced systemic resistance like β-1,3-glucanase, PAL, PO and PPO were increased in Methylobacterium sp. inoculated plants. A significant increase in β-1,3-glucanase and PAL gene expression was found in all the Methylobacterium spp. treatments compared to the R. solanacearum treatment. This study confirms the activity of Methylobacterium sp. in increasing the defense enzymes by modulating the ethylene biosynthesis pathway and suggests the use of methylotrophic bacteria as potential biocontrol agents in tomato cultivation.
Collapse
Affiliation(s)
- Woojong Yim
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | - Sundaram Seshadri
- Shri AMM Murugappa Chettiar Research Centre (MCRC), Taramani, Chennai 600113, India
| | - Kiyoon Kim
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | - Gillseung Lee
- National Research Foundational of Korea, Daejeon 305-754, South Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea.
| |
Collapse
|
38
|
Fedorov DN, Ekimova GA, Doronina NV, Trotsenko YA. 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC. FEMS Microbiol Lett 2013; 343:70-6. [PMID: 23517598 DOI: 10.1111/1574-6968.12133] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022] Open
Abstract
The 1-aminocyclopropane-1-carboxylate (ACC) deaminases (EC 3.4.99.7), the key enzymes of degradation of the precursor of the phytohormone ethylene, have not been well studied despite their great importance for plant-bacterial interactions. Using blast, the open reading frames encoding ACC deaminases were found in the genomes of epiphytic methylotroph Methylobacterium radiotolerans JCM2831 and nodule-forming endosymbiont Methylobacterium nodulans ORS2060. These genes were named acdS and cloned; recombinant proteins were expressed and purified from Escherichia coli. The enzyme from M. nodulans displayed the highest substrate specificity among all of the characterized ACC deaminases (Km 0.80 ± 0.04 mM), whereas the enzyme from M. radiotolerans had Km 1.8 ± 0.3 mM. The kcat values were 111.8 ± 0.2 and 65.8 ± 2.8 min(-1) for the enzymes of M. nodulans and M. radiotolerans, respectively. Both enzymes are homotetramers with a molecular mass of 144 kDa, as was demonstrated by size exclusion chromatography and native PAGE. The purified enzymes displayed the maximum activity at 45-50 °C and pH 8.0. Thus, the priority data have been obtained, extending the knowledge of biochemical properties of bacterial ACC deaminases.
Collapse
Affiliation(s)
- Dmitry N Fedorov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow region, Russia
| | | | | | | |
Collapse
|
39
|
Xie Y, Lai D, Mao Y, Zhang W, Shen W, Guan R. Molecular Cloning, Characterization, and Expression Analysis of a Novel Gene Encoding l-Cysteine Desulfhydrase from Brassica napus. Mol Biotechnol 2012. [DOI: 10.1007/s12033-012-9621-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Bharath SR, Bisht S, Harijan RK, Savithri HS, Murthy MRN. Structural and mutational studies on substrate specificity and catalysis of Salmonella typhimurium D-cysteine desulfhydrase. PLoS One 2012; 7:e36267. [PMID: 22574144 PMCID: PMC3344862 DOI: 10.1371/journal.pone.0036267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022] Open
Abstract
Salmonella typhimurium DCyD (StDCyD) is a fold type II pyridoxal 5′ phosphate (PLP)-dependent enzyme that catalyzes the degradation of D-Cys to H2S and pyruvate. It also efficiently degrades β-chloro-D-alanine (βCDA). D-Ser is a poor substrate while the enzyme is inactive with respect to L-Ser and 1-amino-1-carboxy cyclopropane (ACC). Here, we report the X-ray crystal structures of StDCyD and of crystals obtained in the presence of D-Cys, βCDA, ACC, D-Ser, L-Ser, D-cycloserine (DCS) and L-cycloserine (LCS) at resolutions ranging from 1.7 to 2.6 Å. The polypeptide fold of StDCyD consisting of a small domain (residues 48–161) and a large domain (residues 1–47 and 162–328) resembles other fold type II PLP dependent enzymes. The structures obtained in the presence of D-Cys and βCDA show the product, pyruvate, bound at a site 4.0–6.0 Å away from the active site. ACC forms an external aldimine complex while D- and L-Ser bind non-covalently suggesting that the reaction with these ligands is arrested at Cα proton abstraction and transimination steps, respectively. In the active site of StDCyD cocrystallized with DCS or LCS, electron density for a pyridoxamine phosphate (PMP) was observed. Crystals soaked in cocktail containing these ligands show density for PLP-cycloserine. Spectroscopic observations also suggest formation of PMP by the hydrolysis of cycloserines. Mutational studies suggest that Ser78 and Gln77 are key determinants of enzyme specificity and the phenolate of Tyr287 is responsible for Cα proton abstraction from D-Cys. Based on these studies, a probable mechanism for the degradation of D-Cys by StDCyD is proposed.
Collapse
Affiliation(s)
| | - Shveta Bisht
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rajesh K. Harijan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Mathur R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
41
|
Nikolic B, Schwab H, Sessitsch A. Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 2011; 193:665-76. [PMID: 21523387 DOI: 10.1007/s00203-011-0703-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/16/2011] [Accepted: 03/29/2011] [Indexed: 01/08/2023]
Abstract
Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in many plant growth-promoting bacteria. In this study, we analysed ACC deaminase genes (acdS) of bacterial endophytes colonizing field-grown potato plants. PCR analysis revealed the presence of two types of acdS genes, the dominant one showing high homology to an acdS gene derived from Pseudomonas fluorescens. Construction, functional screening and sequence analysis of metagenomic libraries revealed clones containing the acdS gene identified in the PCR library. Sequence analysis of one metagenomic clone identified the entire acdS operon of an uncultivated endophyte and revealed that the acdS gene is coupled upstream with an acdR transcriptional regulator gene as previously found in P. putida strain UW4 (Grichko and Glick 2000). However, in-silico analysis of 195 fully sequenced, acdS-containing bacterial genomes revealed that the majority of strains, including numerous strains belonging to the genus Pseudomonas, do not contain an acdR regulatory gene in the vicinity of the acdS gene or elsewhere in the genome. The acdR (+)-acdS (+) operon was exclusively found in several Alpha- and Betaproteobacteria most prominently in the genus Burkholderia.
Collapse
|
42
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
43
|
Friedman M. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids. Chem Biodivers 2010; 7:1491-530. [DOI: 10.1002/cbdv.200900225] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Viterbo A, Landau U, Kim S, Chernin L, Chet I. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 2010; 305:42-8. [DOI: 10.1111/j.1574-6968.2010.01910.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
M J, McDonnell L, Regan S. Plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase activity implicated in different aspects of plant development. PLANT SIGNALING & BEHAVIOR 2009; 4:1186-9. [PMID: 20514243 PMCID: PMC2819453 DOI: 10.4161/psb.4.12.10060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 05/08/2023]
Abstract
Proper plant development is dependent on the coordination and tight control of a wide variety of different signals. In the study of the plant hormone ethylene, control of the immediate biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is of interest as the level of ethylene can either help or hinder plant growth during times of stress. It is known that ACC can be reversibly removed from the biosynthesis pathway through conjugation into other compounds. We recently reported that plants can also irreversibly remove ACC from ethylene production through the activity of a plant encoded ACC deaminase. Heretofore only found in bacteria, we showed that there was ACC deaminase activity in both Arabidopsis and in developing wood of poplar. Here we extend this original work and show that there is also ACC deaminase activity in tomato plants, and that this activity is regulated during tomato fruit development. Further, using an antisense construct of AtACD1 in Arabidopsis, we investigate the role of ACC deamination during salt stress. Together these studies shed light on a new level of control during ethylene production in a wide variety of plant species and during different plant developmental stages.
Collapse
Affiliation(s)
- Jonathan M
- Department of Biology; Queen’s University, Kingston, ON Canada
| | - Lisa McDonnell
- Biology Department; Carleton University, Ottawa, ON Canada
| | - Sharon Regan
- Department of Biology; Queen’s University, Kingston, ON Canada
| |
Collapse
|