1
|
Pandey A, Singh G, Pandey S, Singh VK, Prasad SM. 24-Epibrassinolide effectively alleviates UV-B stress-induced damage in the cyanobacterium Anabaena sp. PCC 7120 by employing nitric oxide: Improved PS II photochemistry, antioxidant system, and growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109667. [PMID: 39987622 DOI: 10.1016/j.plaphy.2025.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
The alleviation of UV-B stress-induced damage by 24-epibrassinolide (EBL) in the cyanobacterium Anabaena sp. PCC 7120 and the role of nitric oxide (NO) signaling were investigated in this study. UV-B exposure caused a significant (P < 0.05) decline by 31% in the growth of test organism by negatively impacting photosynthetic pigments, whole cell O2 evolution, and PS II photochemistry [decrease in the values of Fv/F0, PIABS, and quantum efficiencies (Phi_Po, Phi_Eo, and Psi_0) and increase in specific energy fluxes (ABS, TR0, DI0, and ET0) per active RCs]. Stress enhanced the levels of oxidative stress biomarkers (superoxide radicals, hydrogen peroxide, and malondialdehyde equivalents contents), as evidenced by in-vivo and in-vitro analyses, and increased respiratory O2 consumption. The supplementation of EBL (0.5 nM) alone, NO (sodium nitroprusside as NO donor; 10 μM), and EBL + NO significantly (P < 0.05) alleviated the decline in growth with a reduction remaining 19%, 14%, and 8%, respectively, under UV-B stress. The exogenous supplementation of EBL and NO boosted the enzymatic antioxidant system (superoxide dismutase, peroxidase, catalase, and glutathione-S-transferase activity). However, the addition of NO scavenger (PTIO; 20 μM)] and its biosynthetic inhibitor (L-NAME; 100 μM) reversed the effect, thereby suggesting that EBL alleviates UV-B toxicity by involving NO in the N2-fixing cyanobacterium Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Aparna Pandey
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Garima Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Sakshi Pandey
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Varunendra Kumar Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
2
|
Mishra R, Kaur P, Soni R, Madan A, Agarwal P, Singh G. Decoding the photoprotection strategies and manipulating cyanobacterial photoprotective metabolites, mycosporine-like amino acids, for next-generation sunscreens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108744. [PMID: 38781638 DOI: 10.1016/j.plaphy.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The most recent evaluation of the impacts of UV-B radiation and depletion of stratospheric ozone points out the need for effective photoprotection strategies for both biological and nonbiological components. To mitigate the disruptive consequences of artificial sunscreens, photoprotective compounds synthesized from gram-negative, oxygenic, and photoautotrophic prokaryote, cyanobacteria have been studied. In a quest to counteract the harmful UV radiation, cyanobacterial species biosynthesize photoprotective metabolites named as mycosporine-like amino acids (MAAs). The investigation of MAAs as potential substitutes for commercial sunscreen compounds is motivated by their inherent characteristics, such as antioxidative properties, water solubility, low molecular weight, and high molar extinction coefficients. These attributes contribute to the stability of MAAs and make them promising candidates for natural alternatives in sunscreen formulations. They are effective at reducing direct damage caused by UV radiation and do not lead to the production of reactive oxygen radicals. In order to better understand the role, ecology, and its application at a commercial scale, tools like genome mining, heterologous expression, and synthetic biology have been explored in this review to develop next-generation sunscreens. Utilizing tactical concepts of bio-nanoconjugate formation for the development of an efficient MAA-nanoparticle conjugate structure would not only give the sunscreen complex stability but would also serve as a promising tool for the production of analogues. This review would provide insight on efforts to produce MAAs by diversifying the biosynthetic pathways, modulating the precursors and stress conditions, and comprehending the gene cluster arrangement for MAA biosynthesis and its application in developing effective sunscreen.
Collapse
Affiliation(s)
- Reema Mishra
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Pritam Kaur
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Renu Soni
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Akanksha Madan
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Preeti Agarwal
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Garvita Singh
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| |
Collapse
|
3
|
Eungrasamee K, Lindblad P, Jantaro S. Improved lipid production and component of mycosporine-like amino acids by co-overexpression of amt1 and aroB genes in Synechocystis sp. PCC6803. Sci Rep 2023; 13:19439. [PMID: 37945676 PMCID: PMC10636201 DOI: 10.1038/s41598-023-46290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Implementing homologous overexpression of the amt1 (A) and aroB (B) genes involved in ammonium transporter and the synthesis of mycosporine-like amino acids (MAAs) and aromatic amino acids, respectively, we created three engineered Synechocystis sp. PCC6803 strains, including Ox-A, Ox-B, and Ox-AB, to study the utilization of carbon and nitrogen in cyanobacteria for the production of valuable products. With respect to amt1 overexpression, the Ox-A and Ox-AB strains had a greater growth rate under (NH4)2SO4 supplemented condition. Both the higher level of intracellular accumulation of lipids in Ox-A and Ox-AB as well as the increased secretion of free fatty acids from the Ox-A strain were impacted by the late-log phase of cell growth. It is noteworthy that among all strains, the Ox-B strain undoubtedly spotted a substantial accumulation of glycogen as a consequence of aroB overexpression. Additionally, the ammonium condition drove the potent antioxidant activity in Ox strains with a late-log phase, particularly in the Ox-B and Ox-AB strains. This was probably related to the altered MAA component inside the cells. The higher proportion of P4-fraction was induced by the ammonium condition in both Ox-B and Ox-AB, while the noted increase of the P1 component was found in the Ox-A strain.
Collapse
Affiliation(s)
- Kamonchanock Eungrasamee
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Mandhata CP, Bishoyi AK, Sahoo CR, Maharana S, Padhy RN. Insight to biotechnological utility of phycochemicals from cyanobacterium Anabaena sp.: An overview. Fitoterapia 2023; 169:105594. [PMID: 37343687 DOI: 10.1016/j.fitote.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Cyanobacteria (blue-green algae) are well-known for the ability to excrete extra-cellular products, as a variety of cyanochemicals (phycocompounds) of curio with several extensive therapeutic applications. Among these phycocompound, the cyanotoxins from certain water-bloom forming taxa are toxic to biota, including crocodiles. Failure of current non-renewable source compounds in producing sustainable and non-toxic therapeutics led the urgency of discovering products from natural sources. Particularly, compounds of the filamentous N2-fixing Anabaena sp. have effective antibacterial, antifungal, antioxidant, and anticancer properties. Today, such newer compounds are the potential targets for the possible novel chemical scaffolds, suitable for mainstream-drug development cascades. Bioactive compounds of Anabaena sp. such as, anatoxins, hassallidins and phycobiliproteins have proven their inherent antibacterial, antifungal, and antineoplastic activities, respectively. Herein, the available details of the biomass production and the inherent phyco-constituents namely, alkaloids, lipids, phenols, peptides, proteins, polysaccharides, terpenoids and cyanotoxins are considered, along with geographical distributions and morphological characteristics of the cyanobacterium. The acquisitions of cyanochemicals in recent years have newly addressed several pharmaceutical aliments, and the understanding of the associated molecular interactions of phycochemicals have been considered, for plausible use in drug developments in future.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | | | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
5
|
Rastogi RP, Shree A, Patel HM, Chaudhry S, Madamwar D. Characterization, UV-induction, antioxidant function and role in photo-protection of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium, Euhalothece sp.WR7. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
6
|
Zhang H, Jiang Y, Zhou C, Chen Y, Yu G, Zheng L, Guan H, Li R. Occurrence of Mycosporine-like Amino Acids (MAAs) from the Bloom-Forming Cyanobacteria Aphanizomenon Strains. Molecules 2022; 27:1734. [PMID: 35268833 PMCID: PMC8911825 DOI: 10.3390/molecules27051734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are widespread in various microbes and protect them against harsh environments. Here, four different Aphanizomenon species were isolated from severely eutrophic waterbodies, Lake Dianchi and the Guanqiao fishpond. Morphological characters and molecular phylogenetic analysis verified that the CHAB5919, 5921, and 5926 strains belonged to the Aphanizomenon flos-aquae clade while Guanqiao01 belonged to the Aphanizomenon gracile clade. Full wavelength scanning proved that there was obvious maximal absorption at 334 nm through purified methanol extraction, and these substances were further analyzed by HPLC and UPLC-MS-MS. The results showed that two kinds of MAAs were discovered in the cultured Aphanizomenon strains. One molecular weight was 333.28 and the other was 347.25, and the daughter fragment patterns were in accordance with the previously articles reported shinorine and porphyra-334 ion characters. The concentration of the MAAs was calibrated from semi-prepared MAAs standards from dry cells of Microcystis aeruginosa PCC7806 algal powder, and the purity of shinorine and porphyra-334 were 90.2% and 85.4%, respectively. The average concentrations of shinorine and porphyra-334 were 0.307−0.385 µg/mg and 0.111−0.136 µg/mg in Aphanizomenon flos-aquae species, respectively. And there was only one kind of MAAs (shinorine) in Aphanizomenon gracile species.,with a content of 0.003−0.049 µg/mg dry weight among all Aphanizomenon gracile strains. The shinorine concentration in Aphanizomenon flos-aquae was higher than that in Aphanizomenon gracile strains. The total MAAs production can be ranked as Aphanizomenon flos-aquae > Aphanizomenon gracile.
Collapse
Affiliation(s)
- Hang Zhang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Information Center, Wuhan 430070, China;
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
| | - Chi Zhou
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, China;
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (G.Y.)
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (G.Y.)
| | | | - Honglin Guan
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Information Center, Wuhan 430070, China;
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
7
|
Celis-Plá PS, Rearte TA, Neori A, Masojídek J, Bonomi-Barufi J, Álvarez-Gómez F, Ranglová K, Carmo da Silva J, Abdala R, Gómez C, Caporgno M, Torzillo G, Silva Benavides AM, Ralph PJ, Fávero Massocato T, Atzmüller R, Vega J, Chávez P, Figueroa FL. A new approach for cultivating the cyanobacterium Nostoc calcicola (MACC-612) to produce biomass and bioactive compounds using a thin-layer raceway pond. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2. Life (Basel) 2021; 11:life11040356. [PMID: 33919559 PMCID: PMC8073705 DOI: 10.3390/life11040356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are known as rich repositories of natural products. One cyanobacterial-microbial consortium (isolate HT-58-2) is known to produce two fundamentally new classes of natural products: the tetrapyrrole pigments tolyporphins A–R, and the diterpenoid compounds tolypodiol, 6-deoxytolypodiol, and 11-hydroxytolypodiol. The genome (7.85 Mbp) of the Nostocales cyanobacterium HT-58-2 was annotated previously for tetrapyrrole biosynthesis genes, which led to the identification of a putative biosynthetic gene cluster (BGC) for tolyporphins. Here, bioinformatics tools have been employed to annotate the genome more broadly in an effort to identify pathways for the biosynthesis of tolypodiols as well as other natural products. A putative BGC (15 genes) for tolypodiols has been identified. Four BGCs have been identified for the biosynthesis of other natural products. Two BGCs related to nitrogen fixation may be relevant, given the association of nitrogen stress with production of tolyporphins. The results point to the rich biosynthetic capacity of the HT-58-2 cyanobacterium beyond the production of tolyporphins and tolypodiols.
Collapse
|
9
|
Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141576. [PMID: 33370909 DOI: 10.1016/j.scitotenv.2020.141576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet radiation (UVR) has detrimental effects on human health. It induces oxidative stress, deregulates signaling mechanisms, and produces DNA mutations, factors that ultimately can lead to the development of skin cancer. Therefore, reducing exposure to UVR is of major importance. Among available measures to diminish exposure is the use of sunscreens. However, recent studies indicate that several of the currently used filters have adverse effects on marine ecosystems and human health. This situation leads to the search for new photoprotective compounds that, apart from offering protection, are environmentally friendly. The answer may lie in the same marine ecosystems since molecules such as mycosporine-like amino acids (MAAs) and scytonemin can serve as the defense system of some marine organisms against UVR. This review will discuss the harmful effects of UVR and the mechanisms that microalgae have developed to cope with it. Then it will focus on the biological distribution, characteristics, extraction, and purification methods of MAAs and scytonemin molecules to finally assess its potential as new filters for sunscreen formulation.
Collapse
Affiliation(s)
- Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Veronica Rodriguez-Martinez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico.
| |
Collapse
|
10
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Fuentes-Tristan S, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 201:111684. [PMID: 31733505 DOI: 10.1016/j.jphotobiol.2019.111684] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
Since the beginning of life on Earth, cyanobacteria have been exposed to natural ultraviolet-A radiation (UV-A, 315-400 nm) and ultraviolet-B radiation (UV-B, 280-315 nm), affecting their cells' biomolecules. These photoautotrophic organisms have needed to evolve to survive and thus, have developed different mechanisms against ultraviolet radiation. These mechanisms include UVR avoidance, DNA repair, and cell protection by producing photoprotective compounds like Scytonemin, carotenoids, and Mycosporine-like amino acids (MAAs). Lyngbya marine species are commercially important due to their secondary metabolites that show a range of biological activities including antibacterial, insecticidal, anticancer, antifungal, and enzyme inhibitor. The main topic in this review covers the Lyngbya sp., a cyanobacteria genus that presents photoprotection provided by the UV-absorbing/screening compounds such as MAAs and Scytonemin. These compounds have considerable potentialities to be used in the cosmeceutical, pharmaceutical, biotechnological and biomedical sectors and other related manufacturing industries with an additional value of environment friendly in nature. Scytonemin has UV protectant, anti-inflammatory, anti-proliferative, and antioxidant activity. MAAs act as sunscreens, provide additional protection as antioxidants, can be used as UV protectors, activators of cell proliferation, skin-care products, and even as photo-stabilizing additives in paints, plastics, and varnishes. The five MAAs identified so far in Lyngbya sp. are Asterina-330, M-312, Palythine, Porphyra-334, and Shinorine are capable of dissipating absorbed radiation as harmless heat without producing reactive oxygen species.
Collapse
Affiliation(s)
- Susana Fuentes-Tristan
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P. 45138, Jalisco, Mexico.
| |
Collapse
|
12
|
Tarasuntisuk S, Palaga T, Kageyama H, Waditee-Sirisattha R. Mycosporine-2-glycine exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Arch Biochem Biophys 2018; 662:33-39. [PMID: 30502329 DOI: 10.1016/j.abb.2018.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Mycosporine-like amino acids (MAAs) are a group of water-soluble low-molecular-weight secondary metabolites, which are well-documented UV-screening molecules and antioxidants. We have recently demonstrated that a rare MAA, mycosporine-2-glycine (M2G), efficiently inhibited the formation of advanced glycation end-products (AGEs). Because AGEs contribute significantly to the aging process, including the pathogenesis and progression of age-related diseases, the present study further evaluated anti-inflammatory effects of M2G using an in vitro model of RAW 264.7 macrophages. We measured the inflammatory signaling molecule nitric oxide (NO) under inflammatory stimulation by lipopolysaccharide (LPS), revealing that M2G diminished LPS-induced NO production. M2G inhibited NO production approximately 2-3-fold more potently than other MAAs, including shinorine, porphyra-334, and palythine. Transcriptional analyses revealed that M2G significantly suppressed iNOS and COX-2 expression. Therefore, M2G inhibits the production of inflammatory mediators by suppressing the NF-κB pathway. Furthermore, under H2O2-induced oxidative stress, M2G down-regulated Sod1, Cat, and Nrf2 expression. Our findings clearly demonstrate anti-inflammatory and antioxidant effects of M2G in LPS-stimulated RAW 264.7 macrophages. Structure-activity relationships of biologically active MAAs are also discussed.
Collapse
Affiliation(s)
- Supamate Tarasuntisuk
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Aichi, 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Aichi, 468-8502, Japan.
| | - Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Mycosporine-Like Amino Acids as Multifunctional Secondary Metabolites in Cyanobacteria: From Biochemical to Application Aspects. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00005-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Chrapusta E, Kaminski A, Duchnik K, Bober B, Adamski M, Bialczyk J. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Mar Drugs 2017; 15:md15100326. [PMID: 29065484 PMCID: PMC5666432 DOI: 10.3390/md15100326] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022] Open
Abstract
Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people apply an additional external protection in the form of cosmetic products containing sunscreens. Nowadays, because of the use of some chemical filters raises a lot of controversies, research focuses on exploring novel, fully safe and highly efficient natural UV-absorbing compounds that could be used as active ingredients in sun care products. A promising alternative is the application of multifunctional mycosporine-like amino acids (MAAs), which can effectively compete with commercially available filters. Here, we outline a complete characterization of these compounds and discuss their enormous biotechnological potential with special emphasis on their use as sunscreens, activators of cells proliferation, anti-cancer agents, anti-photoaging molecules, stimulators of skin renewal, and functional ingredients of UV-protective biomaterials.
Collapse
Affiliation(s)
- Ewelina Chrapusta
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Institute of Botany, Faculty of Biology and Earth Sciences, Jagiellonian University, Kopernika 27, 31-501 Krakow, Poland.
| | - Ariel Kaminski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Kornelia Duchnik
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Beata Bober
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Michal Adamski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Jan Bialczyk
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
15
|
Impairment of ntcA gene revealed its role in regulating iron homeostasis, ROS production and cellular phenotype under iron deficiency in cyanobacterium Anabaena sp. PCC 7120. World J Microbiol Biotechnol 2017; 33:158. [DOI: 10.1007/s11274-017-2323-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
16
|
Jain S, Prajapat G, Abrar M, Ledwani L, Singh A, Agrawal A. Cyanobacteria as efficient producers of mycosporine-like amino acids. J Basic Microbiol 2017; 57:715-727. [PMID: 28543536 DOI: 10.1002/jobm.201700044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/15/2017] [Accepted: 04/30/2017] [Indexed: 01/15/2023]
Abstract
Mycosporine-like amino acids are the most common group of transparent ultraviolet radiation absorbing intracellular secondary metabolites. These molecules absorb light in the range of ultraviolet-A and -B with a maximum absorbance between 310 and 362 nm. Cyanobacteria might have faced the most deleterious ultraviolet radiation, which leads to an evolution of ultraviolet protecting mycosporine-like amino acids for efficient selection in the environment. In the last 30 years, scientists have investigated various cyanobacteria for novel mycosporine-like amino acids, applying different induction techniques. This review organizes all the cyanobacterial groups that produce various mycosporine-like amino acids. We found out that cyanobacteria belonging to orders Synechococcales, Chroococcales, Oscillatoriales, and Nostocales are frequently studied for the presence of mycosporine-like amino acids, while orders Gloeobacterales, Spirulinales, Pleurocapsales, and Chroococcidiopsidales are still need to be investigated. Nostoc and Anabaena strains are major studied genus for the mycosporine-like amino acids production. Hence, this review will give further insight to the readers about potential mycosporine-like amino acid producing cyanobacterial groups in future investigations.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Ganshyam Prajapat
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Mustari Abrar
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Lalita Ledwani
- Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Anoop Singh
- Department of Scientific and Industrial Research, New Delhi, India
| | - Akhil Agrawal
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| |
Collapse
|
17
|
Rastogi RP, Madamwar D, Incharoensakdi A. Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: role in photoprotection. J Appl Microbiol 2015; 119:753-62. [PMID: 26099286 DOI: 10.1111/jam.12879] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/12/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Abstract
AIMS To investigate the occurrence of UV sunscreening biomolecules and their role in photoprotection in cyanobacterial biofilms growing in brightly lit habitats with high UV fluxes. METHODS AND RESULTS High performance liquid chromatography with photodiode-array and mass spectrometry revealed the presence of mycosporine-like amino acids (MAAs) shinorine (λ(max) 334 nm, m/z 333), porphyra-334 (λ(max) 334 nm, m/z 347), mycosporine-glycine (λ(max) 310 nm, m/z 246) and palythinol (λ(max) 332 nm, m/z 303). Two unknown MAAs with λ(max) at 320 (m/z 289) and 329 nm (m/z 318) were also found. Biosynthesis of MAAs was found to increase with increase in exposure time under UV radiation. The MAAs from biofilms showed efficient radical scavenging activity as well as photoprotective potential on the survival of UV-treated Escherichia coli cells. CONCLUSIONS Biosynthesis of photoprotectants is an important mechanism to prevent photodamage in Cyanobacteria. UV-induction and photoprotective function of MAAs may facilitate them to perform important ecological functions under harsh environmental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY There are very few reports on qualitative and quantitative characterization of different MAAs in cyanobacterial biofilms. Due to strong UV absorption and photoprotective function, MAAs may be used as an active ingredient in cosmetic and other pharmaceutical industries.
Collapse
Affiliation(s)
- R P Rastogi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,BRD School of Biosciences, Sardar Patel University, Vallabh Vidyanagar, India
| | - D Madamwar
- BRD School of Biosciences, Sardar Patel University, Vallabh Vidyanagar, India
| | - A Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Cubillos VM, Burritt DJ, Lamare MD, Peake BM. The relationship between UV-irradiance, photoprotective compounds and DNA damage in two intertidal invertebrates with contrasting mobility characteristics. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:280-8. [PMID: 26117416 DOI: 10.1016/j.jphotobiol.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
The photoprotective role of mycosporine-like amino acids (MAA) against the generation of DNA cyclobutane pyrimidine dimers (CPD) was studied in the sessile intertidal anemone Actinia tenebrosa and the mobile intertidal gastropod Diloma aethiops through 27months at a mid-latitude New Zealand location. MAA were sequestered by A. tenebrosa and D. aethiops from their diet, although maximum total MAA levels in both species were not correlated with seasonal variation in maximum ambient UV-B levels recorded at the collection site. Temporal changes in total MAA in A. tenebrosa showed a six months lag-time in their concentration regarding to the environmental UV-B levels. This lag period corresponded to an observed increase in CPD production from spring to summer; suggesting that MAA do not completely protect the anemone from UV-B during summer. For D. aethiops, total MAA concentrations did not change significantly during the study, although qualitative changes in MAA were apparent. A month lag-time in MAA concentration in D. aethiops and possibly the physical barrier that the shell confers to the animal, can explain reduced CPD levels in comparative terms with A. tenebrosa. Although MAA are used by invertebrates for photoprotection, contrasting mobility characteristics and the presence of physical adaptations can confer them important protection levels during temporal changes of UV-B at mid-latitude places of the Southern Hemisphere.
Collapse
Affiliation(s)
- Victor Mauricio Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Department of Botany, University of Otago, Dunedin, New Zealand; Department of Marine Science, University of Otago, Dunedin, New Zealand; Department of Chemistry, University of Otago, Dunedin, New Zealand.
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Barrie M Peake
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim YJ, Rhee JS, Choi EM, Brown MT, Häder DP, Han T. Ultraviolet radiation and cyanobacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:154-69. [DOI: 10.1016/j.jphotobiol.2014.09.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
|
20
|
Rastogi RP, Incharoensakdi A, Madamwar D. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1545-1553. [PMID: 25128787 DOI: 10.1016/j.jplph.2014.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No. 39, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No. 39, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
| |
Collapse
|
21
|
Rastogi RP, Incharoensakdi A. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556. Photochem Photobiol Sci 2014; 13:1016-24. [DOI: 10.1039/c4pp00013g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune. Mar Drugs 2013; 11:3124-54. [PMID: 24065157 PMCID: PMC3801118 DOI: 10.3390/md11093124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments.
Collapse
|
23
|
Nguyen KH, Chollet-Krugler M, Gouault N, Tomasi S. UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 2013; 30:1490-508. [DOI: 10.1039/c3np70064j] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Pérez G, Doldán S, Borsani O, Irisarri P. Differential Response to Moderate UV-B Irradiation of Two Heterocystous Cyanobacteria Isolated from a Temperate Ricefield. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.21006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Singh SP, Klisch M, Sinha RP, Häder DP. Sulfur Deficiency Changes Mycosporine-like Amino Acid (MAA) Composition of Anabaena variabilis PCC 7937: A Possible Role of Sulfur in MAA Bioconversion. Photochem Photobiol 2010; 86:862-70. [DOI: 10.1111/j.1751-1097.2010.00736.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Rastogi RP, Sinha RP, Singh SP, Häder DP. Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 2010; 37:537-58. [PMID: 20401734 DOI: 10.1007/s10295-010-0718-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 03/26/2010] [Indexed: 12/19/2022]
Abstract
The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth's surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
27
|
Singh SP, Häder DP, Sinha RP. Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev 2010; 9:79-90. [PMID: 19524071 DOI: 10.1016/j.arr.2009.05.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 02/01/2023]
Abstract
Cyanobacteria are primitive photosynthetic oxygen-evolving prokaryotes that appeared on the Earth when there was no ozone layer to protect them from damaging ultraviolet radiation (UVR). UVR has both direct and indirect effects on the cyanobacteria due to absorption by biomolecules and UVR-induced oxidative stress, respectively. However, these organisms have developed several lines of mitigation strategies/defense mechanisms such as avoidance, scavenging, screening, repair and programmed cell death to counteract the damaging effects of UVR. This review presents an update on the effects of UVR on cyanobacteria and the defense mechanisms employed by these prokaryotes to withstand UVR stress. In addition, recent developments in the field of molecular biology of UV-absorbing compounds such as mycosporine-like amino acids and scytonemin, are also added and the possible role of programmed cell death, signal perception as well their transduction under UVR stress is being discussed.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
28
|
Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: A bioinformatics study. Genomics 2010; 95:120-8. [DOI: 10.1016/j.ygeno.2009.10.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/22/2009] [Accepted: 10/15/2009] [Indexed: 11/22/2022]
|
29
|
Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 2009; 27:521-39. [DOI: 10.1016/j.biotechadv.2009.04.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/13/2009] [Accepted: 04/14/2009] [Indexed: 01/22/2023]
|