1
|
Li Q, Nie S, Li G, Du J, Ren R, Yang X, Liu B, Gao X, Liu T, Zhang Z, Zhao X, Li X, Nie Y, Wang B, Lin H, Ding H, Pan G. Identification and Fine Mapping of the Recessive Gene BK-5, Which Affects Cell Wall Biosynthesis and Plant Brittleness in Maize. Int J Mol Sci 2022; 23:814. [PMID: 35055000 PMCID: PMC8775815 DOI: 10.3390/ijms23020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/01/2022] Open
Abstract
The cellulose of the plant cell wall indirectly affects the cell shape and straw stiffness of the plant. Here, the novel brittleness mutant brittle stalk-5 (bk-5) of the maize inbred line RP125 was characterized. We found that the mutant displayed brittleness of the stalk and even the whole plant, and that the brittleness phenotype existed during the whole growth period from germination to senescence. The compressive strength was reduced, the cell wall was thinner, and the cellulose content was decreased compared to that of the wild type. Genetic analysis and map-based cloning indicated that bk-5 was controlled by a single recessive nuclear gene and that it was located in a 90.2-Kb region on chromosome 3 that covers three open reading frames (ORFs). Sequence analysis revealed a single non-synonymous missense mutation, T-to-A, in the last exon of Zm00001d043477 (B73: version 4, named BK-5) that caused the 951th amino acid to go from leucine to histidine. BK-5 encodes a cellulose synthase catalytic subunit (CesA), which is involved with cellulose synthesis. We found that BK-5 was constitutively expressed in all tissues of the germinating stage and silking stage, and highly expressed in the leaf, auricula, and root of the silking stage and the 2-cm root and bud of the germinating stage. We found that BK-5 mainly localized to the Golgi apparatus, suggesting that the protein might move to the plasma membrane with the aid of Golgi in maize. According to RNA-seq data, bk-5 had more downregulated genes than upregulated genes, and many of the downregulated genes were enzymes and transcription factors related to cellulose, hemicellulose, and lignin biosynthesis of the secondary cell wall. The other differentially expressed genes were related to metabolic and cellular processes, and were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and the plant-pathogen interaction pathway. Taken together, we propose that the mutation of gene BK-5 causes the brittle stalk phenotype and provides important insights into the regulatory mechanism of cellulose biosynthesis and cell wall development in maize.
Collapse
Affiliation(s)
- Qigui Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| | - Shujun Nie
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| | - Gaoke Li
- Guangdong Academy of Agricultural Sciences, Crops Research Institute, Guangzhou 510640, China;
| | - Jiyuan Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Ruchang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xiu Yang
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100081, China; (X.Y.); (B.W.)
| | - Boyan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xiaolong Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Tianjian Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Zhiming Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Yongxin Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Baichen Wang
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100081, China; (X.Y.); (B.W.)
| | - Haijian Lin
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| | - Haiping Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| |
Collapse
|
2
|
Niu L, Wu Z, Liu H, Wu X, Wang W. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays. BMC Genomics 2019; 20:758. [PMID: 31640549 PMCID: PMC6805590 DOI: 10.1186/s12864-019-6109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background The mesocotyl connects the coleoptilar node and the basal part of the seminal root of maize (Zea mays) seedling. The mesocotyl pushes the shoot of the seedling out of the soil during seed germination; thus, its growth is highly related to deep-sowing tolerance. Although many studies on the maize mesocotyl have been carried out at physiological and molecular levels, the proteomic changes associated with cellular and physiological activities during mesocotyl growth are still unknown. Results In the present study, the maize hybrid Zhengdan 958 was used to study mesocotyl growth and accompanying protein changes. The dark-grown etiolated mesocotyls exhibited a slow-fast-slow feature, with significant changes in the levels of indole-3-acetic acid (IAA) and cellulose and the activity of peroxidase (POD). In particular, POD activity increased with mesocotyl growth, showing higher activity at the mature (lower) end of the mesocotyl. For the proteomic analysis, soluble proteins were extracted from etiolated mesocotyls dark-grown for 48 h, 84 h, and 132 h, corresponding to the initial, rapid, and slow growth periods, respectively, and subjected to separation by two-dimensional gel electrophoresis (2-DE). As a result, 88 differentially abundant proteins (DAPs) were identified using MALDI-TOF-TOF analysis. At 48 h, most DAPs were stress proteins, heat shock proteins and storage proteins; at 84 h, oxidation/reduction proteins, carbohydrate biogenesis-related proteins and cytoskeleton-related proteins were highly accumulated; at 132 h, the most striking DAPs were those involved in the synthesis and modification of the cell wall and the biogenesis of carbohydrates. Gene ontology (GO) analysis showed that changes in the abundance and proportion of DAPs were consistent with cellular and physiological activities and biological processes during mesocotyl growth. The accumulation of nine DAPs of interest was verified by immunoblotting and RT-qPCR. Conclusions The present study revealed that the protein patterns in 2-D gels differed greatly with mesocotyl growth. At different growth periods, a specific set of DAPs participate in various biological processes and underlie the cellular and physiological activities of the mesocotyl. These results contributed to the understanding of mesocotyl growth and the cultivation of maize lines with deep-sowing tolerance.
Collapse
Affiliation(s)
- Liangjie Niu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaokun Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hui Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaolin Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Peng X, Pang H, Abbas M, Yan X, Dai X, Li Y, Li Q. Characterization of Cellulose synthase-like D (CSLD) family revealed the involvement of PtrCslD5 in root hair formation in Populus trichocarpa. Sci Rep 2019; 9:1452. [PMID: 30723218 PMCID: PMC6363781 DOI: 10.1038/s41598-018-36529-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Cellulose synthase-like D (CSLD) family was characterized for their expression and functions in Populus trichocarpa. Ten members, PtrCslD1-10, were identified in the P. trichocarpa genome, and they belong to 4 clades by phylogenetic tree analysis. qRT-PCR and promoter:GUS assays in Arabidopsis and P. trichocarpa displayed divergent expression patterns of these 10 PtrCSLD genes in root hairs, root tips, leaves, vascular tissues, xylem and flowers. Among PtrCslD2, PtrCslD4, PtrCslD5, PtrCslD6, and PtrCslD8 that all exhibited expression in root hairs, only PtrCslD5 could restore the root hairless phenotype of the atcsld3 mutant, demonstrating that PtrCslD5 is the functional ortholog of AtCslD3 for root hair formation. Our results suggest more possible functions for other PtrCslD genes in poplar.
Collapse
Affiliation(s)
- Xiaopeng Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Manzar Abbas
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China. .,Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|
4
|
Wang T, McFarlane HE, Persson S. The impact of abiotic factors on cellulose synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:543-52. [PMID: 26552883 DOI: 10.1093/jxb/erv488] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As sessile organisms, plants require mechanisms to sense and respond to changes in their environment, including both biotic and abiotic factors. One of the most common plant adaptations to environmental changes is differential regulation of growth, which results in growth either away from adverse conditions or towards more favorable conditions. As cell walls shape plant growth, this differential growth response must be accompanied by alterations to the plant cell wall. Here, we review the impact of four abiotic factors (osmotic conditions, ionic stress, light, and temperature) on the synthesis of cellulose, an important component of the plant cell wall. Understanding how different abiotic factors influence cellulose production and addressing key questions that remain in this field can provide crucial information to cope with the need for increased crop production under the mounting pressures of a growing world population and global climate change.
Collapse
Affiliation(s)
- Ting Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam, Germany
| | | | - Staffan Persson
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, 3010, Melbourne, Australia
| |
Collapse
|
5
|
Wilson SM, Burton RA, Collins HM, Doblin MS, Pettolino FA, Shirley N, Fincher GB, Bacic A. Pattern of deposition of cell wall polysaccharides and transcript abundance of related cell wall synthesis genes during differentiation in barley endosperm. PLANT PHYSIOLOGY 2012; 159:655-70. [PMID: 22510768 PMCID: PMC3375932 DOI: 10.1104/pp.111.192682] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Immunolabeling, combined with chemical analyses and transcript profiling, have provided a comprehensive temporal and spatial picture of the deposition and modification of cell wall polysaccharides during barley (Hordeum vulgare) grain development, from endosperm cellularization at 3 d after pollination (DAP) through differentiation to the mature grain at 38 DAP. (1→3)-β-D-Glucan appears transiently during cellularization but reappears in patches in the subaleurone cell walls around 20 DAP. (1→3, 1→4)-β-Glucan, the most abundant polysaccharide of the mature barley grain, accumulates throughout development. Arabino-(1-4)-β-D-xylan is deposited significantly earlier than we previously reported. This was attributable to the initial deposition of the polysaccharide in a highly substituted form that was not recognized by antibodies commonly used to detect arabino-(1-4)-β-D-xylans in sections of plant material. The epitopes needed for antibody recognition were exposed by pretreatment of sections with α-L-arabinofuranosidase; this procedure showed that arabino-(1-4)-β-D-xylans were deposited as early as 5 DAP and highlighted their changing structures during endosperm development. By 28 DAP labeling of hetero-(1→4)-β-D-mannan is observed in the walls of the starchy endosperm but not in the aleurone walls. Although absent in mature endosperm cell walls we now show that xyloglucan is present transiently from 3 until about 6 DAP and disappears by 8 DAP. Quantitative reverse transcription-polymerase chain reaction of transcripts for GLUCAN SYNTHASE-LIKE, Cellulose Synthase, and CELLULOSE SYNTHASE-LIKE genes were consistent with the patterns of polysaccharide deposition. Transcript profiling of some members from the Carbohydrate-Active Enzymes database glycosyl transferase families GT61, GT47, and GT43, previously implicated in arabino-(1-4)-β-d-xylan biosynthesis, confirms their presence during grain development.
Collapse
Affiliation(s)
- Sarah M Wilson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hunter CT, Kirienko DH, Sylvester AW, Peter GF, McCarty DR, Koch KE. Cellulose Synthase-Like D1 is integral to normal cell division, expansion, and leaf development in maize. PLANT PHYSIOLOGY 2012; 158:708-24. [PMID: 22123901 PMCID: PMC3271761 DOI: 10.1104/pp.111.188466] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/26/2011] [Indexed: 05/03/2023]
Abstract
The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades, consistent with the disruption of cytokinesis and/or the cell cycle in csld1 mutants. Collectively, these data indicate a previously unrecognized role for CSLD activity in plant cell division, especially during early phases of cross-wall formation.
Collapse
Affiliation(s)
- Charles T Hunter
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Dwivany FM, Yulia D, Burton RA, Shirley NJ, Wilson SM, Fincher GB, Bacic A, Newbigin E, Doblin MS. The CELLULOSE-SYNTHASE LIKE C (CSLC) family of barley includes members that are integral membrane proteins targeted to the plasma membrane. MOLECULAR PLANT 2009; 2:1025-1039. [PMID: 19825677 DOI: 10.1093/mp/ssp064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The CELLULOSE SYNTHASE-LIKE C (CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CELLULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the divergence of mosses and vascular plants. As studies in the flowering plant Arabidopsis have suggested synthesis of the (1,4)-beta-glucan backbone of xyloglucan (XyG), a wall polysaccharide that tethers adjacent cellulose microfibrils to each other, as a probable function for the CSLCs, CSLC function was investigated in barley (Hordeum vulgare L.), a species with low amounts of XyG in its walls. Four barley CSLC genes were identified (designated HvCSLC1-4). Phylogenetic analysis reveals three well supported clades of CSLCs in flowering plants, with barley having representatives in two of these clades. The four barley CSLCs were expressed in various tissues, with in situ PCR detecting transcripts in all cell types of the coleoptile and root, including cells with primary and secondary cell walls. Co-expression analysis showed that HvCSLC3 was coordinately expressed with putative XyG xylosyltransferase genes. Both immuno-EM and membrane fractionation showed that HvCSLC2 was located in the plasma membrane of barley suspension-cultured cells and was not in internal membranes such as endoplasmic reticulum or Golgi apparatus. Based on our current knowledge of the sub-cellular locations of polysaccharide synthesis, we conclude that the CSLC family probably contains more than one type of polysaccharide synthase.
Collapse
Affiliation(s)
- Fenny M Dwivany
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|