1
|
Hosamani R, Swamy BK, Dsouza A, Sathasivam M. Plant responses to hypergravity: a comprehensive review. PLANTA 2022; 257:17. [PMID: 36534189 DOI: 10.1007/s00425-022-04051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hypergravity is an effective novel stimulus to elucidate plant gravitational and mechanobiological behaviour. Here, we review the current understanding of phenotypic, physio-biochemical, and molecular plant responses to simulated hypergravity. Plants readily respond to altered gravity conditions, such as microgravity or hypergravity. Hypergravity-a gravitational force higher than that on the Earth's surface (> 1g)-can be simulated using centrifuges. Exposing seeds, seedlings, or plant cell cultures to hypergravity elicits characteristic morphological, physio-biochemical, and molecular changes. While several studies have provided insights into plant responses and underlying mechanisms, much is still elusive, including the interplay of hypergravity with gravitropism. Moreover, hypergravity is of great significance for mechano- and space/gravitational biologists to elucidate fundamental plant behaviour. In this review, we provide an overview of the phenotypic, physiological, biochemical, and molecular responses of plants to hypergravity. We then discuss the involvement of hypergravity in plant gravitropism-the directional growth along the gravity vector. Finally, we highlight future research directions to expand our understanding of hypergravity in plant biology.
Collapse
Affiliation(s)
- Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
| | - Ajwal Dsouza
- Controlled Environment Systems Research Facility, School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
- College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Aronne G, Muthert LWF, Izzo LG, Romano LE, Iovane M, Capozzi F, Manzano A, Ciska M, Herranz R, Medina FJ, Kiss JZ, van Loon JJWA. A novel device to study altered gravity and light interactions in seedling tropisms. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:8-16. [PMID: 35065766 DOI: 10.1016/j.lssr.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/14/2023]
Abstract
Long-duration space missions will need to rely on the use of plants in bio-regenerative life support systems (BLSSs) because these systems can produce fresh food and oxygen, reduce carbon dioxide levels, recycle metabolic waste, and purify water. In this scenario, the need for new experiments on the effects of altered gravity conditions on plant biological processes is increasing, and significant efforts should be devoted to new ideas aimed at increasing the scientific output and lowering the experimental costs. Here, we report the design of an easy-to-produce and inexpensive device conceived to analyze the effect of interaction between gravity and light on root tropisms. Each unit consisted of a polystyrene multi-slot rack with light-emitting diodes (LEDs), capable of holding Petri dishes and assembled with a particular filter-paper folding. The device was successfully used for the ROOTROPS (for root tropisms) experiment performed in the Large Diameter Centrifuge (LDC) and Random Positioning Machine (RPM) at ESA's European Space Research and Technology centre (ESTEC). During the experiments, four light treatments and six gravity conditions were factorially combined to study their effects on root orientation of Brassica oleracea seedlings. Light treatments (red, blue, and white) and a dark condition were tested under four hypergravity levels (20 g, 15 g, 10 g, 5 g), a 1 g control, and a simulated microgravity (RPM) condition. Results of validation tests showed that after 24 h, the assembled system remained unaltered, no slipping or displacement of seedlings occurred at any hypergravity treatment or on the RPM, and seedlings exhibited robust growth. Overall, the device was effective and reliable in achieving scientific goals, suggesting that it can be used for ground-based research on phototropism-gravitropism interactions. Moreover, the concepts developed can be further expanded for use in future spaceflight experiments with plants.
Collapse
Affiliation(s)
- Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Maurizio Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Fiore Capozzi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Madrid, Spain
| | - Malgorzata Ciska
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Madrid, Spain
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Madrid, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Madrid, Spain
| | - John Z Kiss
- Department of Biology, University of North Carolina-Greensboro, Greensboro NC 27402, United States of America
| | - Jack J W A van Loon
- Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center Location VUmc & Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands; TEC-MMG-LISLab, European Space Agency (ESA) Technology Center (ESTEC), Noordwijk, Netherlands
| |
Collapse
|
3
|
Kume A, Kamachi H, Onoda Y, Hanba YT, Hiwatashi Y, Karahara I, Fujita T. How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism. PLANT MOLECULAR BIOLOGY 2021; 107:279-291. [PMID: 33852087 DOI: 10.1007/s11103-021-01146-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Plants have evolved and grown under the selection pressure of gravitational force at 1 g on Earth. In response to this selection pressure, plants have acquired gravitropism to sense gravity and change their growth direction. In addition, plants also adjust their morphogenesis in response to different gravitational forces in a phenomenon known as gravity resistance. However, the gravity resistance phenomenon in plants is poorly understood due to the prevalence of 1 g gravitational force on Earth: not only it is difficult to culture plants at gravity > 1 g(hypergravity) for a long period of time but it is also impossible to create a < 1 genvironment (μg, micro g) on Earth without specialized facilities. Despite these technical challenges, it is important to understand how plants grow in different gravity conditions in order to understand land plant adaptation to the 1 g environment or for outer space exploration. To address this, we have developed a centrifugal device for a prolonged duration of plant culture in hypergravity conditions, and a project to grow plants under the μg environment in the International Space Station is also underway. Our plant material of choice is Physcomitrium (Physcomitrella) patens, one of the pioneer plants on land and a model bryophyte often used in plant biology. In this review, we summarize our latest findings regarding P. patens growth response to hypergravity, with reference to our on-going "Space moss" project. In our ground-based hypergravity experiments, we analyzed the morphological and physiological changes and found unexpected increments of chloroplast size and photosynthesis rate, which might underlie the enhancement of growth and increase in the number of gametophores and rhizoids. We further discussed our approaches at the cellular level and compare the gravity resistance in mosses and that in angiosperms. Finally, we highlight the advantages and perspectives from the space experiments and conclude that research with bryophytes is beneficial to comprehensively and precisely understand gravitational responses in plants.
Collapse
Affiliation(s)
- Atsushi Kume
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyuki Kamachi
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-8555, Japan
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Yuko T Hanba
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215, Japan
| | - Ichirou Karahara
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-8555, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Kita 10 Nishi8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
4
|
Karahara I, Suto T, Yamaguchi T, Yashiro U, Tamaoki D, Okamoto E, Yano S, Tanigaki F, Shimazu T, Kasahara H, Kasahara H, Yamada M, Hoson T, Soga K, Kamisaka S. Vegetative and reproductive growth of Arabidopsis under microgravity conditions in space. JOURNAL OF PLANT RESEARCH 2020; 133:571-585. [PMID: 32424466 DOI: 10.1007/s10265-020-01200-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
We have performed a seed-to-seed experiment in the cell biology experiment facility (CBEF) installed in the Kibo (Japanese Experiment Module) in the International Space Station. The CBEF has a 1 × g compartment on a centrifuge and a microgravity compartment, to investigate the effects of microgravity on the vegetative and reproductive growth of Arabidopsis thaliana (L.) Heynh. Seeds germinated irrespective of gravitational conditions after water supply on board. Thereafter, seedlings developed rosette leaves. The time of bolting was slightly earlier under microgravity than under space 1 × g. Microgravity enhanced the growth rate of peduncles as compared with space 1 × g or ground control. Plants developed flowers, siliques and seeds, completing their entire life cycle during 62-days cultivation. Although the flowering time was not significantly affected under microgravity, the number of flowers in a bolted plant significantly increased under microgravity as compared with space 1 × g or ground control. Microscopic analysis of reproductive organs revealed that the longitudinal length of anthers was significantly shorter under microgravity when compared with space 1 × g, while the length of pistils and filaments was not influenced by the gravitational conditions. Seed mass significantly increased under microgravity when compared with space 1 × g. In addition, seeds produced in space were found not to germinate on the ground. These results indicate that microgravity significantly influenced the reproductive development of Arabidopsis plants even though Earth's gravitational environment is not absolutely necessary for them to complete their life cycle.
Collapse
Affiliation(s)
- Ichirou Karahara
- Department of Biology, Faculty of Science, University of Toyama, Gofuku, Toyama, 930-8555, Japan.
| | - Takamichi Suto
- Department of Biology, Faculty of Science, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Takashi Yamaguchi
- Department of Biology, Faculty of Science, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Umi Yashiro
- Department of Biology, Faculty of Science, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Daisuke Tamaoki
- Department of Biology, Faculty of Science, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Emi Okamoto
- Department of Biology, Faculty of Science, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tokyo, Japan
| | | | | | - Haruo Kasahara
- Japan Aerospace Exploration Agency, Tokyo, Japan
- Japan Manned Space System Ltd, Tokyo, Japan
| | | | - Mitsuhiro Yamada
- School of Biological Sciences, Tokai University, Hokkaido, Japan
| | - Takayuki Hoson
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Kouichi Soga
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Seiichiro Kamisaka
- Department of Biology, Faculty of Science, University of Toyama, Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
5
|
Chebli Y, Geitmann A. Live cell and immuno-labeling techniques to study gravitational effects on single plant cells. Methods Mol Biol 2015; 1309:209-226. [PMID: 25981778 DOI: 10.1007/978-1-4939-2697-8_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The constant force of gravity plays a primordial role in the ontogeny of all living organisms. Plants, for example, develop their roots and shoots in accordance with the direction of the gravitational vector. Any change in the magnitude and/or the direction of gravity has an important impact on the development of tissues and cells. In order to understand how the gravitational force affects plant cell growth and differentiation, we established two complementary experimental procedures with which the effect of hyper-gravity on single plant cell development can be assessed. The single model cell system we used is the pollen tube or male gametophyte which, because of its rapid growth behavior, is known for its instant response to external stresses. The physiological response of the pollen tube can be assessed in a quantitative manner based on changes in the composition and spatial distribution of its cell wall components and in the precisely defined pattern of its very dynamic cytoplasmic streaming. Here, we provide a detailed description of the steps required for the immuno-localization of various cell wall components using microwave-assisted techniques and we explain how live imaging of the intracellular traffic can be achieved under hyper-gravity conditions.
Collapse
Affiliation(s)
- Youssef Chebli
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montreal, QC, Canada, H1X 2B2
| | | |
Collapse
|
6
|
De Micco V, De Pascale S, Paradiso R, Aronne G. Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:31-8. [PMID: 24015754 DOI: 10.1111/plb.12098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/18/2013] [Indexed: 05/25/2023]
Abstract
Human inhabitation of Space requires the efficient realisation of crop cultivation in bioregenerative life-support systems (BLSS). It is well known that plants can grow under Space conditions; however, perturbations of many biological phenomena have been highlighted due to the effect of altered gravity and its possible interactions with other factors. The mechanisms priming plant responses to Space factors, as well as the consequences of such alterations on crop productivity, have not been completely elucidated. These perturbations can occur at different stages of plant life and are potentially responsible for failure of the completion of the seed-to-seed cycle. After brief consideration of the main constraints found in the most recent experiments aiming to produce seeds in Space, we focus on two developmental phases in which the plant life cycle can be interrupted more easily than in others also on Earth. The first regards seedling development and establishment; we discuss reasons for slow development at the seedling stage that often occurs under microgravity conditions and can reduce successful establishment. The second stage comprises gametogenesis and pollination; we focus on male gamete formation, also identifying potential constraints to subsequent fertilisation. We finally highlight how similar alterations at cytological level can not only be common to different processes occurring at different life stages, but can be primed by different stress factors; such alterations can be interpreted within the model of 'stress-induced morphogenic response' (SIMR). We conclude by suggesting that a systematic analysis of all growth and reproductive phases during the plant life cycle is needed to optimise resource use in plant-based BLSS.
Collapse
Affiliation(s)
- V De Micco
- Department of Agriculture, University of Naples Federico II, Portici, Naples, Italy
| | | | | | | |
Collapse
|
7
|
Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S. Effects of hypergravity stimulus on global gene expression during reproductive growth in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:179-186. [PMID: 24373015 DOI: 10.1111/plb.12124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 09/27/2013] [Indexed: 06/03/2023]
Abstract
The life cycle of higher plants consists of successive vegetative and reproductive growth phases. Understanding effects of altered gravity conditions on the reproductive growth is essential, not only to elucidate how higher plants evolved under gravitational condition on Earth but also to approach toward realization of agriculture in space. In the present study, a comprehensive analysis of global gene expression of floral buds under hypergravity was carried out to understand effects of altered gravity on reproductive growth at molecular level. Arabidopsis plants grown for 20-26 days were exposed to hypergravity of 300 g for 24 h. Total RNA was extracted from flower buds and microarray (44 K) analysis performed. As a result, hypergravity up-regulated expression of a gene related to β-1,3-glucanase involved in pectin modification, and down-regulated β-galactosidase and amino acid transport, which supports a previous study reporting inhibition of pollen development and germination under hypergravity. With regard to genes related to seed storage accumulation, hypergravity up-regulated expression of genes of aspartate aminotransferase, and down-regulated those related to cell wall invertase and sugar transporter, supporting a previous study reporting promotion of protein body development and inhibition of starch accumulation under hypergravity, respectively. In addition, hypergravity up-regulated expression of G6PDH and GPGDH, which supports a previous study reporting promotion of lipid deposition under hypergravity. In addition, analysis of the metabolic pathway revealed that hypergravity substantially changed expression of genes involved in the biosynthesis of phytohormones such as abscisic acid and auxin.
Collapse
Affiliation(s)
- D Tamaoki
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Chebli Y, Pujol L, Shojaeifard A, Brouwer I, van Loon JJWA, Geitmann A. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration. PLoS One 2013; 8:e58246. [PMID: 23516452 PMCID: PMC3596410 DOI: 10.1371/journal.pone.0058246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/05/2013] [Indexed: 01/17/2023] Open
Abstract
Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.
Collapse
Affiliation(s)
- Youssef Chebli
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Lauranne Pujol
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Anahid Shojaeifard
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | | | - Jack J. W. A. van Loon
- Department of Craniofacial Surgery & Oral Cell Biology, Academisch Centrum Tandheelkunde Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
- Life and Physical Sciences Instrumentation and Life Support Section (TEC-MMG), European Space Agency (ESA), Noordwijk, The Netherlands
| | - Anja Geitmann
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
9
|
Chebli Y, Geitmann A. Gravity research on plants: use of single-cell experimental models. FRONTIERS IN PLANT SCIENCE 2011; 2:56. [PMID: 22639598 PMCID: PMC3355640 DOI: 10.3389/fpls.2011.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/05/2011] [Indexed: 05/10/2023]
Abstract
Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| | - Anja Geitmann
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
10
|
Matsumoto S, Kumasaki S, Soga K, Wakabayashi K, Hashimoto T, Hoson T. Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants. PLANT PHYSIOLOGY 2010; 152:918-26. [PMID: 20018592 PMCID: PMC2815900 DOI: 10.1104/pp.109.147330] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 12/07/2009] [Indexed: 05/20/2023]
Abstract
We investigated the roles of cortical microtubules in gravity-induced modifications to the development of stem organs by analyzing morphology and orientation of cortical microtubule arrays in hypocotyls of Arabidopsis (Arabidopsis thaliana) tubulin mutants, tua3(D205N), tua4(S178Delta), and tua6(A281T), cultivated under 1g and hypergravity (300g) conditions. Hypocotyls of tubulin mutants were shorter and thicker than the wild type even at 1g, and hypergravity further suppressed elongation and stimulated expansion. The degree of such changes was clearly smaller in tubulin mutants, in particular in tua6. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1g, and the degree of twisting phenotype was intensified under hypergravity conditions, especially in tua6. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of wild-type hypocotyls. In tubulin mutants, especially in tua6, the percentage of cells with longitudinal microtubules was high even at 1g, and it was further increased by hypergravity. The twisting phenotype was most obvious at cells 10 to 12 from the top, where reorientation of cortical microtubules from transverse to longitudinal directions occurred. Moreover, the left-handed helical growth mutants (tua3 and tua4) had right-handed microtubule arrays, whereas the right-handed mutant (tua6) had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions, blockers of mechanosensitive ion channels (mechanoreceptors), suppressed the twisting phenotype in tubulin mutants under both 1g and 300 g conditions. Microtubule arrays in tubulin mutants were oriented more transversely by gadolinium treatment, irrespective of gravity conditions. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in modifications to morphology and orientation of microtubule arrays by 1g gravity and hypergravity in tubulin mutants.
Collapse
Affiliation(s)
| | | | | | | | | | - Takayuki Hoson
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558–8585, Japan (S.M., S.K., K.S., K.W., T. Hoson); and Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630–0192, Japan (T. Hashimoto)
| |
Collapse
|