1
|
Liu C, Han J, Li S. Elucidating the metabolic roles of isoflavone synthase-mediated protein-protein interactions in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620109. [PMID: 39484494 PMCID: PMC11527116 DOI: 10.1101/2024.10.24.620109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transient plant enzyme complexes formed via protein-protein interactions (PPIs) play crucial regulatory roles in secondary metabolism. Complexes assembled on cytochrome P450s (CYPs) are challenging to characterize metabolically due to difficulties in decoupling the PPIs' metabolic impacts from the CYPs' catalytic activities. Here, we developed a yeast-based synthetic biology approach to elucidate the metabolic roles of PPIs between a soybean-derived CYP, isoflavone synthase (GmIFS2), and other enzymes in isoflavonoid metabolism. By reconstructing multiple complex variants with an inactive GmIFS2 in yeast, we found that GmIFS2-mediated PPIs can regulate metabolic flux between two competing pathways producing deoxyisoflavonoids and isoflavonoids. Specifically, GmIFS2 can recruit chalcone synthase (GmCHS7) and chalcone reductase (GmCHR5) to enhance deoxyisoflavonoid production or GmCHS7 and chalcone isomerase (GmCHI1B1) to enhance isoflavonoid production. Additionally, we identified and characterized two novel isoflavone O-methyltransferases interacting with GmIFS2. This study highlights the potential of yeast synthetic biology for characterizing CYP-mediated complexes.
Collapse
Affiliation(s)
- Chang Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jianing Han
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Yang Y, Liu M, Huang Z. Genomic and Expression Analysis of Cassava ( Manihot esculenta Crantz) Chalcone Synthase Genes in Defense against Tetranychus cinnabarinus Infestation. Genes (Basel) 2024; 15:336. [PMID: 38540395 PMCID: PMC10970205 DOI: 10.3390/genes15030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
Cassava is susceptible to mites, especially Tetranychus cinnabarinus. Secondary metabolism products such as flavonoids play an important role as antimicrobial metabolites protecting plants against biotic stressors including fungal, pathogen, bacterial, and pest defense. The chalcone synthase (CHS) is the initial step of the phenylpropanoid pathway for producing flavonoids and is the gatekeeper of the pathway. Until recently, the CHS genes family has not been systematically studied in cassava. Thirty-nine CHS genes were identified from the cassava genome database. Based on phylogenetic and sequence composition analysis, these CHSs were divided into 3 subfamilies. Within the same subfamily, the gene structure and motif compositions of these CHS genes were found to be quite conserved. Duplication events, particularly segmental duplication of the cassava CHS genes, were identified as one of the main driving force of its expansion. Various cis-elements contained in the promoter might regulate the gene expression patterns of MeCHS. Protein-protein interaction (PPI) network analysis showed that MeCHS1 and MeCHS10 protein are more closely related to other family members. The expression of MeCHS genes in young leaves was higher than that in other tissues, and their expression varies even within the same tissue. Coincidentally, these CHS genes of most LAP subclasses were highly expressed in young leaves. The verified MeCHS genes showed consistent with the real-time reverse transcription quantitative PCR (RT-qPCR) and proteomic expression in protected and affected leaves respectively, indicating that these MeCHS genes play crucial roles in the response to T. cinnabarinus. This study is the first to comprehensively expatiate the information on MeCHS family members. These data will further enhance our understanding both the molecular mechanisms and the effects of CHS genes. In addition, the results will help to further clarify the effects on T. cinnabarinus and provide a theoretical basis for the potential functions of the specific CHS gene in resistance to mites and other biotic stress.
Collapse
Affiliation(s)
- Yanni Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Ming Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Zenghui Huang
- Nanning New Technology Entrepreneur Center, Nanning 530007, China;
| |
Collapse
|
3
|
Zhang C, Jia X, Zhao Y, Wang L, Wang Y. Adaptive response of flavonoids in Robinia pseudoacacia L. affected by the contamination of cadmium and elevated CO 2 to arbuscular mycorrhizal symbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115379. [PMID: 37597290 DOI: 10.1016/j.ecoenv.2023.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
As a key component in non-enzyme resistance system, flavonoids play a crucial role in the plant growth and defenses, which are significantly affected by biotic and abiotic factors such as fungi, bacteria, viruses, heavy metals, and atmospheric CO2. Arbuscular mycorrhizal fungi (AMF) play an important role in enhancing plant tolerance to adverse environments, which can significantly affect the synthesis of flavonoids by forming mycorrhizal symbionts with plant roots. However, few studies explored the combined effects of AMF, elevated CO2, and heavy metals on flavonoids in plants. Here, we investigated the adaptive response of flavonoids accumulation in Robinia pseudoacacia L. seedlings affected by the contamination of cadmium (Cd) and elevated CO2 to arbuscular mycorrhizal symbiosis. The results showed that G. mosseae decreased (p < 0.05) Cd content in leaves by 62.2% under elevated CO2. Moreover, G. mosseae colonization led to significant decreases in robinin, quercetin, kaempferol and acacetin by 17.4%, 11.1%, 15.5% and 23.1% under elevated CO2 + Cd, respectively. Additionally, G. mosseae down-regulated (p < 0.05) expression levels of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) genes under elevated CO2 + Cd, and CHS and uridine diphosphate flavonoid glucosyltransferase (UFGT) activities decreased (p < 0.05). Quercetin, kaempferol and acacetin showed positive (p < 0.05) correlation with PAL and CHS genes expression and PAL, CHS, and UFGT activities. Cadmium, C/N ratio, carotenoids, leaf biomass, total chlorophyll, P, and starch in leaves and G. mosseae colonization rate in roots influenced (p < 0.05) flavonoids content. Overall, G. mosseae reduced flavonoids synthesis by down-regulating gene expression levels and activities of key enzymes under elevated CO2 + Cd. The results improved our understanding of the regulation of AMF on non-enzymatic resistance of plants grown in heavy metal-contaminated soils under increasing atmospheric CO2 scenarios.
Collapse
Affiliation(s)
- Chunyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China.
| | - Yonghua Zhao
- School of Land Engineering, Chang'an University, Xi'an 710054, PR China
| | - Lu Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Yunjie Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| |
Collapse
|
4
|
Guo L, Zhao W, Wang Y, Yang Y, Wei C, Guo J, Dai J, Hirai MY, Bao A, Yang Z, Chen H, Li Y. Heterologous biosynthesis of isobavachalcone in tobacco based on in planta screening of prenyltransferases. FRONTIERS IN PLANT SCIENCE 2022; 13:1034625. [PMID: 36275607 PMCID: PMC9582842 DOI: 10.3389/fpls.2022.1034625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Isobavachalcone (IBC) is a prenylated chalcone mainly distributed in some Fabaceae and Moraceae species. IBC exhibits a wide range of pharmacological properties, including anti-bacterial, anti-viral, anti-inflammatory, and anti-cancer activities. In this study, we attempted to construct the heterologous biosynthesis pathway of IBC in tobacco (Nicotiana tabacum). Four previously reported prenyltransferases, including GuILDT from Glycyrrhiza uralensis, HlPT1 from Humulus lupulus, and SfILDT and SfFPT from Sophora flavescens, were subjected to an in planta screening to verify their activities for the biosynthesis of IBC, by using tobacco transient expression with exogenous isoliquiritigenin as the substrate. Only SfFPT and HlPT1 could convert isoliquiritigenin to IBC, and the activity of SfFPT was higher than that of HlPT1. By co-expression of GmCHS8 and GmCHR5 from Glycine max, endogenous isoliquiritigenin was generated in tobacco leaves (21.0 μg/g dry weight). After transformation with a multigene vector carrying GmCHS8, GmCHR5, and SfFPT, de novo biosynthesis of IBC was achieved in transgenic tobacco T0 lines, in which the highest amount of IBC was 0.56 μg/g dry weight. The yield of IBC in transgenic plants was nearly equal to that in SfFPT transient expression experiments, in which substrate supplement was sufficient, indicating that low IBC yield was not attributed to the substrate supplement. Our research provided a prospect to produce valuable prenylflavonoids using plant-based metabolic engineering.
Collapse
Affiliation(s)
- Lirong Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yu Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Cuimei Wei
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jian Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Aike Bao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haijuan Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
5
|
Gong FL, Han J, Li S. MULTI-SCULPT: Multiplex Integration via Selective, CRISPR-Mediated, Ultralong Pathway Transformation in Yeast for Plant Natural Product Synthesis. ACS Synth Biol 2022; 11:2484-2495. [PMID: 35737816 DOI: 10.1021/acssynbio.2c00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Yeast has been a versatile model host for complex and valuable natural product biosynthesis via the reconstruction of heterologous biosynthetic pathways. Recent advances in natural product pathway elucidation have uncovered many large and complicated plant pathways that contain 10-30 genes for the biosynthesis of structurally complex, valuable natural products. However, the ability to reconstruct ultralong pathways efficiently in yeast does not match the increasing demand for valuable plant natural product biomanufacturing. Here, we developed a one-pot, multigene pathway integration method in yeast, named MULTI-SCULPT for multiplex integration via selective, CRISPR-mediated, ultralong pathway transformation. Leveraging multilocus genomic disruption via CRISPR/Cas9, newly developed native and synthetic genetic parts, and fine-tuned gene integration and characterization methods, we managed to integrate 21 DNA inserts that contain a 12-gene plant isoflavone biosynthetic pathway into yeast with a 90-100% success rate in 12 days. This method enables fast and efficient ultralong biosynthetic pathway integration and can allow for the fast iterative integration of even longer pathways in the future. Ultimately, this method will accelerate combinatorial optimization of elucidated plant natural product pathways and accelerate putative pathway characterization heterologously.
Collapse
Affiliation(s)
- Franklin Leyang Gong
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jianing Han
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Hou Q, Li S, Shang C, Wen Z, Cai X, Hong Y, Qiao G. Genome-wide characterization of chalcone synthase genes in sweet cherry and functional characterization of CpCHS1 under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:989959. [PMID: 36061761 PMCID: PMC9437463 DOI: 10.3389/fpls.2022.989959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/03/2022] [Indexed: 05/22/2023]
Abstract
Cherries are one of the important fruit trees. The growth of cherry is greatly affected by abiotic stresses such as drought, which hinders its development. Chalcone synthase (CHS, EC 2.3.1.74) is a crucial rate-limiting enzyme in the flavonoid biosynthetic pathway that plays an important role in regulating plant growth, development, and abiotic stress tolerance. In the current study, three genes encoding chalcone synthase were identified in the genome of sweet cherry (Prunus avium L.). The three genes contained fewer introns and showed high homology with CHS genes of other Rosaceae members. All members are predicted to localize in the cytoplasm. The conserved catalytic sites may be located at the Cys163, Phe214, His302, and Asn335 residues. These genes were differentially expressed during flower bud dormancy and fruit development. The total flavonoid content of Chinese cherry (Cerasus pseudocerasus Lindl.) was highest in the leaves and slightly higher in the pulp than in the peel. No significant difference in total flavonoid content was detected between aborted kernels and normally developing kernels. Overexpression of Chinese cherry CpCHS1 in tobacco improved the germination frequency of tobacco seeds under drought stress, and the fresh weight of transgenic seedlings under drought stress was higher than that of the wild type, and the contents of SOD, POD, CAT, and Pro in OE lines were significantly increased and higher than WT under drought stress. These results indicate cherry CHS genes are conserved and functionally diverse and will assist in elucidating the functions of flavonoid synthesis pathways in cherry and other Rosaceae species under drought stress.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuang Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Chunqiong Shang
- College of Forestry, Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- *Correspondence: Guang Qiao,
| |
Collapse
|
7
|
Anguraj Vadivel AK, McDowell T, Renaud JB, Dhaubhadel S. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Commun Biol 2021; 4:356. [PMID: 33742087 PMCID: PMC7979867 DOI: 10.1038/s42003-021-01889-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
GmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein-protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
8
|
Anguraj Vadivel AK, McDowell T, Renaud JB, Dhaubhadel S. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Commun Biol 2021; 4:356. [PMID: 33742087 DOI: 10.1038/s42003-021-01889-1886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 05/25/2023] Open
Abstract
GmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein-protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
9
|
Lim YJ, Lyu JI, Kwon SJ, Eom SH. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout. Food Chem 2021; 339:128080. [PMID: 33152873 DOI: 10.1016/j.foodchem.2020.128080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022]
Abstract
Organ-specific flavonoid destination in soybean sprouts following UV irradiation is still unclear although the metabolic pathway of flavonoid synthesis and UV responded flavonoid accumulation have been well investigated. We report the identification of organ-specific localization and specific gene expression of isoflavones and kaempferol glycosides in the soybean sprouts responded to UV-A irradiation. UV-A irradiation stimulated only root isoflavones, especially increase of genistein types. The daidzein types predominated in non-UV-A treated roots. Kaempferol glycosides were not increased in roots by UV-A, but distinctly increased in aerial organs, especially in the cotyledons. These results demonstrate that UV-A upregulates the naringenin pathway synthesizing genistin and kaempferol rather than the liquiritigenin pathway synthesizing daidzin and glycitin. High GmUGT9 and other gene expression related to isoflavone synthesis in roots clearly demonstrate the UV-A-induced isoflavone accumulation. Aerial organ specific increase of GmF3H, GmFLS1, and GmDFR1 expression by UV-A distinctly demonstrates the flavonol increase in aerial organs.
Collapse
Affiliation(s)
- You Jin Lim
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
10
|
Akram M, Rasool A, An T, Feng X, Li C. Metabolic engineering of Yarrowia lipolytica for liquiritigenin production. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Lu CC, Guo N, Yang C, Sun HB, Cai BY. Transcriptome and metabolite profiling reveals the effects of Funneliformis mosseae on the roots of continuously cropped soybeans. BMC PLANT BIOLOGY 2020; 20:479. [PMID: 33087042 PMCID: PMC7579952 DOI: 10.1186/s12870-020-02647-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/14/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi are the most widely distributed mycorrhizal fungi, which can form mycorrhizal symbionts with plant roots and enhance plant stress resistance by regulating host metabolic activities. In this paper, the RNA sequencing and ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS) technologies were used to study the transcriptome and metabolite profiles of the roots of continuously cropped soybeans that were infected with F. mosseae and F. oxysporum. The objective was to explore the effects of F. mosseae treatment on soybean root rot infected with F. oxysporum. RESULTS According to the transcriptome profiles, 24,285 differentially expressed genes (DEGs) were identified, and the expression of genes encoding phenylalanine ammonia lyase (PAL), trans-cinnamate monooxygenase (CYP73A), cinnamyl-CoA reductase (CCR), chalcone isomerase (CHI) and coffee-coenzyme o-methyltransferase were upregulated after being infected with F. oxysporum; these changes were key to the induction of the soybean's defence response. The metabolite results showed that daidzein and 7,4-dihydroxy, 6-methoxy isoflavone (glycine), which are involved in the isoflavone metabolic pathway, were upregulated after the roots were inoculated with F. mosseae. In addition, a substantial alteration in the abundance of amino acids, phenolic and terpene metabolites all led to the synthesis of defence compounds. An integrated analysis of the metabolic and transcriptomic data revealed that substantial alterations in the abundance of most of the intermediate metabolites and enzymes changed substantially under pathogen infection. These changes included the isoflavonoid biosynthesis pathway, which suggests that isoflavonoid biosynthesis plays an important role in the soybean root response. CONCLUSION The results showed that F. mosseae could alleviate the root rot caused by continuous cropping. The increased activity of some disease-resistant genes and disease-resistant metabolites may partly account for the ability of the plants to resist diseases. This study provides new insights into the molecular mechanism by which AMF alleviates soybean root rot, which is important in agriculture.
Collapse
Affiliation(s)
- Cheng-Cheng Lu
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, People's Republic of China
| | - Na Guo
- Department of Food and Environment Engineering, Heilongjiang East University, Harbin, 150086, People's Republic of China
| | - Chao Yang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, People's Republic of China
| | - Hai-Bing Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, People's Republic of China
| | - Bai-Yan Cai
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, People's Republic of China.
- Department of Food and Environment Engineering, Heilongjiang East University, Harbin, 150086, People's Republic of China.
| |
Collapse
|
12
|
Suntichaikamolkul N, Tantisuwanichkul K, Prombutara P, Kobtrakul K, Zumsteg J, Wannachart S, Schaller H, Yamazaki M, Saito K, De-eknamkul W, Vimolmangkang S, Sirikantaramas S. Transcriptome analysis of Pueraria candollei var. mirifica for gene discovery in the biosyntheses of isoflavones and miroestrol. BMC PLANT BIOLOGY 2019; 19:581. [PMID: 31878891 PMCID: PMC6933718 DOI: 10.1186/s12870-019-2205-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pueraria candollei var. mirifica, a Thai medicinal plant used traditionally as a rejuvenating herb, is known as a rich source of phytoestrogens, including isoflavonoids and the highly estrogenic miroestrol and deoxymiroestrol. Although these active constituents in P. candollei var. mirifica have been known for some time, actual knowledge regarding their biosynthetic genes remains unknown. RESULTS Miroestrol biosynthesis was reconsidered and the most plausible mechanism starting from the isoflavonoid daidzein was proposed. A de novo transcriptome analysis was conducted using combined P. candollei var. mirifica tissues of young leaves, mature leaves, tuberous cortices, and cortex-excised tubers. A total of 166,923 contigs was assembled for functional annotation using protein databases and as a library for identification of genes that are potentially involved in the biosynthesis of isoflavonoids and miroestrol. Twenty-one differentially expressed genes from four separate libraries were identified as candidates involved in these biosynthetic pathways, and their respective expressions were validated by quantitative real-time reverse transcription polymerase chain reaction. Notably, isoflavonoid and miroestrol profiling generated by LC-MS/MS was positively correlated with expression levels of isoflavonoid biosynthetic genes across the four types of tissues. Moreover, we identified R2R3 MYB transcription factors that may be involved in the regulation of isoflavonoid biosynthesis in P. candollei var. mirifica. To confirm the function of a key-isoflavone biosynthetic gene, P. candollei var. mirifica isoflavone synthase identified in our library was transiently co-expressed with an Arabidopsis MYB12 transcription factor (AtMYB12) in Nicotiana benthamiana leaves. Remarkably, the combined expression of these proteins led to the production of the isoflavone genistein. CONCLUSIONS Our results provide compelling evidence regarding the integration of transcriptome and metabolome as a powerful tool for identifying biosynthetic genes and transcription factors possibly involved in the isoflavonoid and miroestrol biosyntheses in P. candollei var. mirifica.
Collapse
Affiliation(s)
| | | | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| | - Khwanlada Kobtrakul
- Graduate Program in Pharmaceutical Science and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Siriporn Wannachart
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Mami Yamazaki
- Laboratory of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kazuki Saito
- Laboratory of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Wanchai De-eknamkul
- Natural Product Biotechnology Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Natural Product Biotechnology Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Hohenstein JD, Studham ME, Klein A, Kovinich N, Barry K, Lee YJ, MacIntosh GC. Transcriptional and Chemical Changes in Soybean Leaves in Response to Long-Term Aphid Colonization. FRONTIERS IN PLANT SCIENCE 2019; 10:310. [PMID: 30930925 PMCID: PMC6424911 DOI: 10.3389/fpls.2019.00310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/26/2019] [Indexed: 05/07/2023]
Abstract
Soybean aphids (Aphis glycines Matsumura) are specialized insects that feed on soybean (Glycine max) phloem sap. Transcriptome analyses have shown that resistant soybean plants mount a fast response that limits aphid feeding and population growth. Conversely, defense responses in susceptible plants are slower and it is hypothesized that aphids block effective defenses in the compatible interaction. Unlike other pests, aphids can colonize plants for long periods of time; yet the effect on the plant transcriptome after long-term aphid feeding has not been analyzed for any plant-aphid interaction. We analyzed the susceptible and resistant (Rag1) transcriptome response to aphid feeding in soybean plants colonized by aphids (biotype 1) for 21 days. We found a reduced resistant response and a low level of aphid growth on Rag1 plants, while susceptible plants showed a strong response consistent with pattern-triggered immunity. GO-term analyses identified chitin regulation as one of the most overrepresented classes of genes, suggesting that chitin could be one of the hemipteran-associated molecular pattern that triggers this defense response. Transcriptome analyses also indicated the phenylpropanoid pathway, specifically isoflavonoid biosynthesis, was induced in susceptible plants in response to long-term aphid feeding. Metabolite analyses corroborated this finding. Aphid-treated susceptible plants accumulated daidzein, formononetin, and genistein, although glyceollins were present at low levels in these plants. Choice experiments indicated that daidzein may have a deterrent effect on aphid feeding. Mass spectrometry imaging showed these isoflavones accumulate likely in the mesophyll cells or epidermis and are absent from the vasculature, suggesting that isoflavones are part of a non-phloem defense response that can reduce aphid feeding. While it is likely that aphid can initially block defense responses in compatible interactions, it appears that susceptible soybean plants can eventually mount an effective defense in response to long-term soybean aphid colonization.
Collapse
Affiliation(s)
- Jessica D. Hohenstein
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
| | - Matthew E. Studham
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, United States
| | - Adam Klein
- Ames Laboratory, United States Department of Energy, Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Nik Kovinich
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, United States
| | - Kia Barry
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Young-Jin Lee
- Ames Laboratory, United States Department of Energy, Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Gustavo C. MacIntosh
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
14
|
Anguraj Vadivel AK, Krysiak K, Tian G, Dhaubhadel S. Genome-wide identification and localization of chalcone synthase family in soybean (Glycine max [L]Merr). BMC PLANT BIOLOGY 2018; 18:325. [PMID: 30509179 PMCID: PMC6278125 DOI: 10.1186/s12870-018-1569-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/23/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Soybean is a paleopolyploid that has undergone two whole genome duplication events. Gene duplication is a type of genomic change that can lead to novel functions of pre-existing genes. Chalcone synthase (CHS) is the plant-specific type III polyketide synthase that catalyzes the first committed step in (iso)flavonoid biosynthesis in plants. RESULTS Here we performed a genome-wide search of CHS genes in soybean, and identified 21 GmCHS loci containing 14 unique GmCHS (GmCHS1-GmCHS14) that included 5 newly identified GmCHSs (GmCHS10-GmCHS14). Furthermore, 3 copies of GmCHS3 and 2 copies of GmCHS4 were found in soybean. Analysis of gene structure of GmCHSs revealed the presence of a single intron in protein-coding regions except for GmCHS12 that contained 3 introns. Even though GmCHS genes are located on 8 different chromosomes, a large number of these genes are present on chromosome 8 where they form 3 distinct clusters. Expression analysis of GmCHS genes revealed tissue-specific expression pattern, and that some GmCHS isoforms localize in the cytoplasm and the nucleus while other isoforms are restricted to cytoplasm only. CONCLUSION Overall, we have identified 21 GmCHS loci with 14 unique GmCHS genes in the soybean genome. Their gene structures and genomic organization together with the spatio-temporal expression and protein localization suggest their importance in the production of downstream metabolites such as (iso)flavonoids and their derived phytoalexins.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, London, ON Canada
| | - Kevin Krysiak
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
| | - Gang Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, London, ON Canada
| |
Collapse
|
15
|
Wang Z, Yu Q, Shen W, El Mohtar CA, Zhao X, Gmitter FG. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC PLANT BIOLOGY 2018; 18:189. [PMID: 30208944 PMCID: PMC6134715 DOI: 10.1186/s12870-018-1418-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Citrus flavonoids are considered as the important secondary metabolites because of their biological and pharmacological activities. Chalcone synthase (CHS) is a key enzyme that catalyses the first committed step in the flavonoid biosynthetic pathway. CHS genes have been isolated and characterized in many plants. Previous studies indicated that CHS is a gene superfamily. In citrus, the number of CHS members and their contribution to the production of flavonoids remains a mystery. In our previous study, the copies of CitCHS2 gene were found in different citrus species and the sequences are highly conserved, but the flavonoid content varied significantly among those species. RESULTS From seventy-seven CHS and CHS-like gene sequences, ten CHS members were selected as candidates according to the features of their sequences. Among these candidates, expression was detected from only three genes. A predicted CHS sequence was identified as a novel CHS gene. The structure analysis showed that the gene structure of this novel CHS is very similar to other CHS genes. All three CHS genes were highly conserved and had a basic structure that included one intron and two exons, although they had different expression patterns in different tissues and developmental stages. These genes also presented different sensitivities to methyl jasmonate (MeJA) treatment. In transgenic plants, the expression of CHS genes was significantly correlated with the production of flavonoids. The three CHS genes contributed differently to the production of flavonoids. CONCLUSION Our study indicated that CitCHS is a gene superfamily including at least three functional members. The expression levels of the CHS genes are highly correlated to the biosynthesis of flavonoids. The CHS enzyme is dynamically produced from several CHS genes, and the production of total flavonoids is regulated by the overall expression of CHS family genes.
Collapse
Affiliation(s)
- Zhibin Wang
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Wanxia Shen
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Choaa A. El Mohtar
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Fredrick G. Gmitter
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| |
Collapse
|
16
|
Sepiol CJ, Yu J, Dhaubhadel S. Genome-Wide Identification of Chalcone Reductase Gene Family in Soybean: Insight into Root-Specific GmCHRs and Phytophthora sojae Resistance. FRONTIERS IN PLANT SCIENCE 2017; 8:2073. [PMID: 29270182 PMCID: PMC5725808 DOI: 10.3389/fpls.2017.02073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/20/2017] [Indexed: 05/02/2023]
Abstract
Soybean (Glycine max [L.] Merr) is one of the main grain legumes worldwide. Soybean farmers lose billions of dollars' worth of yield annually due to root and stem rot disease caused by the oomycete Phytophthora sojae. Many strategies have been developed to combat the disease, however, these methods have proven ineffective in the long term. A more cost effective and durable approach is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of phytoalexin glyceollins in soybean. Glyceollins are isoflavonoids, synthesized via the legume-specific branch of general phenylpropanoid pathway. The first key enzyme exclusively involved in glyceollin synthesis is chalcone reductase (CHR) which coacts with chalcone synthase for the production of isoliquiritigenin, the precursor for glyceollin biosynthesis. Here we report the identification of 14 putative CHR genes in soybean where 11 of them are predicted to be functional. Our results show that GmCHRs display tissue-specific gene expression, and that only root-specific GmCHRs are induced upon P. sojae infection. Among 4 root-specific GmCHRs, GmCHR2A is located near a QTL that is linked to P. sojae resistance suggesting GmCHR2A as a novel locus for partial resistance that can be utilized for resistance breeding.
Collapse
Affiliation(s)
- Caroline J. Sepiol
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jaeju Yu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Zhao M, Wang T, Wu P, Guo W, Su L, Wang Y, Liu Y, Yan F, Wang Q. Isolation and characterization of GmMYBJ3, an R2R3-MYB transcription factor that affects isoflavonoids biosynthesis in soybean. PLoS One 2017; 12:e0179990. [PMID: 28654660 PMCID: PMC5487076 DOI: 10.1371/journal.pone.0179990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/07/2017] [Indexed: 11/18/2022] Open
Abstract
Isoflavonoids are secondary metabolites that play a variety of roles in plant-microbe interactions and plant defenses against abiotic stresses. Here we report a new MYB transcription factor (TF) gene, GmMYBJ3, that is involved in the isoflavonoids biosynthesis. The GmMYBJ3 gene is 1,002 bp long and encodes a protein of 333 amino acids. Amino acid sequence analysis showed that GmMYBJ3 is a typical R2R3 MYB TF. Yeast expression experiment demonstrated that GmMYBJ3 has its transcription activity in the nucleus and is transiently expressed in onion epidermal cells. The GmMYBJ3 gene was transformed into soybean and the expression activity of the GmMYBJ3 gene was significantly positively correlated with total isoflavonoid accumulation in soybean. Transient expression assays indicated that GmMYBJ3 can activate CHS8 expression. Furthermore, we analyzed the expressions of several genes known involved in the isoflavonoid biosynthesis, including CHS8, CHI1A, PAL1, IFS2 and F3H, in the GmMYBJ3 transgenic plants. The results showed that the expression levels of CHS8 and CHI1A were significantly increased in the transgenic plants compared to wild-type plants, but those of PAL1, IFS2 and F3H remained similar between the transgenic and wild-type plants. These results suggest that GmMYBJ3 participates in the isoflavonoid biosynthesis through regulation of CHS8 and CHI1A in soybean.
Collapse
Affiliation(s)
- Mingzhu Zhao
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Tianliang Wang
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Ping Wu
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Wenyun Guo
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Liantai Su
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Ying Wang
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Yajing Liu
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Fan Yan
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| | - Qingyu Wang
- Jilin Key Laboratory for Crop Genetic Engineering, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
18
|
Mainali HR, Vadivel AKA, Li X, Gijzen M, Dhaubhadel S. Soybean cyclophilin GmCYP1 interacts with an isoflavonoid regulator GmMYB176. Sci Rep 2017; 7:39550. [PMID: 28074922 PMCID: PMC5225424 DOI: 10.1038/srep39550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/23/2016] [Indexed: 11/15/2022] Open
Abstract
Cyclophilins (CYPs) belong to the immunophilin superfamily with peptidyl-prolyl cis-trans isomerase (PPIase) activity. They catalyze the interconversion of the cis- and trans-rotamers of the peptidyl-prolyl amide bond of peptides. A yeast-two-hybrid screening using the isoflavonoid regulator GmMYB176 as bait identified GmCYP1 as one of the interacting proteins in soybean embryos. GmCYP1 localizes both in the nucleus and cytoplasm, and interacts in planta with GmMYB176, in the nucleus, and with SGF14l (a soybean 14-3-3 protein) in the nucleus and the cytoplasm. GmCYP1 contains a single cyclophilin-like domain and displays a high sequence identity with other plant CYPs that are known to have stress-specific function. Tissue-specific expression of GmCYP1 revealed higher expression in developing seeds compared to other vegetative tissues, suggesting their seed-specific role. Furthermore, GmCYP1 transcript level was reduced in response to stress. Since isoflavonoids are involved in plant stress resistance against biotic and abiotic factors, the interaction of GmCYP1 with the isoflavonoid regulators GmMYB176 and 14-3-3 protein suggests its role in defense in soybean.
Collapse
Affiliation(s)
- Hemanta Raj Mainali
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada
| | - Arun Kumaran Anguraj Vadivel
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Xuyan Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Mark Gijzen
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|
19
|
Liu X, Lu Y, Yan M, Sun D, Hu X, Liu S, Chen S, Guan C, Liu Z. Genome-Wide Identification, Localization, and Expression Analysis of Proanthocyanidin-Associated Genes in Brassica. FRONTIERS IN PLANT SCIENCE 2016; 7:1831. [PMID: 28018375 PMCID: PMC5145881 DOI: 10.3389/fpls.2016.01831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/21/2016] [Indexed: 05/29/2023]
Abstract
Proanthocyanidins (PA) is a type of prominent flavonoid compound deposited in seed coats which controls the pigmentation in all Brassica species. Annotation of Brassica juncea genome survey sequences showed 72 PA genes; however, a functional description of these genes, especially how their interactions regulate seed pigmentation, remains elusive. In the present study, we designed 19 primer pairs to screen a bacterial artificial chromosome (BAC) library of B. juncea. A total of 284 BAC clones were identified and sequenced. Alignment of the sequences confirmed that 55 genes were cloned, with every Arabidopsis PA gene having 2-7 homologs in B. juncea. BLAST analysis using the recently released B. rapa or B. napus genome database identified 31 and 58 homologous genes, respectively. Mapping and phylogenetic analysis indicated that 30 B. juncea PA genes are located in the A-genome chromosomes except A04, whereas the remaining 25 genes are mapped to the B-genome chromosomes except B05 and B07. RNA-seq data and Fragments Per Kilobase of a transcript per Million mapped reads (FPKM) analysis showed that most of the PA genes were expressed in the seed coat of B. juncea and B. napus, and that BjuTT3, BjuTT18, BjuANR, BjuTT4-2, BjuTT4-3, BjuTT19-1, and BjuTT19-3 are transcriptionally regulated, and not expressed or downregulated in yellow-seeded testa. Importantly, our study facilitates in better understanding of the molecular mechanism underlying Brassica PA profiles and accumulation, as well as in further characterization of PA genes.
Collapse
Affiliation(s)
- Xianjun Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
- College of Life Sciences, Resources and Environment Sciences, Yichun UniversityYichun, China
| | - Ying Lu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Mingli Yan
- School of Biology, Hunan University of Science and TechnologyXiangtan, China
| | - Donghong Sun
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | | | - Shuyan Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Sheyuan Chen
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Chunyun Guan
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Zhongsong Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| |
Collapse
|
20
|
Dastmalchi M, Bernards MA, Dhaubhadel S. Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:689-706. [PMID: 26856401 DOI: 10.1111/tpj.13137] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 05/02/2023]
Abstract
Isoflavonoids are specialized plant metabolites, almost exclusive to legumes, and their biosynthesis forms a branch of the diverse phenylpropanoid pathway. Plant metabolism may be coordinated at many levels, including formation of protein complexes, or 'metabolons', which represent the molecular level of organization. Here, we have confirmed the existence of the long-postulated isoflavonoid metabolon by identifying elements of the complex, their subcellular localizations and their interactions. Isoflavone synthase (IFS) and cinnamate 4-hydroxylase (C4H) have been shown to be tandem P450 enzymes that are anchored in the ER, interacting with soluble enzymes of the phenylpropanoid and isoflavonoid pathways (chalcone synthase, chalcone reductase and chalcone isomerase). The soluble enzymes of these pathways, whether localized to the cytoplasm or nucleus, are tethered to the ER through interaction with these P450s. The complex is also held together by interactions between the soluble elements. We provide evidence for IFS interaction with upstream and non-consecutive enzymes. The existence of such a protein complex suggests a possible mechanism for flux of metabolites into the isoflavonoid pathway. Further, through interaction studies, we identified several candidates that are associated with GmIFS2, an isoform of IFS, in soybean hairy roots. This list provides additional candidates for various biosynthetic and structural elements that are involved in isoflavonoid production. Our interaction studies provide valuable information about isoform specificity among isoflavonoid enzymes, which may guide future engineering of the pathway in legumes or help overcome bottlenecks in heterologous expression.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada
| | - Mark A Bernards
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada
| |
Collapse
|
21
|
Dastmalchi M, Dhaubhadel S. Proteomic insights into synthesis of isoflavonoids in soybean seeds. Proteomics 2015; 15:1646-57. [PMID: 25757747 DOI: 10.1002/pmic.201400444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/25/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
Soybean seeds are the major human dietary source of isoflavonoids, a class of plant natural products almost entirely exclusive to legumes. Isoflavonoids reduce the risk of a number of chronic human illnesses. Biosynthesis and accumulation of this class of compounds is a multigenic and complex trait, with a great deal of variability among soybean cultivars and with respect to the environment. There is a wealth of genomic, transcriptomic, and metabolomics data regarding isoflavonoid biosynthesis, but the connection between multigene families and their cognate proteins is a missing link that could provide us with a great deal of functional information. The changing proteome of the developing seed can shed light on the correlative increase in isoflavonoids, while the maternal seed coat proteome can provide the link with inherited metabolic and signaling machinery. In this effort, 'seed-filling' proteomics has revealed key secondary metabolite enzymes that quantitatively vary throughout seed development. Seed coat proteomics has revealed the existence of metabolic apparatus specific to isoflavonoid biosynthesis (isoflavonoid reductase) that could potentially influence the chemical content of this organ. The future of proteomic analysis of isoflavonoid biosynthesis should be centered on the development of quantitative, tissue-specific proteomes that emphasize low-abundance metabolic proteins to extract the whole suite of factors involved.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Biology, University of Western Ontario, London, Canada
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, London, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, Canada
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, London, Canada
| |
Collapse
|
22
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 521] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
23
|
Rajwade AV, Kadoo NY, Borikar SP, Harsulkar AM, Ghorpade PB, Gupta VS. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. PHYTOCHEMISTRY 2014; 98:41-53. [PMID: 24380374 DOI: 10.1016/j.phytochem.2013.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/15/2013] [Accepted: 12/03/2013] [Indexed: 05/24/2023]
Abstract
Linseed or flax (Linum usitatissimum L.) varieties differ markedly in their seed α-linolenic acid (ALA) levels. Fatty acid desaturases play a key role in accumulating ALA in seed. We performed fatty acid (FA) profiling of various seed developmental stages of ten Indian linseed varieties including one mutant variety. Depending on their ALA contents, these varieties were grouped under high ALA and low ALA groups. Transcript profiling of six microsomal desaturase genes (SAD1, SAD2, FAD2, FAD2-2, FAD3A and FAD3B), which act sequentially in the fatty acid desaturation pathway, was performed using real-time PCR. We observed gene specific as well as temporal expression pattern for all the desaturases and their differential expression profiles corresponded well with the variation in FA accumulation in the two groups. Our study points to efficient conversion of intermediate FAs [stearic (SA), oleic (OA) and linoleic acids (LA)] to the final product, ALA, due to efficient action of all the desaturases in high ALA group. While in the low ALA group, even though the initial conversion up to OA was efficient, later conversions up to ALA seemed to be inefficient, leading to higher accumulation of OA and LA instead of ALA. We sequenced the six desaturase genes from the ten varieties and observed that variation in the amino acid (AA) sequences of desaturases was not responsible for differential ALA accumulation, except in the mutant variety TL23 with very low (<2%) ALA content. In TL23, a point mutation in the FAD3A gene resulted into a premature stop codon generating a truncated protein with 291 AA.
Collapse
Affiliation(s)
- Ashwini V Rajwade
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Narendra Y Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Sanjay P Borikar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Abhay M Harsulkar
- Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411 043, India.
| | | | - Vidya S Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| |
Collapse
|
24
|
Abu Zahra H, Kuwamoto S, Uno T, Kanamaru K, Yamagata H. A cis-element responsible for cGMP in the promoter of the soybean chalcone synthase gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:92-8. [PMID: 24286716 DOI: 10.1016/j.plaphy.2013.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/29/2013] [Indexed: 05/07/2023]
Abstract
The cyclic nucleotides cGMP and cAMP have been reported to play key roles in the regulation of plant processes and responses. We have previously reported that several genes encoding flavonoid biosynthetic enzymes, including chalcone synthase (CHS) in soybean (Glycine max L.), were induced by cGMP but not cAMP. The soybean genome contains nine CHS gene copies (GmCHS1-9). We investigated the responsiveness of several GmCHS genes to cGMP, cAMP, NO, and white light. Quantitative RT-PCR analysis showed that the transcript levels of GmCHS7 and GmCHS8 were increased by 3.6- and 3.8-fold, respectively, with cGMP whereas the transcript levels of GmCHS2 remained constant. Although cAMP had no effect on the transcript levels of the three genes, NO had an activation effect on all three. White light activated the three genes in a transient manner, with GmCHS2, GmCHS7, and GmCHS8 transcript levels increasing 3-fold after 3 h and decreasing to basal levels after 9 h. The GmCHS8 promoter contains several important cis-elements, including the G-box and H-box forming the Unit-I-like sequence and the MYB binding sequence, a target of the GmMYB176 transcription factor regulating the expression of GmCHS8. A transient gene expression assay revealed the activation of the Unit-I-like sequence, but not of the MYB binding sequence, by cGMP. The combination of G-box and H-box was necessary for cGMP responsiveness. Taken together, these results suggest that the Unit-I-like sequence in the promoters of GmCHS7 and GmCHS8 is a cGMP responsive cis-element in these genes and that NO exerts its effect via cis-elements other than the Unit-I-like sequence.
Collapse
Affiliation(s)
- Hamad Abu Zahra
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Satoru Kuwamoto
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Tomohide Uno
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Kengo Kanamaru
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | - Hiroshi Yamagata
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
25
|
Li XW, Li JW, Zhai Y, Zhao Y, Zhao X, Zhang HJ, Su LT, Wang Y, Wang QY. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants. Gene 2013; 532:72-9. [PMID: 24060295 DOI: 10.1016/j.gene.2013.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
Isoflavones play diverse roles in plant-microbe interactions and are potentially important for human nutrition and health. To study the regulation of isoflavonoid synthesis in soybean, the R2R3-MYB transcription factor GmMYB12B2 was isolated and characterized. Yeast expression experiments demonstrated that GmMYB12B2 showed transcriptional activity. GmMYB12B2 was localized in the nucleus when it was transiently expressed in onion epidermal cells. Real-time quantitative PCR analysis revealed that GmMYB12B2 transcription was increased in roots and mature seeds compared with other organs. The gene expression level in immature embryos was consistent with the accumulation of isoflavones. CHS8 is a key enzyme in plant flavonoid biosynthesis. Transient expression experiments in soybean calli demonstrated that CHS8 was regulated by GmMYB12B2 and produced more fluorescence. The expression levels of some key enzymes in flavonoid biosynthesis were examined in transgenic Arabidopsis lines. The results showed that the expression levels of PAL1, CHS and FLS in transgenic plants were significantly higher than those in wild type plants. However, the expression level of DFR was lower, and the expression levels of CHI, F3H and F3'H were the same in all lines. GmMYB12B2 expression caused a constitutive increase in the accumulation of flavonoids in transgenic Arabidopsis lines compared with wild type plants.
Collapse
Affiliation(s)
- Xiao-Wei Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cabreira C, Cagliari A, Bücker-Neto L, Wiebke-Strohm B, de Freitas LB, Marcelino-Guimarães FC, Nepomuceno AL, Margis-Pinheiro MMAN, Bodanese-Zanettini MH. The Lesion Simulating Disease (LSD) gene family as a variable in soybean response to Phakopsora pachyrhizi infection and dehydration. Funct Integr Genomics 2013; 13:323-38. [DOI: 10.1007/s10142-013-0326-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/20/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022]
|
27
|
Chennupati P, Seguin P, Chamoun R, Jabaji S. Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12421-7. [PMID: 23199070 DOI: 10.1021/jf3036319] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Isoflavones have been reported to have putative health-beneficial properties, which has led to increased interest and demand for soybeans and soy-based products. This study was conducted to determine the effects of high-temperature stress on isoflavone concentration and expression of four key genes involved in isoflavone synthesis (i.e., CHS7, CHS8, IFS1, and IFS2) in both soybean pods and seeds during their late reproductive stage (i.e., R5-R8). Isoflavone concentrations were quantified using high-performance liquid chromatography (HPLC), and gene expression was studied using quantitative real-time (qRT)-PCR. High-temperature stress [33/25 °C (day/night temperatures)] imposed at the late reproductive stage (R5-R8) reduced total isoflavone concentration by 46-86 and 20-73% in seeds and pods, respectively, the reduction depending on the stage of maturity. At stage R5, the reduction in total isoflavone concentration was greater in seeds than in pods, whereas at subsequent stages, the reverse was observed. High-temperature stress had a large impact on the expression of CHS7, CHS8, IFS1, and IFS2 in both seeds and pods. In seeds, temperature stress reduced the expression of one gene at the R5 stage (CHS8), two genes at the R6 stage (CHS7 and IFS1), and all four genes at the R7 stage, the reduction ranging between 35 and 97%. In pods, high-temperature stress affected the expression of two genes at the R6 stage (CHS7 and IFS2) and all four genes at the R7 stage. Unlike in seeds, at the R6 stage, high temperature increased the expression of CHS7 and IFS2 by 72 and 736%, respectively, whereas at R7 stage the expression of all genes was reduced by an average of 97%. The present study reveals that high-temperature stress initiated at the R5 stage and maintained until maturation (i.e., R8 stage) has a rapid and sustained negative effect on isoflavone concentration in both seeds and pods. High temperature also affects gene expression; however, there was no clear correlation between isoflavone concentration and gene expression.
Collapse
Affiliation(s)
- Pratyusha Chennupati
- Department of Plant Science, McGill University , Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | | | | | |
Collapse
|
28
|
Pandurangan S, Pajak A, Molnar SJ, Cober ER, Dhaubhadel S, Hernández-Sebastià C, Kaiser WM, Nelson RL, Huber SC, Marsolais F. Relationship between asparagine metabolism and protein concentration in soybean seed. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3173-84. [PMID: 22357599 PMCID: PMC3350928 DOI: 10.1093/jxb/ers039] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 05/03/2023]
Abstract
The relationship between asparagine metabolism and protein concentration was investigated in soybean seed. Phenotyping of a population of recombinant inbred lines adapted to Illinois confirmed a positive correlation between free asparagine levels in developing seeds and protein concentration at maturity. Analysis of a second population of recombinant inbred lines adapted to Ontario associated the elevated free asparagine trait with two of four quantitative trait loci determining population variation for protein concentration, including a major one on chromosome 20 (linkage group I) which has been reported in multiple populations. In the seed coat, levels of asparagine synthetase were high at 50 mg and progressively declined until 150 mg seed weight, suggesting that nitrogenous assimilates are pre-conditioned at early developmental stages to enable a high concentration of asparagine in the embryo. The levels of asparaginase B1 showed an opposite pattern, being low at 50 mg and progressively increased until 150 mg, coinciding with an active phase of storage reserve accumulation. In a pair of genetically related cultivars, ∼2-fold higher levels of asparaginase B1 protein and activity in seed coat, were associated with high protein concentration, reflecting enhanced flux of nitrogen. Transcript expression analyses attributed this difference to a specific asparaginase gene, ASPGB1a. These results contribute to our understanding of the processes determining protein concentration in soybean seed.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Agnieszka Pajak
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Stephen J. Molnar
- Agriculture and Agri-Food Canada, Bioproducts and Bioprocesses and Sustainable Production Systems, Eastern Cereal and Oilseeds Research Centre, Central Experimental Farm, Ottawa, Ontario, K1A 0C6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Bioproducts and Bioprocesses and Sustainable Production Systems, Eastern Cereal and Oilseeds Research Centre, Central Experimental Farm, Ottawa, Ontario, K1A 0C6, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Cinta Hernández-Sebastià
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| | - Werner M. Kaiser
- Department of Botany I, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, D-97082 Würzburg, Germany
| | - Randall L. Nelson
- US Department of Agriculture-Agricultural Research Service, Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C. Huber
- US Department of Agriculture-Agricultural Research Service, Photosynthesis Research Unit, and Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, 197 ERML, Urbana, IL 61801, USA
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario, N5V 4T3, Canada
| |
Collapse
|
29
|
Renouard S, Corbin C, Lopez T, Montguillon J, Gutierrez L, Lamblin F, Lainé E, Hano C. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. PLANTA 2012; 235:85-98. [PMID: 21837520 DOI: 10.1007/s00425-011-1492-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/25/2011] [Indexed: 05/24/2023]
Abstract
Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.
Collapse
Affiliation(s)
- Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Antenne Scientifique Universitaire de Chartres (ASUC), Université d'Orléans, 21 rue de Loigny la Bataille, 28000, Chartres, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Y, Lou Q, Xu W, Xin Y, Bassett C, Wang Y. Characterization of a chalcone synthase (CHS) flower-specific promoter from Lilium orential 'Sorbonne'. PLANT CELL REPORTS 2011; 30:2187-94. [PMID: 21800100 DOI: 10.1007/s00299-011-1124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/22/2011] [Accepted: 07/06/2011] [Indexed: 05/11/2023]
Abstract
The first enzyme in the flavonoid pathway, chalcone synthase, is encoded by a gene (CHS) whose expression is normally under developmental control. In our previous studies, an 896-bp promoter region of a flower-specific CHS gene was isolated from Lilium orential 'Sorbonne', and designated as PLoCHS. Here, the PLoCHS promoter was fused to the β-glucuronidase (GUS) gene to characterize its spatial and temporal expression in Petunia hybrida 'Dreams Midnight' using an Agrobacterium-mediated leaf disc transformation method. Our results demonstrated that GUS expression was present in flowers, but reduced or absent in the other tissues (leaf and stem) examined. In petals, GUS activity reached its peak at flower developmental stage 4, and decreased at later stages. Deletion analysis indicated that even a 307-bp fragment of the PLoCHS promoter could still direct flower-specific expression. Further deletion of the region from -261 to -72 bp resulted in weak expression in different organs, including flowers, leaves and stems. This evidence combined with prediction of cis-acting elements in the PLoCHS promoter suggests that the TACPyAT box located in this promoter plays a key role in the regulation of organ-specific expression.
Collapse
Affiliation(s)
- Yali Liu
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
31
|
Heis MD, Ditmer EM, de Oliveira LA, Frazzon APG, Margis R, Frazzon J. Differential expression of cysteine desulfurases in soybean. BMC PLANT BIOLOGY 2011; 11:166. [PMID: 22099069 PMCID: PMC3233524 DOI: 10.1186/1471-2229-11-166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/18/2011] [Indexed: 05/07/2023]
Abstract
BACKGROUND Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. RESULTS Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. CONCLUSIONS Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression.
Collapse
Affiliation(s)
- Marta D Heis
- Biotechnology Center, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Elisabeth M Ditmer
- Biotechnology Center, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Luisa A de Oliveira
- Biotechnology Center, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Ana Paula G Frazzon
- Department of Microbiology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rogério Margis
- Biotechnology Center, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jeverson Frazzon
- Department of Food Science, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Sun Y, Tian Q, Yuan L, Jiang Y, Huang Y, Sun M, Tang S, Luo K. Isolation and promoter analysis of a chalcone synthase gene PtrCHS4 from Populus trichocarpa. PLANT CELL REPORTS 2011; 30:1661-1671. [PMID: 21553109 DOI: 10.1007/s00299-011-1075-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/06/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
As perennial plants, Populus species are constantly exposed to environmental stresses, such as wounding and pathogen attack, which lead to production of compounds including lignin, flavonoids and phytoalexins. Chalcone synthase (CHS) is a key enzyme in the flavonoid biosynthesis pathway. In this study, a cDNA clone encoding CHS was isolated from Populus trichocarpa by reverse transcription-polymerase chain reaction (RT-PCR). The full-length cDNA, named PtrCHS4, was 1,314 bp with a 1,173 bp open reading frame that corresponded to a deduced protein of 391 amino acid residues. Multiple sequence alignments showed that PtrCHS4 shared high homology with CHS proteins from other plants. Phylogenetic analysis revealed that PtrCHS4 was most closely related to PhCHS from Petunia hybrida and NaCHS from Nicotiana attenuata. Semi-quantitative RT-PCR analysis identified that the PtrCHS4 gene was abundantly expressed in the leaves and stems, while its expression was drastically reduced in the roots. Transcript abundance of PtrCHS4 was stimulated by 2.5-fold within 24 h of wounding treatment. Promoter analysis confirmed that the PtrCHS4 promoter was capable of directing expression of the GUS reporter in both wounded and unwounded leaves of transgenic Chinese white poplar (P. tomentosa Carr.), indicating that the PtrCHS4 promoter is systemically responsive to wounding stimuli. Furthermore, promoter deletion analysis showed that the proximal 1,592 bp from the transcription start site were required for promoter activation by jasmonic acid and the -1,096 to -148 region was proved to be necessary for establishing wound-induced pattern of expression.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Amino Acid Sequence
- Blotting, Southern
- Cloning, Molecular
- Cyclopentanes/pharmacology
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Gene Expression Regulation, Plant
- Gene Fusion
- Genes, Plant
- Genes, Reporter
- Molecular Sequence Data
- Oxylipins/pharmacology
- Phylogeny
- Plant Leaves/drug effects
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Stems/enzymology
- Plant Stems/genetics
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- Populus/drug effects
- Populus/enzymology
- Populus/genetics
- Populus/physiology
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, Protein/methods
- Stress, Physiological
- Transcriptional Activation
- Transformation, Genetic
- Transgenes
Collapse
Affiliation(s)
- Yiming Sun
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, State Key Laboratory of Eco-environment and Bio-resource of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Promoters of three Brassica rapa FLOWERING LOCUS C differentially regulate gene expression during growth and development in Arabidopsis. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0117-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Yi J, Derynck MR, Li X, Telmer P, Marsolais F, Dhaubhadel S. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:1019-34. [PMID: 20345602 DOI: 10.1111/j.1365-313x.2010.04214.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we demonstrate that GmMYB176 regulates CHS8 expression and affects isoflavonoid synthesis in soybean. We previously established that CHS8 expression determines the isoflavonoid level in soybean seeds by comparing the transcript profiles of cultivars with different isoflavonoid contents. In the present study, a functional genomic approach was used to identify the factor that regulates CHS8 expression and isoflavonoid synthesis. Candidate genes were cloned, and co-transfection assays were performed in Arabidopsis leaf protoplasts. The results showed that GmMYB176 can trans-activate the CHS8 promoter with maximum activity. Transient expression of GmMYB176 in soybean embryo protoplasts increased endogenous CHS8 transcript levels up to 169-fold after 48 h. GmMYB176 encodes an R1 MYB protein, and is expressed in soybean seed during maturation. Furthermore, GmMYB176 recognizes a 23 bp motif containing a TAGT(T/A)(A/T) sequence within the CHS8 promoter. A subcellular localization study confirmed nuclear localization of GmMYB176. A predicted pST binding site for 14-3-3 protein is required for subcellular localization of GmMYB176. RNAi silencing of GmMYB176 in hairy roots resulted in reduced levels of isoflavonoids, showing that GmMYB176 is necessary for isoflavonoid biosynthesis. However, over-expression of GmMYB176 was not sufficient to increase CHS8 transcript and isoflavonoid levels in hairy roots. We conclude that an R1 MYB transcription factor, GmMYB176, regulates CHS8 expression and isoflavonoid synthesis in soybean.
Collapse
Affiliation(s)
- Jinxin Yi
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | | | | | | | | | | |
Collapse
|