1
|
Ren J, Li X, Dong C, Zheng P, Zhang N, Ji H, Yu J, Lu X, Li M, Chen C, Liang L. Effect of ozone treatment on phenylpropanoid metabolism in harvested cantaloupes. J Food Sci 2024; 89:4914-4925. [PMID: 38980985 DOI: 10.1111/1750-3841.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Phenylpropanoid metabolism plays an important role in cantaloupe ripening and senescence, but the mechanism of ozone regulation on phenylpropanoid metabolism remains unclear. This study investigated how ozone treatment modulates the levels of secondary metabolites associated with phenylpropanoid metabolism, the related enzyme activities, and gene expression in cantaloupe. Treating cantaloupes with 15 mg/m3 of ozone after precooling can help maintain postharvest hardness. This treatment also enhances the production and accumulation of secondary metabolites, such as total phenols, flavonoids, and lignin. These metabolites are essential components of the phenylpropanoid metabolic pathway, activating enzymes like phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4CL, chalcone synthase, and chalcone isomerase. The results of the transcriptional expression patterns showed that differential gene expression related to phenylpropanoid metabolism in the peel of ozone-treated cantaloupes was primarily observed during the middle and late storage stages. In contrast, the pulp exhibited significant differential gene expression mainly during the early storage stage. Furthermore, it was observed that the level of gene expression in the peel was generally higher than that in the pulp. The correlation between the relative amount of gene changes in cantaloupe, activity of selected enzymes, and concentration of secondary metabolites could be accompanied by positive regulation of the phenylpropanoid metabolic pathway. Therefore, ozone stress induction positively enhances the biosynthesis of flavonoids in cantaloupes, leading to an increased accumulation of secondary metabolites. Additionally, it also improves the postharvest storage quality of cantaloupes.
Collapse
Affiliation(s)
- Jie Ren
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Xiaoxue Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Na Zhang
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Haipeng Ji
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Jinze Yu
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Xiaohui Lu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mo Li
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences (National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin)), Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin, China
| | - Liya Liang
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
2
|
Ramya A, Dhevagi P, Poornima R, Avudainayagam S, Watanabe M, Agathokleous E. Effect of ozone stress on crop productivity: A threat to food security. ENVIRONMENTAL RESEARCH 2023; 236:116816. [PMID: 37543123 DOI: 10.1016/j.envres.2023.116816] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Tropospheric ozone (O3), the most important phytotoxic air pollutant, can deteriorate crop quality and productivity. Notably, satellite and ground-level observations-based multimodel simulations demonstrate that the present and future predicted O3 exposures could threaten food security. Hence, the present study aims at reviewing the phytotoxicity caused by O3 pollution, which threatens the food security. The present review encompasses three major aspects; wherein the past and prevailing O3 concentrations in various regions were compiled at first, followed by discussing the physiological, biochemical and yield responses of economically important crop species, and considering the potential of O3 protectants to alleviate O3-induced phytotoxicity. Finally, the empirical data reported in the literature were quantitatively analysed to show that O3 causes detrimental effect on physiological traits, photosynthetic pigments, growth and yield attributes. The review on prevailing O3 concentrations over various regions, where economically important crop are grown, and their negative impact would support policy makers to implement air pollution regulations and the scientific community to develop countermeasures against O3 phytotoxicity for maintaining food security.
Collapse
Affiliation(s)
- Ambikapathi Ramya
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India.
| | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - S Avudainayagam
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
3
|
Bryant N, Engle N, Tschaplinski T, Pu Y, Ragauskas AJ. Variable lignin structure revealed in Populus leaves. RSC Adv 2023; 13:20187-20197. [PMID: 37416906 PMCID: PMC10320358 DOI: 10.1039/d3ra03142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
Lignin has long been a trait of interest, especially in bioenergy feedstocks such as Populus. While the stem lignin of Populus is well studied, foliar lignin has received significantly less consideration. To this end, leaves from 11 field grown, natural variant Populus trichocarpa genotypes were investigated by NMR, FTIR, and GC-MS. Five of these genotypes were sufficiently irrigated, and the other six genotypes were irrigated at a reduced rate (59% of the potential evapotranspiration for the site) to induce drought treatment. Analysis by HSQC NMR revealed highly variable lignin structure among the samples, especially for the syringyl/guaiacyl (S/G) ratio, which ranged from 0.52-11.9. Appreciable levels of a condensed syringyl lignin structure were observed in most samples. The same genotype subjected to different treatments exhibited similar levels of condensed syringyl lignin, suggesting this was not a response to stress. A cross peak of δC/δH 74.6/5.03, consistent with the erythro form of the β-O-4 linkage, was observed in genotypes where significant syringyl units were present. Principle component analysis revealed that FTIR absorbances associated with syringyl units (830 cm-1, 1317 cm-1) greatly contributed to variability between samples. Additionally, the ratio of 830/1230 cm-1 peak intensities were reasonably correlated (p-value < 0.05) with the S/G ratio determined by NMR. Analysis by GC-MS revealed significant variability of secondary metabolites such as tremuloidin, trichocarpin, and salicortin. Additionally, salicin derivatives were found to be well correlated with NMR results, which has been previously hypothesized. These results highlight previously unexplored nuance and variability associated with foliage tissue of poplar.
Collapse
Affiliation(s)
- Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
| | - Nancy Engle
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Timothy Tschaplinski
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Yunqiao Pu
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture Knoxville TN 37996 USA
| |
Collapse
|
4
|
Al-Naqeb G, Cafarella C, Aprea E, Ferrentino G, Gasparini A, Buzzanca C, Micalizzi G, Dugo P, Mondello L, Rigano F. Supercritical Fluid Extraction of Oils from Cactus Opuntia ficus-indica L. and Opuntia dillenii Seeds. Foods 2023; 12:foods12030618. [PMID: 36766148 PMCID: PMC9914625 DOI: 10.3390/foods12030618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
This study aimed to assess the capability of supercritical fluid extraction (SFE) as an alternative and green technique compared to Soxhlet extraction for the production of oils from Opuntia ficus-indica (OFI) seeds originating from Yemen and Italy and Opuntia dillenii (OD) seeds from Yemen. The following parameters were used for SFE extraction: a pressure of 300 bar, a CO2 flow rate of 1 L/h, and temperatures of 40 and 60 °C. The chemical composition, including the fatty acids and tocopherols (vitamin E) of the oils, was determined using chromatographic methods. The highest yield was achieved with Soxhlet extraction. The oils obtained with the different extraction procedures were all characterized by a high level of unsaturated fatty acids. Linoleic acid (≤62% in all samples) was the most abundant one, followed by oleic and vaccenic acid. Thirty triacylglycerols (TAGs) were identified in both OFI and OD seed oils, with trilinolein being the most abundant (29-35%). Vanillin, 4-hydroxybenzaldehyde, vanillic acid, and hydroxytyrosol were phenols detected in both OFI and OD oils. The highest γ-tocopherol content (177 ± 0.23 mg/100 g) was obtained through the SFE of OFI seeds from Yemen. Overall, the results highlighted the potential of SFE as green technology to obtain oils suitable for functional food and nutraceutical products.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Center Agriculture Food Environment (C3A), University of Trento, 38098 Trento, Italy
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a P.O. Box 1247, Yemen
- Correspondence: (G.A.-N.); (G.F.)
| | - Cinzia Cafarella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Eugenio Aprea
- Center Agriculture Food Environment (C3A), University of Trento, 38098 Trento, Italy
| | - Giovanna Ferrentino
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
- Correspondence: (G.A.-N.); (G.F.)
| | - Alessandra Gasparini
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chiara Buzzanca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Chromaleont s.r.l., c/o, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Chromaleont s.r.l., c/o, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
5
|
Yeshi K, Ruscher R, Miles K, Crayn D, Liddell M, Wangchuk P. Antioxidant and Anti-Inflammatory Activities of Endemic Plants of the Australian Wet Tropics. PLANTS 2022; 11:plants11192519. [PMID: 36235388 PMCID: PMC9571949 DOI: 10.3390/plants11192519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Plants have been a vital source of natural antioxidants since ancient times. Plants growing under various abiotic stress conditions often produce more defensive secondary metabolites such as phenolics, flavonoids, and terpenoids during adaptation to the environment. Many of these secondary metabolites are known to possess antioxidant and anti-inflammatory properties. This study tested seven plants sourced from the mountaintop areas (above 1000 m elevation) of Mount Lewis National Park (falls under the Wet Tropics of Queensland), Australia, for their antioxidant and anti-inflammatory activities. Of the seven studied plants, hydroethanolic extracts of six plants (Leptospermum wooroonooran, Ceratopetalum hylandii, Linospadix apetiolatus, Garcinia brassii, Litsea granitica, and Polyscias willmottii) showed high 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity in a dose-dependent (25–1000 μg/mL) manner. At the highest concentration of 1 mg/mL, the DPPH free radical scavenged percentage varied between 75.4% and 92.3%. Only the species Alyxia orophila was inactive in the DPPH free radical scavenging assay. Pseudo-IC50 values of the extracts’ ferric reducing antioxidant power (FRAP) based on dose-response curves showed a significant positive correlation with total phenolic content. Five out of the seven plants, namely G. brassii, C. hylandii, L. apetiolatus, L. wooroonooran, and A. orophila, showed inhibitory effects on the secretion of proinflammatory cytokines, tumour necrosis factor (TNF), and interleukins (IL)-23 in a lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMCs) assay. The results of this study demonstrate the value of tropical mountaintop plants in the biodiscovery of antioxidant and anti-inflammatory lead compounds.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4 and E5, McGregor Rd, Smithfield, QLD 4878, Australia
- Correspondence: (K.Y.); (P.W.)
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4 and E5, McGregor Rd, Smithfield, QLD 4878, Australia
| | - Kim Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4 and E5, McGregor Rd, Smithfield, QLD 4878, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Building E2, McGregor Rd, Smithfield, QLD 4878, Australia
| | - Michael Liddell
- College of Science and Engineering, Centre for Tropical Environmental and Sustainability Science, Building E1, McGregor Rd, Smithfield, QLD 4878, Australia
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4 and E5, McGregor Rd, Smithfield, QLD 4878, Australia
- Correspondence: (K.Y.); (P.W.)
| |
Collapse
|
6
|
Li G, Zeng X, Li Y, Li J, Huang X, Zhao D. BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants. Int J Mol Sci 2022; 23:ijms23105305. [PMID: 35628116 PMCID: PMC9140386 DOI: 10.3390/ijms23105305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Lodging resistance of rice (Oryza sativa L.) has always been a hot issue in agricultural production. A brittle stem mutant, osbc17, was identified by screening an EMS (Ethylmethane sulfonate) mutant library established in our laboratory. The stem segments and leaves of the mutant were obviously brittle and fragile, with low mechanical strength. Examination of paraffin sections of flag leaf and internode samples indicated that the number of cell layers in mechanical tissue of the mutant was decreased compared with the wild type, Pingtangheinuo, and scanning electron microscopy revealed that the mechanical tissue cell walls of the mutant were thinner. Lignin contents of the internodes of mature-stage rice were significantly lower in the mutant than in the wild type. By the MutMap method, we found candidate gene OsBC17, which was located on rice chromosome 2 and had a 2433 bp long coding sequence encoding a protein sequence of 810 amino acid residues with unknown function. According to LC-MS/MS analysis of intermediate products of the lignin synthesis pathway, the accumulation of caffeyl alcohol in the osbc17 mutant was significantly higher than in Pingtangheinuo. Caffeyl alcohol can be polymerized to the catechyl lignin monomer by laccase ChLAC8; however, ChLAC8 and OsBC17 are not homologous proteins, which suggests that the osbc17 gene is involved in this process by regulating laccase expression.
Collapse
Affiliation(s)
- Guangzheng Li
- The State Key Laboratory of Green Pesticide and Agricultural Biological Engineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China;
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Jianrong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Xiaozhen Huang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Degang Zhao
- The State Key Laboratory of Green Pesticide and Agricultural Biological Engineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China;
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
- Guizhou Plant Conservation Center, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Correspondence:
| |
Collapse
|
7
|
Engela MRGDS, Furlan CM, Esposito MP, Fernandes FF, Carrari E, Domingos M, Paoletti E, Hoshika Y. Metabolic and physiological alterations indicate that the tropical broadleaf tree Eugenia uniflora L. is sensitive to ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145080. [PMID: 33736256 DOI: 10.1016/j.scitotenv.2021.145080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Eugenia uniflora L. is an important fruit tree native to tropical South America that adapts to different habitats, thanks to its metabolic diversity and ability to adjust the leaf antioxidant metabolism. We hypothesized that this metabolic diversity would also enable E. uniflora to avoid oxidative damage and tolerate the enhanced ozone (O3) concentrations that have been registered in the (sub)tropics. We investigated whether carbohydrates, polyphenols and antioxidants are altered and markers of oxidative damage (ROS accumulation, alterations in leaf gas exchange, growth and biomass production) are detected in plants exposed to two levels of O3 (ambient air and twice elevated ozone level in a O3-FACE system for 75 days). Phytotoxic O3 dose above a threshold of 0 nmol m-2 s-1 (POD0) and accumulated exposure above 40 ppb (AOT40) were 3.6 mmol m-2 and 14.898 ppb h at ambient, and 4.7 mmol m-2 and 43.881 ppb h at elevated O3. Twenty-seven primary metabolites and 16 phenolic compounds were detected in the leaves. Contrary to the proposed hypothesis that tropical broadleaf trees are relatively O3 tolerant, we concluded that E. uniflora plants are sensitive to elevated O3 concentrations. Experimental POD0 values were lower than the critical levels for visible foliar O3, because of low stomatal conductance. In spite of this low stomatal O3 uptake, we found classic O3 injury, e.g. reduction in carbohydrates and fatty acids concentrations; non-significant changes in the polyphenol profile; inefficient antioxidant responses; increased contents of ROS and indicators of lipid peroxidation; reductions in stomatal conductance, net photosynthesis, root/shoot ratio and height growth. However, we also found some compensation mechanisms, e.g. increased leaf concentration of polyols for protecting the membranes, and increased leaf number for compensating the decline of photosynthetic rate. These results help filling the knowledge gap about tropical tree responses to O3.
Collapse
Affiliation(s)
| | - Claudia Maria Furlan
- Institute of Bioscience, University of São Paulo, Matão St. 257, 05508-090, SP, Brazil
| | | | - Francine Faia Fernandes
- Institute of Botany, Ecology Research Center, Avenue Miguel Estéfano, 3687, 04301-012, SP, Brazil
| | - Elisa Carrari
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Marisa Domingos
- Institute of Botany, Ecology Research Center, Avenue Miguel Estéfano, 3687, 04301-012, SP, Brazil
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Cotrozzi L, Campanella A, Pellegrini E, Lorenzini G, Nali C, Paoletti E. Phenylpropanoids are key players in the antioxidant defense to ozone of European ash, Fraxinus excelsior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8137-8147. [PMID: 27995504 DOI: 10.1007/s11356-016-8194-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/30/2016] [Indexed: 05/24/2023]
Abstract
Physiological and biochemical responses to ozone (O3) (150 ppb, 8 h day-1, 35 consecutive days) of two Italian provenances (Piedmont and Tuscany) of Fraxinus excelsior L. were evaluated, with special attention to the role of phenylpropanoids. Our results indicate (i) the high O3 sensitivity especially of Piedmont provenance (in terms of visible injury, water status, and photosynthetic apparatus); (ii) although the intra-specific sensitivity to O3 between provenances differs (mainly due to different stomatal behaviors since only Tuscany plants partially avoided the uptake of the pollutant gas), both provenances showed detoxification and defense mechanisms; (iii) the crucial participation of phenylpropanoids, with a key role played by flavonoids (especially quercitrin): among this class of metabolites, isoquercitrin is the principal player in the lower O3 sensitivity of Tuscany plants, together with lignins; (iv) although coumarins (typical compounds of Fraxinus) were severely depressed by O3, isofraxidin was triggered suggesting a key role in reactive oxygen species (ROS) detoxification, as well as trans-chalcone. Furthermore, the different behavior of verbascoside and oleuropein among provenances lead us to speculate on their influence in the tentatively repair or acclimation shown by Piedmont plants at the end of the exposure. Finally, the intra-specific O3 sensitivity may be also due to de novo peaks triggered by O3 not yet associated to some chemicals.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Campanella
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
9
|
Lee SH, Park YJ, Park SU, Lee SW, Kim SC, Jung CS, Jang JK, Hur Y, Kim YB. Expression of Genes Related to Phenylpropanoid Biosynthesis in Different Organs of Ixeris dentata var. albiflora. Molecules 2017; 22:molecules22060901. [PMID: 28555066 PMCID: PMC6152745 DOI: 10.3390/molecules22060901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/27/2022] Open
Abstract
Members of the genus Ixeris have long been used in traditional medicines as stomachics, sedatives, and diuretics. Phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate: coenzyme-A (CoA) ligase (4CL), chalcone synthase (CHS), and dihydroflavonol 4-reductase (DFR) are important enzymes in the phenylpropanoid pathway. In this study, we analyzed seven genes from Ixeris dentata var. albiflora that are involved in phenylpropanoid biosynthesis, using an Illumina/Solexa HiSeq 2000 platform. The amino acid sequence alignments for IdPALs, IdC4H, Id4CLs, IdCHS, and IdDFR showed high identity to sequences from other plants. We also investigated transcript levels using quantitative real-time PCR, and analyzed the accumulation of phenylpropanoids in different organs of I. dentata var. albiflora using high-performance liquid chromatography. The transcript levels of IdC4H, Id4CL1, IdCHS, and IdDFR were highest in the leaf. The catechin, chlorogenic acid, ferulic acid, and quercetin contents were also highest in the leaf. We suggest that expression of IdC4H, Id4CL1, IdCHS, and IdDFR is associated with the accumulation of phenylpropanoids. Our results may provide baseline information for elucidating the mechanism of phenylpropanoid biosynthesis in different organs of I. dentata var. albiflora.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Herb Crop Resources, National Institute of Horticultural & Herbal Science, RDA, Eumseong-gun 27709, Korea.
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Yun-Ji Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Won Lee
- Department of Herb Crop Resources, National Institute of Horticultural & Herbal Science, RDA, Eumseong-gun 27709, Korea.
| | - Seong-Cheol Kim
- Department of Herb Crop Resources, National Institute of Horticultural & Herbal Science, RDA, Eumseong-gun 27709, Korea.
| | - Chan-Sik Jung
- Department of Herb Crop Resources, National Institute of Horticultural & Herbal Science, RDA, Eumseong-gun 27709, Korea.
| | - Jae-Ki Jang
- Department of Herb Crop Resources, National Institute of Horticultural & Herbal Science, RDA, Eumseong-gun 27709, Korea.
| | - Yoonkang Hur
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Yeon Bok Kim
- Department of Herb Crop Resources, National Institute of Horticultural & Herbal Science, RDA, Eumseong-gun 27709, Korea.
| |
Collapse
|
10
|
Fuhrer J, Val Martin M, Mills G, Heald CL, Harmens H, Hayes F, Sharps K, Bender J, Ashmore MR. Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecol Evol 2016; 6:8785-8799. [PMID: 28035269 PMCID: PMC5192800 DOI: 10.1002/ece3.2568] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/27/2016] [Accepted: 08/27/2016] [Indexed: 11/09/2022] Open
Abstract
Risks associated with exposure of individual plant species to ozone (O3) are well documented, but implications for terrestrial biodiversity and ecosystem processes have received insufficient attention. This is an important gap because feedbacks to the atmosphere may change as future O3 levels increase or decrease, depending on air quality and climate policies. Global simulation of O3 using the Community Earth System Model (CESM) revealed that in 2000, about 40% of the Global 200 terrestrial ecoregions (ER) were exposed to O3 above thresholds for ecological risks, with highest exposures in North America and Southern Europe, where there is field evidence of adverse effects of O3, and in central Asia. Experimental studies show that O3 can adversely affect the growth and flowering of plants and alter species composition and richness, although some communities can be resilient. Additional effects include changes in water flux regulation, pollination efficiency, and plant pathogen development. Recent research is unraveling a range of effects belowground, including changes in soil invertebrates, plant litter quantity and quality, decomposition, and nutrient cycling and carbon pools. Changes are likely slow and may take decades to become detectable. CESM simulations for 2050 show that O3 exposure under emission scenario RCP8.5 increases in all major biomes and that policies represented in scenario RCP4.5 do not lead to a general reduction in O3 risks; rather, 50% of ERs still show an increase in exposure. Although a conceptual model is lacking to extrapolate documented effects to ERs with limited or no local information, and there is uncertainty about interactions with nitrogen input and climate change, the analysis suggests that in many ERs, O3 risks will persist for biodiversity at different trophic levels, and for a range of ecosystem processes and feedbacks, which deserves more attention when assessing ecological implications of future atmospheric pollution and climate change.
Collapse
Affiliation(s)
- Jürg Fuhrer
- AgroscopeClimate/Air Pollution GroupZurichSwitzerland
| | - Maria Val Martin
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Gina Mills
- Centre for Ecology and HydrologyEnvironment Centre WalesBangorGwyneddUK
| | - Colette L. Heald
- Department of Civil and Environmental Engineering and Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Harry Harmens
- Centre for Ecology and HydrologyEnvironment Centre WalesBangorGwyneddUK
| | - Felicity Hayes
- Centre for Ecology and HydrologyEnvironment Centre WalesBangorGwyneddUK
| | - Katrina Sharps
- Centre for Ecology and HydrologyEnvironment Centre WalesBangorGwyneddUK
| | - Jürgen Bender
- Institute of BiodiversityThünen InstituteBraunschweigGermany
| | | |
Collapse
|
11
|
Carriero G, Emiliani G, Giovannelli A, Hoshika Y, Manning WJ, Traversi ML, Paoletti E. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:575-81. [PMID: 26310976 DOI: 10.1016/j.envpol.2015.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 05/22/2023]
Abstract
This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O3). Effects of long-term ambient O3 exposure (23 ppm h AOT40) on biomass of an O3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (-51%) and below-ground biomass (-47%) was reduced by O3 although the effect was significant only for stem and coarse roots. Ambient O3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated.
Collapse
Affiliation(s)
- G Carriero
- IPSP-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - G Emiliani
- IVALSA-CNR Laboratory of Xylogenesis, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - A Giovannelli
- IVALSA-CNR Laboratory of Xylogenesis, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Y Hoshika
- IPSP-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - W J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003-9320, USA
| | - M L Traversi
- IVALSA-CNR Laboratory of Xylogenesis, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - E Paoletti
- IPSP-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Mikkelsen BL, Olsen CE, Lyngkjær MF. Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature. PHYTOCHEMISTRY 2015; 118:162-73. [PMID: 26343414 DOI: 10.1016/j.phytochem.2015.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 05/08/2023]
Abstract
Plants produce secondary metabolites promoting adaptation to changes in the environment and challenges by pathogenic microorganisms. A future climate with increased temperature and CO2 and ozone levels will likely alter the chemical composition of plants and thereby plant-pathogen interactions. To investigate this, barley was grown at elevated CO2, temperature and ozone levels as single factors or in combination resembling future climatic conditions. Increased basal resistance to the powdery mildew fungus was observed when barley was grown under elevated CO2, temperature and ozone as single factors. However, this effect was neutralized in the combination treatments. Twenty-five secondary metabolites were putatively identified in healthy and diseased barley leaves, including phenylpropanoids, phenolamides and hydroxynitrile glucosides. Accumulation of the compounds was affected by the climatic growth conditions. Especially elevated temperature, but also ozone, showed a strong impact on accumulation of many compounds, suggesting that these metabolites play a role in adaptation to unfavorable growth conditions. Many compounds were found to increase in powdery mildew diseased leaves, in correlation with a strong and specific influence of the climatic growth conditions. The observed disease phenotypes could not be explained by accumulation of single compounds. However, decreased accumulation of the powdery mildew associated defense compound p-coumaroylhydroxyagmatine could be implicated in the increased disease susceptibility observed when barley was grown under combination of elevated CO2, temperature and ozone. The accumulation pattern of the compounds in both healthy and diseased leaves from barley grown in the combination treatments could not be deduced from the individual single factor treatments. This highlights the complex role and regulation of secondary metabolites in plants' adaptation to unfavorable growth conditions.
Collapse
Affiliation(s)
- B L Mikkelsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; VILLUM research center for "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - C E Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; VILLUM research center for "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - M F Lyngkjær
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; VILLUM research center for "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Zhao S, Park CH, Li X, Kim YB, Yang J, Sung GB, Park NI, Kim S, Park SU. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8622-8630. [PMID: 26343778 DOI: 10.1021/acs.jafc.5b03221] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.
Collapse
Affiliation(s)
- Shicheng Zhao
- Department of Crop Science, Chungnam National University , 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Chang Ha Park
- Department of Crop Science, Chungnam National University , 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Xiaohua Li
- Department of Crop Science, Chungnam National University , 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Yeon Bok Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration , Bisanro 92, Eumseong, Chungbuk, 369-873, Korea
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University , 26 Hexing Road, Harbin 150040, China
| | - Gyoo Byung Sung
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration , Wanju 565-851, Korea
| | - Nam Il Park
- Deptartment of Plant Science, Gangneung-Wonju National University 7 Jukheon-gil , Gangneung-si, Gangwon-do 210-702, Korea
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources , Incheon 404-170, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University , 99 Daehak-Ro, Yuseong-gu, Daejeon 305-764, Korea
| |
Collapse
|
14
|
Döring AS, Pellegrini E, Della Batola M, Nali C, Lorenzini G, Petersen M. How do background ozone concentrations affect the biosynthesis of rosmarinic acid in Melissa officinalis? JOURNAL OF PLANT PHYSIOLOGY 2014; 171:35-41. [PMID: 24484956 DOI: 10.1016/j.jplph.2013.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 06/03/2023]
Abstract
Lemon balm (Melissa officinalis; Lamiaceae) plants were exposed to background ozone (O3) dosages (80ppb for 5h), because high background levels of O3 are considered to be as harmful as episodic O3 peaks. Immediately at the end of fumigation the plants appeared visually symptomless, but necrotic lesions were observed later. The biosynthesis of rosmarinic acid (RA) comprises eight enzymes, among them phenylalanine ammonia-lyase (PAL), 4-coumarate:coenzyme A ligase (4CL), tyrosine aminotransferase (TAT) and rosmarinic acid synthase (RAS). The transcript levels of these genes have been investigated by quantitative RT-PCR. There was a quick up-regulation of all genes at 3h of O3 exposure, but at 24h from beginning of exposure (FBE) only RAS and PAL were up-regulated. The specific activity of RAS was closely correlated with a decrease of RA concentration in lemon balm leaves. The specific activity of PAL increased at 12h FBE to 163% in comparison to control levels. This work provides insight into the effect of O3 stress on the formation of the main phenolic ingredient of the pharmaceutically important plant M. officinalis.
Collapse
Affiliation(s)
- Anne S Döring
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstr. 17A, D-35037 Marburg, Germany
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Michele Della Batola
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstr. 17A, D-35037 Marburg, Germany.
| |
Collapse
|