1
|
Todeschini V, Anastasia F, Nalin EC, Cesaro P, Massa N, Bona E, Sampò S, Berta G, Barbato R, Lingua G. Effects of P nutrition on growth and photosynthetic activity of tomato plants inoculated or not with AM fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109923. [PMID: 40258316 DOI: 10.1016/j.plaphy.2025.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi colonize plant roots, improving mineral nutrition and promoting photosynthesis. Phosphorus (P) has a key role in plant physiology, affecting the photosynthetic process and being involved in sugar/carbon metabolism. The aim of this work was to investigate the effects of the arbuscular mycorrhizal symbiosis and P nutrition on the growth parameters and photosynthetic activity of tomato plants grown in controlled conditions. Plants were maintained in a growth chamber for 50 days and watered three times a week with a Long Ashton nutrient solution at three different P levels (32, 96 and 288 μM, respectively). At harvest, mycorrhizal colonization, biomass production, P and photosynthetic pigment concentrations were measured. Moreover, the photosynthetic efficiency relating to the activity of the two photosystems and the biochemical analysis of proteins extracted from thylakoid membranes were also performed. Results showed that inoculation did not affect growth parameters. AM symbiosis was strongly inhibited at the highest P level. Plant biomass production was positively correlated with increasing level of P. The analysis of chlorophyll fluorescence in inoculated plants highlighted that Y(I), Y(II), ETR(I), ETR(II) varied proportionally to the AM colonization and inversely proportionally to the P supply, whether this effect on NPQ and ETR occurs by a modulation of the xanthophyll cycle, remains to be established.
Collapse
Affiliation(s)
- Valeria Todeschini
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Flavio Anastasia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Elena Chiara Nalin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Patrizia Cesaro
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Simonetta Sampò
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Roberto Barbato
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
2
|
Cargill RIM, Shimizu TS, Kiers ET, Kokkoris V. Cellular anatomy of arbuscular mycorrhizal fungi. Curr Biol 2025; 35:R545-R562. [PMID: 40494310 PMCID: PMC12165283 DOI: 10.1016/j.cub.2025.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi are ancient plant mutualists that are ubiquitous across terrestrial ecosystems. These fungi are unique among most eukaryotes because they form multinucleate, open-pipe mycelial networks, where nutrients, organelles, and chemical signals move bidirectionally across a continuous cytoplasm. AM fungi play a crucial role in ecosystem functioning by supporting plant growth, mediating ecosystem diversity, and contributing to carbon cycling. It is estimated that plant communities allocate ∼3.93 Gt CO2e to AM fungi every year, much of which is stored as lipids inside the fungal network. Despite their ecological significance, the cellular biology of AM fungi remains underexplored. Here, we synthesise the current knowledge on AM fungal cellular structure and organisation. We examine AM fungal development at different biological levels - the hypha and its content, hyphal networks and AM fungal spores - and explore key cellular dynamics. This includes cell wall composition, cytoplasmic contents, nuclear and lipid organisation and dynamics, network architecture, and connectivity. We highlight how their unique cellular arrangement enables complex cytoplasmic flow and nutrient exchange processes across their open-pipe mycelial networks. We discuss how both established and novel techniques, including microscopy, culturing, and high-throughput image analysis, are helping to resolve previously unknown aspects of AM fungal biology. By comparing these insights with established knowledge in other, well-studied filamentous fungi, we identify critical knowledge gaps and propose questions for future research to further our understanding of fundamental AM fungal cell biology and its contributions to ecosystem health.
Collapse
Affiliation(s)
- Rachael I M Cargill
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands; Society for the Protection of Underground Networks, SPUN, Dover, DE 19901, USA
| | - Vasilis Kokkoris
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum. Nat Rev Microbiol 2024; 22:773-790. [PMID: 39014094 DOI: 10.1038/s41579-024-01073-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF-plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant-AMF-bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF-bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture.
Collapse
Affiliation(s)
- Shilong Duan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Sharma V, Garg N. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H 2S system and thiol metabolites in mitigating chromium (Cr (VI)) toxicity in pigeonpea genotypes. Biometals 2024; 37:185-209. [PMID: 37792256 DOI: 10.1007/s10534-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.
Collapse
Affiliation(s)
- Vaishali Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Kaur H, Tashima, Singh S, Kumar P. Reconditioning of plant metabolism by arbuscular mycorrhizal networks in cadmium contaminated soils: Recent perspectives. Microbiol Res 2023; 268:127293. [PMID: 36586201 DOI: 10.1016/j.micres.2022.127293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) is one of the most perilous nonessential heavy metal for plants, owing to its high water solubility and obstruction with various physiological and biochemical processes. It enters food chain via plant uptake from contaminated soil, posing a grave menace to ecosystem and mankind. Green remediation comprises approaches intended at prudent use of natural resources for increasing profits to humans and environment. Arbuscular mycorrhizal (AM) fungi are considered a promising green technological tool for remedial of Cd-polluted soils. They are naturally associated with root system of plants in Cd-contaminated soils, evidencing their tolerance to Cd. AM can decrease Cd uptake by plants broadly through two strategies: (1) extracellular mechanisms involving Cd chelation by root exudates, binding to fungal cell wall/structures or to the glycoprotein glomalin; (2) intracellular means involving transfer via hyphal network, detoxification and vacuolar sequestration mediated by complexation of Cd with glutathione (GSH), phytochelatins (PCs), metallothioneins (MTs) and polyphosphate granules. Additionally, mycorrhizal symbiosis facilitates reconditioning of plants' metabolism primarily through dilution effect, increased water and mineral uptake. Recently, AM-induced remodelling of root cell wall synthesis has been reported to improve plant vigor and survival under Cd stressed environments. The present article highlights Cd impacts on AM growth, its diversity in Cd contaminated soils, and variations among diverse AM fungal species for imparting plant Cd tolerance. The most recent perspectives on AM-mediated Cd tolerance mechanisms in plants, including cellular and molecular studies have also been reviewed for successful utilization of these beneficial microbes in sustainable agriculture.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India..
| | - Tashima
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - Sandeep Singh
- Department of Botany, Kanya Maha Vidyalaya, Jalandhar, Punjab 144004, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Manduwala, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
6
|
Monika G, Melanie Kim SR, Kumar PS, Gayathri KV, Rangasamy G, Saravanan A. Biofortification: A long-term solution to improve global health- a review. CHEMOSPHERE 2023; 314:137713. [PMID: 36596329 DOI: 10.1016/j.chemosphere.2022.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Biofortification is a revolutionary technique for improving plant nutrition and alleviating human micronutrient deficiency. Fertilizers can help increase crop yield and growth, but applying too much fertilizer can be a problem because it leads to the release of greenhouse gases and eutrophication. One of the major global hazards that affects more than two million people globally is the decreased availability of micronutrients in food crops, which results in micronutrient deficiencies or "hidden hunger" in people. Micronutrients, like macronutrients, perform a variety of roles in plant and human nutrition. This review has highlighted the importance of micronutrients as well as their advantages. The uneven distribution of micronutrients in geological areas is not the only factor responsible for micronutrient deficiencies, other parameters including soil moisture, temperature, texture of the soil, and soil pH significantly affects the micronutrient concentration and their availability in the soil. To overcome this, different biofortification approaches are assessed in the review in which microbes mediated, Agronomic approaches, Plant breeding, and transgenic approaches are discussed. Hidden hunger can result in risky health conditions and diseases such as cancer, cardiovascular disease, osteoporosis, neurological disorders, and many more. Microbes-mediated biofortification is a novel and promising solution for the bioavailability of nutrients to plants in order to address these problems. Biofortification is cost effective, feasible, and environmentally sustainable. Bio-fortified crops boost our immunity, which helps us to combat these deadly viruses. The studies we discussed in this review have demonstrated that they can aid in the alleviation of hidden hunger.
Collapse
Affiliation(s)
- G Monika
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - S Rhoda Melanie Kim
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
7
|
Zhang S, Nie Y, Fan X, Wei W, Chen H, Xie X, Tang M. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Front Microbiol 2023; 13:1114089. [PMID: 36741887 PMCID: PMC9895418 DOI: 10.3389/fmicb.2022.1114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis. Methods To investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis. Results The approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis. Discussion In summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianan Xie
- *Correspondence: Xianan Xie, ; Ming Tang,
| | - Ming Tang
- *Correspondence: Xianan Xie, ; Ming Tang,
| |
Collapse
|
8
|
Giovannini L, Sbrana C, Giovannetti M, Avio L, Lanubile A, Marocco A, Turrini A. Diverse mycorrhizal maize inbred lines differentially modulate mycelial traits and the expression of plant and fungal phosphate transporters. Sci Rep 2022; 12:21279. [PMID: 36482115 PMCID: PMC9732053 DOI: 10.1038/s41598-022-25834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Food production is heavily dependent on soil phosphorus (P), a non-renewable mineral resource essential for plant growth and development. Alas, about 80% is unavailable for plant uptake. Arbuscular mycorrhizal fungi may promote soil P efficient use, although the mechanistic aspects are yet to be completely understood. In this study, plant and fungal variables involved in P acquisition were investigated in maize inbred lines, differing for mycorrhizal responsiveness and low-P tolerance, when inoculated with the symbiont Rhizoglomus irregulare (synonym Rhizophagus irregularis). The expression patterns of phosphate transporter (PT) genes in extraradical and intraradical mycelium (ERM/IRM) and in mycorrhizal and control maize roots were assessed, together with plant growth responses and ERM extent and structure. The diverse maize lines differed in plant and fungal accumulation patterns of PT transcripts, ERM phenotypic traits and plant performance. Mycorrhizal plants of the low-P tolerant maize line Mo17 displayed increased expression of roots and ERM PT genes, compared with the low-P susceptible line B73, which revealed larger ERM hyphal densities and interconnectedness. ERM structural traits showed significant correlations with plant/fungal expression levels of PT genes and mycorrhizal host benefit, suggesting that both structural and functional traits are differentially involved in the regulation of P foraging capacity in mycorrhizal networks.
Collapse
Affiliation(s)
- Luca Giovannini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy, Via Moruzzi 1, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
9
|
Duret M, Zhan X, Belval L, Le Jeune C, Hussenet R, Laloue H, Bertsch C, Chong J, Deglène-Benbrahim L, Valat L. Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3237. [PMID: 36501279 PMCID: PMC9741363 DOI: 10.3390/plants11233237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Assessing the mycorrhization level in plant roots is essential to study the effect of arbuscular mycorrhizal fungi (AMF) on plant physiological responses. Common methods used to quantify the mycorrhization of roots are based on microscopic visualization of stained fungal structures within the cortical cells. While this method is readily accessible, it remains time-consuming and does not allow checking of the symbiosis vitality. The aim of this work is thus to develop an efficient method for assessing the intensity and vitality of mycorrhiza associated with grapevine through gene expression analyses by RT-qPCR. To this end, grapevine plants were inoculated with the AMF Rhizophagus irregularis (Ri). The relationship between mycorrhization level, assessed by microscopy, and expression of several fungus and grapevine genes involved in the symbiosis was investigated. In AMF-inoculated plants, transcript amounts of fungal constitutively-expressed genes Ri18S, RiTEF1α and RiαTub were significantly correlated to mycorrhization intensity, particularly Ri18S. Grapevine (VvPht1.1 and VvPht1.2) and AMF (GintPT, Ri14-3-3 and RiCRN1) genes, known to be specifically expressed during the mycorrhizal process, were significantly correlated to arbuscular level in the whole root system determined by microscopy. The best correlations were obtained with GintPT on the fungal side and VvPht1.2 on the plant side. Despite some minor discrepancies between microscopic and molecular techniques, the monitoring of Ri18S, GintPT and VvPht1.2 gene expression could be a rapid, robust and reliable method to evaluate the level of mycorrhization and to assess the vitality of AMF. It appears particularly useful to identify AMF-inoculated plants with very low colonization level, or with non-active fungal structures. Moreover, it can be implemented simultaneously with the expression analysis of other genes of interest, saving time compared to microscopic analyses.
Collapse
Affiliation(s)
- Morgane Duret
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Xi Zhan
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Lorène Belval
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Christine Le Jeune
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Réjane Hussenet
- Département Génie Biologique, Institut Universitaire de Technologie, 29 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Hélène Laloue
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Christophe Bertsch
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Laurence Deglène-Benbrahim
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| | - Laure Valat
- Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute Alsace, Université de Strasbourg, E.A. 3991, 33 rue de Herrlisheim, BP 50568, CEDEX 008, 68000 Colmar, France
| |
Collapse
|
10
|
Correia TS, Lara TS, dos Santos JA, Sousa LDS, Santana MDF. Arbuscular Mycorrhizal Fungi Promote Physiological and Biochemical Advantages in Handroanthus serratifolius Seedlings Submitted to Different Water Deficits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2731. [PMID: 36297755 PMCID: PMC9609855 DOI: 10.3390/plants11202731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Climate change causes increasingly longer periods of drought, often causing the death of plants, especially when they are in the early stages of development. Studying the benefits provided by arbuscular mycorrhizal (AM) fungi to plants in different water regimes is an efficient and sustainable strategy to face climate change. Thus, this study investigated the influence of AM fungi on Handroanthus serratifolius seedlings under different water regimes, based on biochemical, and nutritional growth parameters. The experiment was carried out in H. serratifolius seedlings cultivated with mycorrhizas (+AMF) and without mycorrhizas (-AMF) in three water regimes; a severe water deficit (SD), a moderate water deficit (MD), and a well-watered (WW) condition. AM fungi provided greater osmoregulation under water deficit conditions through the accumulation of soluble sugars, total free amino acids, and proline, as well as by reducing sugar. The increase in the absorption of phosphorus and nitrate was observed only in the presence of fungi in the well-watered regimen. A higher percentage of colonization was found in plants submitted to the well-watered regimen. Ultimately, AM fungi promoted biochemical, nutritional, and growth benefits for H. serratifolius seedlings under the water deficit and well-hydrated conditions, proving that AMF can be used to increase the tolerance of H. serratifolius plants, and help them to survive climate change.
Collapse
|
11
|
Rui W, Mao Z, Li Z. The Roles of Phosphorus and Nitrogen Nutrient Transporters in the Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:11027. [PMID: 36232323 PMCID: PMC9570102 DOI: 10.3390/ijms231911027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
More than 80% of land plant species can form symbioses with arbuscular mycorrhizal (AM) fungi, and nutrient transfer to plants is largely mediated through this partnership. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake progress, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungal-root interface have been identified. In this review, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation) and focus on P and N transfer from the fungal partner to the host plant, with a highlight on a possible interplay between P and N nutrient exchanges. Transporters belonging to the plant or AM fungi can synergistically process the transmembrane transport of soil nutrients to the symbiotic interface for further plant acquisition. Although much progress has been made to elucidate the complex mechanism for the integrated roles of nutrient transfers in AM symbiosis, questions still remain to be answered; for example, P and N transporters are less studied in different species of AM fungi; the involvement of AM fungi in plant N uptake is not as clearly defined as that of P; coordinated utilization of N and P is unknown; transporters of cultivated plants inoculated with AM fungi and transcriptomic and metabolomic networks at both the soil-fungi interface and fungi-plant interface have been insufficiently studied. These findings open new perspectives for fundamental research and application of AM fungi in agriculture.
Collapse
Affiliation(s)
| | | | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
| |
Collapse
|
12
|
Xie X, Lai W, Che X, Wang S, Ren Y, Hu W, Chen H, Tang M. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. THE NEW PHYTOLOGIST 2022; 234:650-671. [PMID: 35037255 DOI: 10.1111/nph.17973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/22/2021] [Indexed: 05/28/2023]
Abstract
Reciprocal symbiosis of > 70% of terrestrial vascular plants with arbuscular mycorrhizal (AM) fungi provides the fungi with fatty acids and sugars. In return, AM fungi facilitate plant phosphate (Pi) uptake from soil. However, how AM fungi handle Pi transport and homeostasis at the symbiotic interface of AM symbiosis is poorly understood. Here, we identify an SPX (SYG1/Pho81/XPR1) domain-containing phosphate transporter, RiPT7 from Rhizophagus irregularis. To characterize the RiPT7 transporter, we combined subcellular localization and heterologous expression studies in yeasts with reverse genetics approaches during the in planta phase. The results show that RiPT7 is conserved across fungal species and expressed in the intraradical mycelia. It is expressed in the arbuscules, intraradical hyphae and vesicles, independently of Pi availability. The plasma membrane-localized RiPT7 facilitates bidirectional Pi transport, depending on Pi gradient across the plasma membrane, whereas the SPX domain of RiPT7 inhibits Pi transport activity and mediates the vacuolar targeting of RiPT7 in yeast in response to Pi starvation. Importantly, RiPT7 silencing hampers arbuscule development of R. irregularis and symbiotic Pi delivery under medium- to low-Pi conditions. Collectively, our findings reveal a role for RiPT7 in fine-tuning of Pi homeostasis across the fungal membrane to maintain the AM development.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
13
|
Lanfranco L, Bonfante P. The need for phosphate: at the root of the mycorrhizal symbiosis. Sci Bull (Beijing) 2022; 67:459-460. [PMID: 36546163 DOI: 10.1016/j.scib.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy.
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy
| |
Collapse
|
14
|
Sbrana C, Agnolucci M, Avio L, Giovannini L, Palla M, Turrini A, Giovannetti M. Mycorrhizal Symbionts and Associated Bacteria: Potent Allies to Improve Plant Phosphorus Availability and Food Security. Front Microbiol 2022; 12:797381. [PMID: 35082769 PMCID: PMC8784594 DOI: 10.3389/fmicb.2021.797381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cristiana Sbrana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luca Giovannini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Abstract
Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) that forms symbioses with and improves the performance of many crops. Lack of transformation protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape the physiology and interactions of this AMF with plants. Here, we used all published genomics, transcriptomics, and metabolomics resources to gain insights into the metabolic functionalities of R. irregularis by reconstructing its high-quality genome-scale metabolic network that considers enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model demonstrated that it can be used to (i) accurately predict increased growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme abundances and carbon source concentrations that yield growth predictions with high and significant Spearman correlation (ρS = 0.74) to measured hyphal dry weight; and (iii) simulate growth rate increases with tighter association of this AMF with the host plant across three fungal structures. Based on the validated model and system-level analyses that integrate data from transcriptomics studies, we predicted that differences in flux distributions between intraradical mycelium and arbuscles are linked to changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving developmental and physiological responses of R. irregularis to different environmental cues. In conclusion, this model can serve as a template for other AMF and paves the way to identify metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant performance. IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; however, the molecular mechanisms underlying the physiological responses of this fungus to different host plants and environments remain largely unknown. We present a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregularis that can accurately predict experimentally observed phenotypes. We show that this high-quality model provides an entry point into better understanding the metabolic and physiological responses of this fungus to changing environments due to the availability of different nutrients. The model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism toward improving the performance of host plants.
Collapse
|
16
|
Wang Y, Bao X, Li S. Effects of Arbuscular Mycorrhizal Fungi on Rice Growth Under Different Flooding and Shading Regimes. Front Microbiol 2021; 12:756752. [PMID: 34764946 PMCID: PMC8577809 DOI: 10.3389/fmicb.2021.756752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are present in paddy fields, where they suffer from periodic soil flooding and sometimes shading stress, but their interaction with rice plants in these environments is not yet fully explained. Based on two greenhouse experiments, we examined rice-growth response to AMF under different flooding and/or shading regimes to survey the regulatory effects of flooding on the mycorrhizal responses of rice plants under different light conditions. AMF had positive or neutral effects on the growth and yields of both tested rice varieties under non-flooding conditions but suppressed them under all flooding and/or shading regimes, emphasizing the high importance of flooding and shading conditions in determining the mycorrhizal effects. Further analyses indicated that flooding and shading both reduced the AMF colonization and extraradical hyphal density (EHD), implying a possible reduction of carbon investment from rice to AMF. The expression profiles of mycorrhizal P pathway marker genes (GintPT and OsPT11) suggested the P delivery from AMF to rice roots under all flooding and shading conditions. Nevertheless, flooding and shading both decreased the mycorrhizal P benefit of rice plants, as indicated by the significant decrease of mycorrhizal P responses (MPRs), contributing to the negative mycorrhizal effects on rice production. The expression profiles of rice defense marker genes OsPR1 and OsPBZ1 suggested that regardless of mycorrhizal growth responses (MGRs), AMF colonization triggered the basal defense response, especially under shading conditions, implying the multifaceted functions of AMF symbiosis and their effects on rice performance. In conclusion, this study found that flooding and shading both modulated the outcome of AMF symbiosis for rice plants, partially by influencing the mycorrhizal P benefit. This finding has important implications for AMF application in rice production.
Collapse
Affiliation(s)
- Yutao Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaozhe Bao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Nguyen CT, Saito K. Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas. FRONTIERS IN PLANT SCIENCE 2021; 12:725939. [PMID: 34616416 PMCID: PMC8488203 DOI: 10.3389/fpls.2021.725939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/20/2021] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhizal fungi provide plants with soil mineral nutrients, particularly phosphorus. In this symbiotic association, the arbuscular interface is the main site for nutrient exchange. To understand phosphorus transfer at the interface, we analyzed the subcellular localization of polyphosphate (polyP) in mature arbuscules of Rhizophagus irregularis colonizing roots of Lotus japonicus wild-type (WT) and H+-ATPase ha1-1 mutant, which is defective in phosphorus acquisition through the mycorrhizal pathway. In both, the WT and the ha1-1 mutant, polyP accumulated in the cell walls of trunk hyphae and inside fine branch modules close to the trunk hyphae. However, many fine branches lacked polyP. In the mutant, most fine branch modules showed polyP signals compared to the WT. Notably, polyP was also observed in the cell walls of some fine branches formed in the ha1-1 mutant, indicating phosphorus release from fungal cells to the apoplastic regions. Intense acid phosphatase (ACP) activity was detected in the periarbuscular spaces around the fine branches. Furthermore, double staining of ACP activity and polyP revealed that these had contrasting distribution patterns in arbuscules. These observations suggest that polyP in fungal cell walls and apoplastic phosphatases may play an important role in phosphorus transfer at the symbiotic interface in arbuscules.
Collapse
Affiliation(s)
- Cuc Thi Nguyen
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Faculty of Agriculture and Forestry, Dalat University, Dalat, Vietnam
| | - Katsuharu Saito
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
18
|
Etesami H, Jeong BR, Glick BR. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:699618. [PMID: 34276750 PMCID: PMC8280758 DOI: 10.3389/fpls.2021.699618] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21+ Program), Graduate School, Gyeongsang National University, Jinju, South Korea
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
19
|
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123919. [PMID: 33254825 DOI: 10.1016/j.jhazmat.2020.123919] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
The heavy metal pollution is a worldwide problem and has received a serious concern for the ecosystem and human health. In the last decade, remediation of the agricultural polluted soil has attracted great attention. Phytoremediation is one of the technologies that effectively alleviate heavy metal toxicity, however, this technique is limited to many factors contributing to low plant growth rate and nature of metal toxicities. Arbuscular mycorrhizal fungi (AMF) assisted alleviation of heavy metal phytotoxicity is a cost-effective and environment-friendly strategy. AMF have a symbiotic relationship with the host plant. The bidirectional exchange of resources is a hallmark and also a functional necessity in mycorrhizal symbiosis. During the last few years, a significant progress in both physiological and molecular mechanisms regarding roles of AMF in the alleviation of heavy metals (HMs) toxicities in plants, acquisition of nutrients, and improving plant performance under toxic conditions of HMs has been well studied. This review summarized the current knowledge regarding AMF assisted remediation of heavy metals and some of the strategies used by mycorrhizal fungi to cope with stressful environments. Moreover, this review provides the information of both molecular and physiological responses of mycorrhizal plants as well as AMF to heavy metal stress which could be helpful for exploring new insight into the mechanisms of HMs remediation by utilizing AMF.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yizeng Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qianqian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Huayuan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Guoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lulu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Youjuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
20
|
Giovannini L, Sbrana C, Avio L, Turrini A. Diversity of a phosphate transporter gene among species and isolates of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 2021; 367:5733160. [PMID: 32043113 DOI: 10.1093/femsle/fnaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 11/14/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are a key group of beneficial obligate biotrophs, establishing a mutualistic symbiosis with the roots of most land plants. The molecular markers generally used for their characterization are mainly based on informative regions of nuclear rDNA (SSU-ITS-LSU), although protein-encoding genes have also been proposed. Within functional genes, those encoding for phosphate transporters (PT) are particularly important in AMF, given their primary ability to take up Pi from soil, and to differentially affect plant phosphate nutrition. In this work, we investigated the genetic diversity of PT1 gene sequences and sequences of the taxonomically relevant SSU-ITS-LSU region in two isolates of the species Funneliformis coronatus, three isolates of the species Funneliformis mosseae and two species of the genus Rhizoglomus, originated from geographically distant areas and cultured in vivo. Our results showed that partial PT1 sequences not only successfully differentiated AMF genera and species like ribosomal gene sequences but also highlighted intraspecific diversity among F. mosseae and F. coronatus isolates. The study of functional genes related to the uptake of key mineral nutrients for the assessment of AMF diversity represents a key step in the selection of efficient isolates to be used as inocula in sustainable agriculture.
Collapse
Affiliation(s)
- Luca Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| | - Cristiana Sbrana
- CNR, Istituto di Biologia e Biotecnologia Agraria, 56124 Pisa, Italy
| | - Luciano Avio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| | - Alessandra Turrini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
21
|
María Lourdes GC, Stéphane D, Maryline CS. Impact of increasing chromium (VI) concentrations on growth, phosphorus and chromium uptake of maize plants associated to the mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Heliyon 2021; 7:e05891. [PMID: 33474511 PMCID: PMC7803650 DOI: 10.1016/j.heliyon.2020.e05891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
Arbuscular mycorhizal fungi (AMF) associated to plants may represent a promising phyto-remediation avenue due to the widely documented role of these fungi in alleviation of numerous abiotic (e.g. heavy metals) stresses. In the present work, it was the objective to study the dynamics of inorganic phosphorus (Pi) and chromium(VI) (Cr(VI)) and total Cr uptake by the plant-AMF associates Zea mays + R. irregularis MUCL 41833, under increasing (i.e. 0, 0.1, 1 and 10 mg L−1) concentrations of Cr(VI). The plant-AMF associates were grown in a circulatory semi-hydroponic cultivation system under greenhouse conditions. We demonstrated that Cr(VI) had an hormesis effect on root colonization of maize. Indeed, at 0.1 and 1 mg L−1 Cr(VI), root colonization was increased by approximately 55% as compared to the control (i.e. in absence of Cr(VI) in the solution), while no difference was noticed at 10 mg L−1 Cr(VI) (P ≤ 0.05). However, this did not result in an increased uptake of Pi by the AMF-colonized plants in presence of 0.1 mg L−1 Cr(VI) as compared to the AMF control in absence of Cr(VI) (P ≤ 0.05). Conversely, the presence of 1 mg L−1 Cr(VI) stimulated the Pi uptake by non-mycorrhizal plants, which absorbed 17% more Pi than their mycorrhizal counterparts (P ≤ 0.05). In addition, the non-mycorrhizal plants absorbed, in average, 8% more Cr(VI) than the mycorrhizal plants. Overall, our results prompt the hypothesis that in presence of AMF, the regulation of uptake of Cr(VI) and Pi by plant roots is done mostly by the fungus rather than the root cells. This regulated uptake of roots associated to AMF would indicate that the symbiosis could benefit the plants by providing a stable Pi uptake in a Cr(VI) polluted environment.
Collapse
Affiliation(s)
- Gil-Cardeza María Lourdes
- Instituto de Investigaciones en Cs. Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Cs Agrarias, Universidad Nacional de Rosario, Campo Exp. Villarino, Zavalla, 2123, Argentina
- Corresponding author.
| | - Declerck Stéphane
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud, 2 box L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| | - Calonne-Salmon Maryline
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud, 2 box L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Douterelo I, Dutilh BE, Calero C, Rosales E, Martin K, Husband S. Impact of phosphate dosing on the microbial ecology of drinking water distribution systems: Fieldwork studies in chlorinated networks. WATER RESEARCH 2020; 187:116416. [PMID: 33039899 DOI: 10.1016/j.watres.2020.116416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Phosphate is routinely dosed to ensure regulatory compliance for lead in drinking water distribution systems. Little is known about the impact of the phosphate dose on the microbial ecology in these systems and in particular the endemic biofilms. Disturbance of the biofilms and embedded material in distribution can cause regulatory failures for turbidity and metals. To investigate the impact of phosphate on developing biofilms, pipe wall material from four independent pipe sections was mobilised and collected using two twin-flushing operations a year apart in a chlorinated UK network pre- and post-phosphate dosing. Intensive monitoring was undertaken, including turbidity and water physico-chemistry, traditional microbial culture-based indicators, and microbial community structure via sequencing the 16S rRNA gene for bacteria and the ITS2 gene for fungi. Whole metagenome sequencing was used to study shifts in functional characteristics following the addition of phosphate. As an operational consequence, turbidity responses from the phosphate-enriched water were increased, particularly from cast iron pipes. Differences in the taxonomic composition of both bacteria and fungi were also observed, emphasising a community shift towards microorganisms able to use or metabolise phosphate. Phosphate increased the relative abundance of bacteria such as Pseudomonas, Paenibacillus, Massilia, Acinetobacter and the fungi Cadophora, Rhizophagus and Eupenicillium. Whole metagenome sequencing showed with phosphate a favouring of sequences related to Gram-negative bacterium type cell wall function, virions and thylakoids, but a reduction in the number of sequences associated to vitamin binding, methanogenesis and toxin biosynthesis. With current faecal indicator tests only providing risk detection in bulk water samples, this work improves understanding of how network changes effect microbial ecology and highlights the potential for new approaches to inform future monitoring or control strategies to protect drinking water quality.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom.
| | - B E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Hugo R. Kruytgebouw, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - C Calero
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - E Rosales
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - K Martin
- Dwr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY, United Kingdom
| | - S Husband
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
23
|
Pepe A, Giovannetti M, Sbrana C. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. MYCORRHIZA 2020; 30:589-600. [PMID: 32533256 DOI: 10.1007/s00572-020-00972-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with plant roots, facilitating mineral nutrient transfer from soil to hosts through large networks of extraradical hyphae. Limited data are available on the fungal structures (appressoria) connecting soil- to root-based mycelium, in relation to plant nutrition. Two in vivo systems were set up using three AMF, Funneliformis mosseae, Funneliformis coronatus and Rhizoglomus irregulare, grown in symbiosis with Cichorium intybus. The assessment of plant P content, number of appressoria, diameter of their subtending hyphae and length of colonized roots allowed calculation of the total cross-section area of appressorium-subtending hyphae, which differed among the three AMF and was correlated with plant P contents and with extraradical mycelium density. A conservative evaluation of P fluxes from soil- to plant-based hyphae occurring through appressoria gave values ranging from 1.7 to 4.2 × 10-8 mol cm-2 s-1 (moles per total cross-section area of the appressorium subtending hyphae per time elapsed), depending on AMF identity. This work suggests that, beyond intraradical colonization and extraradical mycelium extent, connections between extraradical and intraradical fungal mycelium through appressoria are important for mycorrhizal plant nutrition, as appressorium structural traits and density can be related to P transfer mediated by AMF.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology, Pisa Unit, 56124, Pisa, Italy.
| |
Collapse
|
24
|
Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J Fungi (Basel) 2020; 6:jof6020059. [PMID: 32375266 PMCID: PMC7344654 DOI: 10.3390/jof6020059] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Selenium (Se) is essential for human health, however, Se is deficient in soil in many places all around the world, resulting in human diseases, such as notorious Keshan disease and Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake and maintain human health. Beneficial microorganisms, including mycorrhizal and root endophytic fungi, dark septate fungi, and plant growth-promoting rhizobacteria (PGPRs), show multiple functions, especially increased plant nutrition uptake, growth and yield, and resistance to abiotic stresses. Such functions can be used for Se biofortification and increased growth and yield under drought and salt stress. The present review summarizes the use of mycorrhizal fungi and PGPRs in Se biofortification, aiming to improving their practical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Chu Wu
- Correspondence: ; Tel.: +86-716-806-6262
| |
Collapse
|
25
|
Laser Microdissection as a Useful Tool to Study Gene Expression in Plant and Fungal Partners in AM Symbiosis. Methods Mol Biol 2020; 2146:171-184. [PMID: 32415603 DOI: 10.1007/978-1-0716-0603-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laser microdissection (LMD) technology has been widely applied to plant tissues, offering novel information on the role of different cell-type populations during plant-microbe interactions. In this chapter, protocols to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations from arbuscular mycorrhizal (AM) roots are described in detail, starting from the biological material preparation to gene expression analyses by RT-PCR and RT-qPCR.
Collapse
|
26
|
Calabrese S, Cusant L, Sarazin A, Niehl A, Erban A, Brulé D, Recorbet G, Wipf D, Roux C, Kopka J, Boller T, Courty PE. Imbalanced Regulation of Fungal Nutrient Transports According to Phosphate Availability in a Symbiocosm Formed by Poplar, Sorghum, and Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2019; 10:1617. [PMID: 31921260 PMCID: PMC6920215 DOI: 10.3389/fpls.2019.01617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, key components of nutrient uptake and exchange are specialized transporters that facilitate nutrient transport across membranes. As phosphate is a nutrient and a regulator of nutrient exchanges, we investigated the effect of P availability to extraradical mycelium (ERM) on both plant and fungus transcriptomes and metabolomes in a symbiocosm system. By perturbing nutrient exchanges under the control of P, our objectives were to identify new fungal genes involved in nutrient transports, and to characterize in which extent the fungus differentially modulates its metabolism when interacting with two different plant species. We performed transportome analysis on the ERM and intraradical mycelium of the AM fungus Rhizophagus irregularis associated to Populus trichocarpa and Sorghum bicolor under high and low P availability in ERM, using quantitative RT-PCR and Illumina mRNA-sequencing. We observed that mycorrhizal symbiosis induces expression of specific phosphate and ammonium transporters in both plants. Furthermore, we identified new AM-inducible transporters and showed that a subset of phosphate transporters is regulated independently of symbiotic nutrient exchange. mRNA-Sequencing revealed that the fungal transportome was not similarly regulated in the two host plant species according to P availability. Mirroring this effect, many plant carbohydrate transporters were down-regulated in P. trichocarpa mycorrhizal root tissue. Metabolome analysis revealed further that AM root colonization led to a modification of root primary metabolism under low and high P availability and to a decrease of primary metabolite pools in general. Moreover, the down regulation of the sucrose transporters suggests that the plant limits carbohydrate long distance transport (i.e. from shoot to the mycorrhizal roots). By simultaneous uptake/reuptake of nutrients from the apoplast at the biotrophic interface, plant and fungus are both able to control reciprocal nutrient fluxes.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Loic Cusant
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, Castanet-Tolosan, France
| | - Alexis Sarazin
- Department of Biology at the Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Annette Niehl
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Daphnée Brulé
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, Castanet-Tolosan, France
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
27
|
Venice F, Ghignone S, Salvioli di Fossalunga A, Amselem J, Novero M, Xianan X, Sędzielewska Toro K, Morin E, Lipzen A, Grigoriev IV, Henrissat B, Martin FM, Bonfante P. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ Microbiol 2019; 22:122-141. [PMID: 31621176 DOI: 10.1111/1462-2920.14827] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023]
Abstract
As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF, Glomeromycotina) symbiotically colonize plant roots. AMF also possess their own microbiota, hosting some uncultivable endobacteria. Ongoing research has revealed the genetics underlying plant responses to colonization by AMF, but the fungal side of the relationship remains in the dark. Here, we sequenced the genome of Gigaspora margarita, a member of the Gigasporaceae in an early diverging group of the Glomeromycotina. In contrast to other AMF, G. margarita may host distinct endobacterial populations and possesses the largest fungal genome so far annotated (773.104 Mbp), with more than 64% transposable elements. Other unique traits of the G. margarita genome include the expansion of genes for inorganic phosphate metabolism, the presence of genes for production of secondary metabolites and a considerable number of potential horizontal gene transfer events. The sequencing of G. margarita genome reveals the importance of its immune system, shedding light on the evolutionary pathways that allowed early diverging fungi to interact with both plants and bacteria.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection-CNR, Turin Unit, Turin, Italy
| | | | | | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Xie Xianan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Innovation and Utilization of Forest Plant Germplasm in Guangdong Province, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Kinga Sędzielewska Toro
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique (INRA), Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR, 1136, Champenoux, France
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR, 1136, Champenoux, France
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. THE NEW PHYTOLOGIST 2019; 223:1127-1142. [PMID: 30843207 DOI: 10.1111/nph.15775] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/20/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franziska Krajinski
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
29
|
Gómez-Gallego T, Benabdellah K, Merlos MA, Jiménez-Jiménez AM, Alcon C, Berthomieu P, Ferrol N. The Rhizophagus irregularis Genome Encodes Two CTR Copper Transporters That Mediate Cu Import Into the Cytosol and a CTR-Like Protein Likely Involved in Copper Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:604. [PMID: 31156674 PMCID: PMC6531763 DOI: 10.3389/fpls.2019.00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 05/31/2023]
Abstract
Arbuscular mycorrhizal fungi increase fitness of their host plants under Cu deficient and toxic conditions. In this study, we have characterized two Cu transporters of the CTR family (RiCTR1 and RiCTR2) and a CTR-like protein (RiCTR3A) of Rhizophagus irregularis. Functional analyses in yeast revealed that RiCTR1 encodes a plasma membrane Cu transporter, RiCTR2 a vacuolar Cu transporter and RiCTR3A a plasma membrane protein involved in Cu tolerance. RiCTR1 was more highly expressed in the extraradical mycelia (ERM) and RiCTR2 in the intraradical mycelia (IRM). In the ERM, RiCTR1 expression was up-regulated by Cu deficiency and down-regulated by Cu toxicity. RiCTR2 expression increased only in the ERM grown under severe Cu-deficient conditions. These data suggest that RiCTR1 is involved in Cu uptake by the ERM and RiCTR2 in mobilization of vacuolar Cu stores. Cu deficiency decreased mycorrhizal colonization and arbuscule frequency, but increased RiCTR1 and RiCTR2 expression in the IRM, which suggest that the IRM has a high Cu demand. The two alternatively spliced products of RiCTR3, RiCTR3A and RiCTR3B, were more highly expressed in the ERM. Up-regulation of RiCTR3A by Cu toxicity and the yeast complementation assays suggest that RiCTR3A might function as a Cu receptor involved in Cu tolerance.
Collapse
Affiliation(s)
- Tamara Gómez-Gallego
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Miguel A. Merlos
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ana M. Jiménez-Jiménez
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Carine Alcon
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier SupAgro, Montpellier, France
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier SupAgro, Montpellier, France
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
30
|
Ferrol N, Azcón-Aguilar C, Pérez-Tienda J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:441-447. [PMID: 30824024 DOI: 10.1016/j.plantsci.2018.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 05/23/2023]
Abstract
Phosphorus (P) is a poorly available macronutrient essential for plant growth and development and consequently for successful crop yield and ecosystem productivity. To cope with P limitations plants have evolved strategies for enhancing P uptake and/or improving P efficiency use. The universal 450-million-yr-old arbuscular mycorrhizal (AM) (fungus-root) symbioses are one of the most successful and widespread strategies to maximize access of plants to available P. AM fungi biotrophically colonize the root cortex of most plant species and develop an extraradical mycelium which overgrows the nutrient depletion zone of the soil surrounding plant roots. This hyphal network is specialized in the acquisition of low mobility nutrients from soil, particularly P. During the last years, molecular biology techniques coupled to novel physiological approaches have provided fascinating contributions to our understanding of the mechanisms of symbiotic P transport. Mycorrhiza-specific plant phosphate transporters, which are required not only for symbiotic P transfer but also for maintenance of the symbiosis, have been identified. The present review provides an overview of the contribution of AM fungi to plant P acquisition and an update of recent findings on the physiological, molecular and regulatory mechanisms of P transport in the AM symbiosis.
Collapse
Affiliation(s)
- Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain.
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
31
|
Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2018; 220:1031-1046. [PMID: 29806959 DOI: 10.1111/nph.15230] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354, Freising, Germany
| |
Collapse
|
32
|
Zhuang W, Liu T, Qu S, Cai B, Qin Y, Zhang F, Wang Z. Identification of candidate genes for leaf scorch in Populus deltoids by the whole genome resequencing analysis. Sci Rep 2018; 8:16416. [PMID: 30401919 PMCID: PMC6219557 DOI: 10.1038/s41598-018-33739-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Leaf scorch exists as a common phenomenon in the development of plant, especially when plants encounter various adversities, which leads to great losses in agricultural production. Both Jinhong poplar (JHP) and Caihong poplar (CHP) (Populus deltoids) are obtained from a bud sport on Zhonghong poplar. Compared with CHP, JHP always exhibits leaf scorch, poor growth, premature leaf discoloration, and even death. In this study, the candidate genes associated with leaf scorch between JHP and CHP were identified by the whole genome resequencing using Illumina HiSeqTM. There were 218,880 polymorphic SNPs and 46,933 indels between JHP and CHP, respectively. Among these, the candidate genes carrying non-synonymous SNPs in coding regions were classified into 6 groups. The expression pattern of these candidate genes was also explored in JHP and CHP among different sampling stages. Combined with the qRT-PCR analysis, the results showed that genes associated with transport of various nutritional elements, senescence and MYB transcription factor might play important roles during the process of leaf scorch in Populus deltoids. Four genes belonging to these three groups carried more than three SNPs in their coding sequence, which might play important roles in leaf scorch. The above results provided candidate genes involved in leaf scorch in Populus deltoids, and made us better understand the molecular regulation mechanism of leaf scorch in Populus deltoids.
Collapse
Affiliation(s)
- Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Tianyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Binhua Cai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yalong Qin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
33
|
Luginbuehl LH, Oldroyd GED. Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Curr Biol 2018; 27:R952-R963. [PMID: 28898668 DOI: 10.1016/j.cub.2017.06.042] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Arbuscular mycorrhizal fungi form associations with most land plants and facilitate nutrient uptake from the soil, with the plant receiving mineral nutrients from the fungus and in return providing the fungus with fixed carbon. This nutrient exchange takes place through highly branched fungal structures called arbuscules that are formed in cortical cells of the host root. Recent discoveries have highlighted the importance of fatty acids, in addition to sugars, acting as the form of fixed carbon transferred from the plant to the fungus and several studies have begun to elucidate the mechanisms that control the plant processes necessary for fungal colonisation and arbuscule development. In this review, we analyse the mechanisms that allow arbuscule development and the processes necessary for nutrient exchange between the plant and the fungus.
Collapse
Affiliation(s)
- Leonie H Luginbuehl
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
34
|
Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME JOURNAL 2018; 12:2339-2351. [PMID: 29899507 PMCID: PMC6155042 DOI: 10.1038/s41396-018-0171-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/21/2022]
Abstract
Cooperation is a prevalent phenomenon in nature and how it originates and maintains is a fundamental question in ecology. Many efforts have been made to understand cooperation between individuals in the same species, while the mechanisms enabling cooperation between different species are less understood. Here, we investigated under strict in vitro culture conditions if the exchange of carbon and phosphorus is pivotal to the cooperation between the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis and the phosphate solubilizing bacterium (PSB) Rahnella aquatilis. We observed that fructose exuded by the AMF stimulated the expression of phosphatase genes in the bacterium as well as the rate of phosphatase release into the growth medium by regulating its protein secretory system. The phosphatase activity was subsequently increased, promoting the mineralization of organic phosphorus (i.e., phytate) into inorganic phosphorus, stimulating simultaneously the processes involved in phosphorus uptake by the AMF. Our results demonstrated for the first time that fructose not only is a carbon source, but also plays a role as a signal molecule triggering bacteria-mediated organic phosphorus mineralization processes. These results highlighted the molecular mechanisms by which the hyphal exudates play a role in maintaining the cooperation between AMF and bacteria.
Collapse
|
35
|
Tamayo E, Knight SAB, Valderas A, Dancis A, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis
uses a reductive iron assimilation pathway for high-affinity iron uptake. Environ Microbiol 2018; 20:1857-1872. [DOI: 10.1111/1462-2920.14121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| | - Simon A. B. Knight
- Department of Medicine, Division of Hematology-Oncology; Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - Ascensión Valderas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology; Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| |
Collapse
|
36
|
Kong Y, Li X, Wang B, Li W, Du H, Zhang C. The Soybean Purple Acid Phosphatase GmPAP14 Predominantly Enhances External Phytate Utilization in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:292. [PMID: 29593758 PMCID: PMC5857590 DOI: 10.3389/fpls.2018.00292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/19/2018] [Indexed: 05/24/2023]
Abstract
Induction and secretion of acid phosphatases (APases) is considered to be an important strategy for improving plant growth under conditions of low inorganic phosphate (Pi). Purple acid phosphatases (PAPs), are an important class of plant APases that could be secreted into the rhizosphere to utilize organic phosphorus (Po) for plant growth and development. To date, only a few members of the PAP family have been identified in soybean. In this paper, we identified a secreted PAP in soybean, GmPAP14, and investigated its role in utilizing external phytate, the main form of organic phosphorus in the soil. An analysis of its expression and promoter showed that GmPAP14 was mainly expressed in the root and was strongly induced following Po treatment, during which its expression expanded from meristematic to maturation zones and root hairs. In vitro enzyme assays indicated that GmPAP14 had a relatively high phytase activity. Furthermore, GmPAP14 overexpression increased secreted APase activities and phytase activities, leading to the improved use of external plant phytate, higher phosphorus content, and increased shoot weight. Thus, these results confirmed that GmPAP14 is an important gene induced in response to Po, and that it predominantly participates in utilizing external Po to enhance plant growth and development.
Collapse
|
37
|
Gil-Cardeza ML, Calonne-Salmon M, Gómez E, Declerck S. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. CHEMOSPHERE 2017; 187:27-34. [PMID: 28829949 DOI: 10.1016/j.chemosphere.2017.08.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Hexavalent chromium is a potent carcinogen, while phosphorus is an essential nutrient. The role of arbuscular mycorrhizal fungi (AMF) in the uptake of P is well known and was also reported, at low levels, for Cr. However, it is unclear whether the uptake of Cr can impact the short-term uptake dynamics of P since both elements have a similar chemical structure and may thus potentially compete with each other during the uptake process. This study investigated the impact of Cr(VI) on short-term P uptake by the AMF Rhizophagus irregularis MUCL 41833 in Medicago truncatula. Bi-compartmented Petri plates were used to spatially separate a root compartment (RC) from a hyphal compartment (HC) using a whole plant in vitro culture system. The HC was supplemented with Cr(VI). Chromium(VI) as well as total Cr and P were monitored during 16 h within the HC and their concentrations determined by the end of the experiment within roots and shoots. Our results indicated that the uptake and translocation of Cr from hyphae to roots was a fast process: roots in which the extraradical mycelium (ERM) was exposed to Cr(VI) accumulated more Cr than roots of which the ERM was not exposed to Cr(VI) or was dead. Our results further confirmed that dead ERM immobilized more Cr than alive ERM. Finally our results demonstrated that the short exposure to Cr(VI) was sufficient to stimulate P uptake by the ERM and that the stimulation process began within the first 4 h of exposure.
Collapse
Affiliation(s)
- María Lourdes Gil-Cardeza
- Laboratorio de Biodiversidad Vegetal y Microbiana, IICAR (CONICET-UNR), Facultad de Cs Agrarias, Universidad Nacional de Rosario, Campo Exp. Villarino, Zavalla (2123), Argentina.
| | - Maryline Calonne-Salmon
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud, 2 box L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| | - Elena Gómez
- Laboratorio de Biodiversidad Vegetal y Microbiana, IICAR (CONICET-UNR), Facultad de Cs Agrarias, Universidad Nacional de Rosario, Campo Exp. Villarino, Zavalla (2123), Argentina
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud, 2 box L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
38
|
Pepe A, Sbrana C, Ferrol N, Giovannetti M. An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. MYCORRHIZA 2017; 27:659-668. [PMID: 28573458 DOI: 10.1007/s00572-017-0779-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish beneficial mutualistic symbioses with land plants, receiving carbon in exchange for mineral nutrients absorbed by the extraradical mycelium (ERM). With the aim of obtaining in vivo produced ERM for gene expression analyses, a whole-plant bi-dimensional experimental system was devised and tested with three host plants and three fungal symbionts. In such a system, Funneliformis mosseae in symbiosis with Cichorium intybus var. foliosum, Lactuca sativa, and Medicago sativa produced ERM whose lengths ranged from 9.8 ± 0.8 to 20.8 ± 1.2 m per plant. Since ERM produced in symbiosis with C. intybus showed the highest values for the different structural parameters assessed, this host was used to test the whole-plant system with F. mosseae, Rhizoglomus irregulare, and Funneliformis coronatus. The whole-plant system yielded 1-7 mg of ERM fresh biomass per plant per harvest, and continued producing new ERM for 6 months. Variable amounts of high-quality and intact total RNA, ranging from 15 to 65 μg RNA/mg ERM fresh weight, were extracted from the ERM of the three AMF isolates. Ammonium transporter gene expression was successfully determined in the cDNAs obtained from ERM of the three fungal symbionts by RT-qPCR using gene-specific primers designed on available (R. irregulare) and new (F. mosseae and F. coronatus) ammonium transporter gene sequences. The whole-plant experimental system represents a useful research tool for large production and easy collection of ERM for morphological, physiological, and biochemical analyses, suitable for a wide variety of AMF species, for a virtually limitless range of host plants and for studies involving diverse symbiotic interactions.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology, UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Nuria Ferrol
- Departamento de Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
39
|
Garcés-Ruiz M, Calonne-Salmon M, Plouznikoff K, Misson C, Navarrete-Mier M, Cranenbrouck S, Declerck S. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System. FRONTIERS IN PLANT SCIENCE 2017; 8:1471. [PMID: 28890723 PMCID: PMC5574913 DOI: 10.3389/fpls.2017.01471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/08/2017] [Indexed: 05/26/2023]
Abstract
A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.
Collapse
Affiliation(s)
- Mónica Garcés-Ruiz
- Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
- Laboratorio de Micología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del EcuadorQuito, Ecuador
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Katia Plouznikoff
- Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Coralie Misson
- Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Micaela Navarrete-Mier
- Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Sylvie Cranenbrouck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
- Mycothèque de l’Université catholique de Louvain (BCCM/MUCL), Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de LouvainLouvain-la-Neuve, Belgium
| |
Collapse
|
40
|
Mercy L, Lucic-Mercy E, Nogales A, Poghosyan A, Schneider C, Arnholdt-Schmitt B. A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an Endomycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2017; 8:417. [PMID: 28424712 PMCID: PMC5371606 DOI: 10.3389/fpls.2017.00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/10/2017] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are crucial components of fertile soils, able to provide several ecosystem services for crop production. Current economic, social and legislative contexts should drive the so-called "second green revolution" by better exploiting these beneficial microorganisms. Many challenges still need to be overcome to better understand the mycorrhizal symbiosis, among which (i) the biotrophic nature of AMF, constraining their production, while (ii) phosphate acts as a limiting factor for the optimal mycorrhizal inoculum application and effectiveness. Organism fitness and adaptation to the changing environment can be driven by the modulation of mitochondrial respiratory chain, strongly connected to the phosphorus processing. Nevertheless, the role of the respiratory function in mycorrhiza remains largely unexplored. We hypothesized that the two mitochondrial respiratory chain components, alternative oxidase (AOX) and cytochrome oxidase (COX), are involved in specific mycorrhizal behavior. For this, a complex approach was developed. At the pre-symbiotic phase (axenic conditions), we studied phenotypic responses of Rhizoglomus irregulare spores with two AOX and COX inhibitors [respectively, salicylhydroxamic acid (SHAM) and potassium cyanide (KCN)] and two growth regulators (abscisic acid - ABA and gibberellic acid - Ga3). At the symbiotic phase, we analyzed phenotypic and transcriptomic (genes involved in respiration, transport, and fermentation) responses in Solanum tuberosum/Rhizoglomus irregulare biosystem (glasshouse conditions): we monitored the effects driven by ABA, and explored the modulations induced by SHAM and KCN under five phosphorus concentrations. KCN and SHAM inhibited in vitro spore germination while ABA and Ga3 induced differential spore germination and hyphal patterns. ABA promoted mycorrhizal colonization, strong arbuscule intensity and positive mycorrhizal growth dependency (MGD). In ABA treated plants, R. irregulare induced down-regulation of StAOX gene isoforms and up-regulation of genes involved in plant COX pathway. In all phosphorus (P) concentrations, blocking AOX or COX induced opposite mycorrhizal patterns in planta: KCN induced higher Arum-type arbuscule density, positive MGD but lower root colonization compared to SHAM, which favored Paris-type formation and negative MGD. Following our results and current state-of-the-art knowledge, we discuss metabolic functions linked to respiration that may occur within mycorrhizal behavior. We highlight potential connections between AOX pathways and fermentation, and we propose new research and mycorrhizal application perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | - Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity (FunCrop), EU Marie Curie Chair, ICAAM, University of ÉvoraÉvora, Portugal
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of CearáFortaleza, Brazil
- Science and Technology Park Alentejo (PCTA)Évora, Portugal
| |
Collapse
|
41
|
Sugimura Y, Saito K. Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis. MYCORRHIZA 2017; 27:139-146. [PMID: 27766430 DOI: 10.1007/s00572-016-0735-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 05/23/2023]
Abstract
The development of arbuscular mycorrhiza (AM) is strongly suppressed under high-phosphate (Pi) conditions. To investigate AM fungal responses during the suppression of AM by high Pi, we performed an RNA-seq analysis of Rhizophagus irregularis colonizing Lotus japonicus roots at different levels of Pi (20, 100, 300, and 500 μM). AM fungal colonization decreased markedly under high-Pi conditions. In total, 163 fungal genes were differentially expressed among the four Pi treatments. Among these genes, a cell cycle-regulatory gene, cyclin-dependent kinase CDK1, and several DNA replication- and mitosis-related genes were repressed under high-Pi conditions. More than 20 genes encoding secreted proteins were also downregulated by high-Pi conditions, including the strigolactone-induced putative secreted protein 1 gene that enhances AM fungal colonization. In contrast, the expression of genes related to aerobic respiration and transport in R. irregularis were largely unaffected. Our data suggest that high Pi suppresses the expression of genes associated with fungal cell cycle progression or that encode secreted proteins that may be required for intercellular hyphal growth and arbuscule formation. However, high Pi has little effect on the transcriptional regulation of the primary metabolism or transport in preformed fungal structures.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
- Research Center for Fungal & Microbial Dynamism, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
42
|
Abstract
ABSTRACT
Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches have dominated the initial studies of these fascinating symbioses, the advent of molecular biology, live cell imaging, and “omics” techniques have provided new and powerful tools to decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. In this article we focus on the most common mycorrhizal association, arbuscular mycorrhiza (AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are believed to have assisted the conquest of dry lands by early plants around 450 million years ago and are found today in most land ecosystems. AM fungi have several peculiar biological traits, including obligate biotrophy, intracellular development inside the plant tissues, coenocytic multinucleate hyphae, and spores, as well as unique genetics, such as the putative absence of a sexual cycle, and multiple ecological functions. All of these features make the study of AM fungi as intriguing as it is challenging, and their symbiotic association with most crop plants is currently raising a broad interest in agronomic contexts for the potential use of AM fungi in sustainable production under conditions of low chemical input.
Collapse
|
43
|
Xie X, Lin H, Peng X, Xu C, Sun Z, Jiang K, Huang A, Wu X, Tang N, Salvioli A, Bonfante P, Zhao B. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. MOLECULAR PLANT 2016; 9:1583-1608. [PMID: 27688206 DOI: 10.1016/j.molp.2016.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A146 (in transmembrane domain [TMD] IV) and Val357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Hui Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaowei Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Congrui Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Kexin Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Antian Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaohui Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Nianwu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China.
| |
Collapse
|
44
|
Zhang L, Jiang C, Zhou J, Declerck S, Tian C, Feng G. Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. MYCORRHIZA 2016; 26:909-918. [PMID: 27468824 DOI: 10.1007/s00572-016-0722-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 05/11/2023]
Abstract
Plants associated with arbuscular mycorrhizal fungi (AMF) acquire phosphorus via roots and extraradical hyphae. How soil P level affects P accumulation within hyphae and how P in hyphae influences the accumulation of metal minerals remains little explored. A bi-compartmented in vitro cultivation system separating a root compartment (RC), containing a Ri T-DNA transformed carrot root associated to the AMF Rhizophagus irregularis DAOM 197198, from a hyphal compartment (HC), containing only the extraradical hyphae, was used. The HC contained a liquid growth medium (i.e., the modified Strullu-Romand medium containing P in the form of KH2PO4) without (0 μM) or adjusted to 35, 100, and 700 μM of KH2PO4. The accumulation of P and metal minerals (Ca, Mg, K, Na, Fe, Cu, Mn) within extraradical hyphae and AMF-colonized roots, and the expression of the phosphate transporter gene GintPT were assessed. The expression of GintPT in the extraradical hyphae did not differ in absence of KH2PO4 or in presence of 35 and 100 μM KH2PO4 in the HC but was markedly reduced in presence of 700 μM KH2PO4. Hyphal P concentration was significantly lowest in absence of KH2PO4, intermediate at 35 and 100 μM KH2PO4 and significantly highest in presence of 700 μM KH2PO4 in the HC. The concentrations of K, Mg, and Na were positively associated with the concentration of P in the extraradical hyphae developing in the HC. Similarly, P concentration in extraradical hyphae in the HC was related to P concentration in the growth medium and influenced the concentration of K, Mg, and Na. The accumulation of the metal mineral K, Mg, and Na in the extraradical hyphae developing in the HC was possibly related to their function in neutralizing the negative charges of PolyP accumulated in the hyphae.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Caiyun Jiang
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Jiachao Zhou
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Applied microbiology, Mycology, Croix du sud 2, bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Gu Feng
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Fiorilli V, Belmondo S, Khouja HR, Abbà S, Faccio A, Daghino S, Lanfranco L. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. MYCORRHIZA 2016; 26:609-621. [PMID: 27075897 DOI: 10.1007/s00572-016-0697-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.
| | - Simone Belmondo
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Hassine Radhouane Khouja
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Stefania Daghino
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
46
|
Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. THE NEW PHYTOLOGIST 2016; 210:1022-32. [PMID: 27074400 DOI: 10.1111/nph.13838] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/28/2015] [Indexed: 05/22/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) transfer plant photosynthate underground which can stimulate soil microbial growth. In this study, we examined whether there was a potential link between carbon (C) release from an AMF and phosphorus (P) availability via a phosphate-solubilizing bacterium (PSB). We investigated the outcome of the interaction between the AMF and the PSB by conducting a microcosm and two Petri plate experiments. An in vitro culture experiment was also conducted to determine the direct impact of AMF hyphal exudates on growth of the PSB. The AMF released substantial C to the environment, triggering PSB growth and activity. In return, the PSB enhanced mineralization of organic P, increasing P availability for the AMF. When soil available P was low, the PSB competed with the AMF for P, and its activity was not stimulated by the fungus. When additional P was added to increase soil available P, the PSB enhanced AMF hyphal growth, and PSB activity was also stimulated by the fungus. Our results suggest that an AMF and a free-living PSB interacted to the benefit of each other by providing the C or P that the other microorganism required, but these interactions depended upon background P availability.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Minggang Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Angela Hodge
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Gu Feng
- College of Resources and Environmental Sciences, Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
47
|
Pepe A, Giovannetti M, Sbrana C. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. MYCORRHIZA 2016; 26:325-332. [PMID: 26630971 DOI: 10.1007/s00572-015-0671-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21% of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9%. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2-7.7, while it ranged from 25.8-48 to 35.6-53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2%). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
48
|
Berruti A, Lumini E, Balestrini R, Bianciotto V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes. Front Microbiol 2016; 6:1559. [PMID: 26834714 PMCID: PMC4717633 DOI: 10.3389/fmicb.2015.01559] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Arbuscular Mycorrhizal Fungi (AMF) constitute a group of root obligate biotrophs that exchange mutual benefits with about 80% of plants. They are considered natural biofertilizers, since they provide the host with water, nutrients, and pathogen protection, in exchange for photosynthetic products. Thus, AMF are primary biotic soil components which, when missing or impoverished, can lead to a less efficient ecosystem functioning. The process of re-establishing the natural level of AMF richness can represent a valid alternative to conventional fertilization practices, with a view to sustainable agriculture. The main strategy that can be adopted to achieve this goal is the direct re-introduction of AMF propagules (inoculum) into a target soil. Originally, AMF were described to generally lack host- and niche-specificity, and therefore suggested as agriculturally suitable for a wide range of plants and environmental conditions. Unfortunately, the assumptions that have been made and the results that have been obtained so far are often worlds apart. The problem is that success is unpredictable since different plant species vary their response to the same AMF species mix. Many factors can affect the success of inoculation and AMF persistence in soil, including species compatibility with the target environment, the degree of spatial competition with other soil organisms in the target niche and the timing of inoculation. Thus, it is preferable to take these factors into account when "tuning" an inoculum to a target environment in order to avoid failure of the inoculation process. Genomics and transcriptomics have led to a giant step forward in the research field of AMF, with consequent major advances in the current knowledge on the processes involved in their interaction with the host-plant and other soil organisms. The history of AMF applications in controlled and open-field conditions is now long. A review of biofertilization experiments, based on the use of AMF, has here been proposed, focusing on a few important factors that could increase the odds or jeopardize the success of the inoculation process.
Collapse
Affiliation(s)
| | | | - Raffaella Balestrini
- Institute for Sustainable Plant Protection - Turin UOS, National Research CouncilTorino, Italy
| | | |
Collapse
|
49
|
Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Lanfranco L. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. PLANTA 2016; 243:251-262. [PMID: 26403286 DOI: 10.1007/s00425-015-2407-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development. Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.
Collapse
Affiliation(s)
- Simone Belmondo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Cristina Calcagno
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Andrea Genre
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Alain Puppo
- Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- CNSR, UMR 7254, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nicolas Pauly
- Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- CNSR, UMR 7254, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Luisa Lanfranco
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy.
| |
Collapse
|
50
|
Battini F, Cristani C, Giovannetti M, Agnolucci M. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 2015; 183:68-79. [PMID: 26805620 DOI: 10.1016/j.micres.2015.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
Abstract
Arbuscular Mycorrhizal Fungi (AMF) live in symbiosis with most crop plants and represent essential elements of soil fertility and plant nutrition and productivity, facilitating soil mineral nutrient uptake and protecting plants from biotic and abiotic stresses. These beneficial services may be mediated by the dense and active spore-associated bacterial communities, which sustain diverse functions, such as the promotion of mycorrhizal activity, biological control of soilborne diseases, nitrogen fixation, and the supply of nutrients and growth factors. In this work, we utilised culture-dependent methods to isolate and functionally characterize the microbiota strictly associated to Rhizophagus intraradices spores, and molecularly identified the strains with best potential plant growth promoting (PGP) activities by 16S rDNA sequence analysis. We isolated in pure culture 374 bacterial strains belonging to different functional groups-actinobacteria, spore-forming, chitinolytic and N2-fixing bacteria-and screened 122 strains for their potential PGP activities. The most common PGP trait was represented by P solubilization from phytate (69.7%), followed by siderophore production (65.6%), mineral P solubilization (49.2%) and IAA production (42.6%). About 76% of actinobacteria and 65% of chitinolytic bacteria displayed multiple PGP activities. Nineteen strains with best potential PGP activities, assigned to Sinorhizobium meliloti, Streptomyces spp., Arthrobacter phenanthrenivorans, Nocardiodes albus, Bacillus sp. pumilus group, Fictibacillus barbaricus and Lysinibacillus fusiformis, showed the ability to produce IAA and siderophores and to solubilize P from mineral phosphate and phytate, representing suitable candidates as biocontrol agents, biofertilisers and bioenhancers, in the perspective of targeted management of beneficial symbionts and their associated bacteria in sustainable food production systems.
Collapse
Affiliation(s)
- Fabio Battini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|