1
|
Peixoto WFS, Pereira RC, Azevedo EDSS, Dos Santos FM, Coutinho R, de Oliveira LS. The molecular complexity of terpene biosynthesis in red algae: current state and future perspectives. Nat Prod Rep 2025. [PMID: 39991778 DOI: 10.1039/d4np00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Covering the period 1998-2024Red algae are the largest group of seaweeds and rich sources of bioactive terpenes with broad and significant biotechnological potential. However, the main obstacle to the economic exploitation of these compounds is the difficulty of obtaining them on an industrial and sustainable scale. Genetic engineering and heterologous biosynthesis are promising tools for overcoming this limitation, but little is known about red algal terpene biosynthetic routes. In general, terpene biosynthesis relies on complex mechanisms that produce a wide array of chemically diverse compounds. In this article, we review the main processes that contribute to such chemical diversity of terpenes, which are divided into four biosynthetic steps: (i) biosynthesis of isoprenoid precursors, (ii) linear condensation of precursors to produce polyisoprenyl diphosphate intermediary molecules, (iii) terpene synthase-catalyzed chemical/structural modifications, and (iv) additional chemical/structural modifications on the basic terpene carbon skeleton. Terpene synthase evolution in algae and topics that have only recently been explored, such as terpene synthase catalytic and substrate promiscuity, have also been analyzed in detail. We present a detailed analysis of terpenoid metabolism in red algae, highlighting the mechanisms that generate their chemical diversity and identifying knowledge gaps. Additionally, we provide perspectives to guide future studies, aiming to advance the heterologous biosynthesis of terpenes from red algae for biotechnological development and application.
Collapse
Affiliation(s)
- Wanessa Francesconi Stida Peixoto
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
| | - Renato Crespo Pereira
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
- Departament of Marine Biology, Biology Institute, Federal Fluminense University - UFF, Niterói, RJ, 21941-590, Brazil
| | - Esthfanny Dos Santos Souza Azevedo
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
| | - Fernando Martins Dos Santos
- Departamento of Organic Chemistry, Chemistry Institute, Federal Fluminense University - UFF, Niterói, RJ, 24.020-141, Brazil
| | - Ricardo Coutinho
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
| | - Louisi Souza de Oliveira
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira - IEAPM, Arraial do Cabo, 28930-000, RJ, Brazil.
- Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia - IEAPM, Federal Fluminense University - UFF, Brazil
| |
Collapse
|
2
|
Lampe RH, Coale TH, McQuaid JB, Allen AE. Molecular Mechanisms for Iron Uptake and Homeostasis in Marine Eukaryotic Phytoplankton. Annu Rev Microbiol 2024; 78:213-232. [PMID: 39018471 DOI: 10.1146/annurev-micro-041222-023252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The micronutrient iron is essential for phytoplankton growth due to its central role in a wide variety of key metabolic processes including photosynthesis and nitrate assimilation. As a result of scarce bioavailable iron in seawater, marine primary productivity is often iron-limited with future iron supplies remaining uncertain. Although evolutionary constraints resulted in high cellular iron requirements, phytoplankton evolved diverse mechanisms that enable uptake of multiple forms of iron, storage of iron over short and long timescales, and modulation of their iron requirement under stress. Genomics continues to increase our understanding of iron-related proteins that are homologous to those characterized in other model organisms, while recently, molecular and cell biology have been revealing unique genes and processes with connections to iron acquisition or use. Moreover, there are an increasing number of examples showing the interplay between iron uptake and extracellular processes such as boundary layer chemistry and microbial interactions.
Collapse
Affiliation(s)
- Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| | - Tyler H Coale
- Department of Ocean Sciences, University of California, Santa Cruz, California, USA;
| | - Jeffrey B McQuaid
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
3
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
4
|
Fang Y, Tai Z, Hu K, Luo L, Yang S, Liu M, Xie X. Comprehensive Review on Plant Cytochrome P450 Evolution: Copy Number, Diversity, and Motif Analysis From Chlorophyta to Dicotyledoneae. Genome Biol Evol 2024; 16:evae240. [PMID: 39506518 PMCID: PMC11586672 DOI: 10.1093/gbe/evae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cytochrome P450 enzymes (CYPs) are widely distributed among various plant groups and constitute approximately 1% of the total number of protein-coding genes. Extensive studies suggest that CYPs are involved in nearly all molecular processes that occur in plants. Over the past two decades, the identification of CYP genes has expanded rapidly, with more than 40,000 CYP genes and 819 CYP families being discovered. Copy number variation is a significant evolutionary characteristic of gene families, yet a systematic characterization of the copy evolution patterns in plant CYP gene families has been lacking, resulting in confusion and challenges in understanding CYP functions. To address these concerns, this review provides comprehensive statistics and analyses of the copy number and diversity of almost all plant CYP gene families, focusing on CYP evolution from Chlorophyta to Dicotyledoneae. Additionally, we examined the subfamily characteristics of certain CYP families with restricted copy changes and identified several CYP subfamilies that play pivotal roles in this event. Furthermore, we analyzed the structural conservation of CYPs across different taxa and compiled a comprehensive database to support plant CYP studies. Our analysis revealed differences in the six core conserved motifs of plant CYP proteins among various clans and plant taxa, while demonstrating similar conservation patterns for the ERR (glutamic acid-arginine-arginine) triad motifs. These findings will significantly facilitate the understanding of plant CYP gene evolution and metabolic diversity and serve as a valuable reference for researchers studying CYP enzymes.
Collapse
Affiliation(s)
- Yuanpeng Fang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zheng Tai
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Keyi Hu
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lingfeng Luo
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
5
|
Zonnequin M, Belcour A, Delage L, Siegel A, Blanquart S, Leblanc C, Markov GV. Empirical evidence for metabolic drift in plant and algal lipid biosynthesis pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1339132. [PMID: 38357267 PMCID: PMC10864609 DOI: 10.3389/fpls.2024.1339132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metabolic pathway drift has been formulated as a general principle to help in the interpretation of comparative analyses between biosynthesis pathways. Indeed, such analyses often indicate substantial differences, even in widespread pathways that are sometimes believed to be conserved. Here, our purpose is to check how much this interpretation fits to empirical data gathered in the field of plant and algal biosynthesis pathways. After examining several examples representative of the diversity of lipid biosynthesis pathways, we explain why it is important to compare closely related species to gain a better understanding of this phenomenon. Furthermore, this comparative approach brings us to the question of how much biotic interactions are responsible for shaping this metabolic plasticity. We end up introducing some model systems that may be promising for further exploration of this question.
Collapse
Affiliation(s)
- Maëlle Zonnequin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
- Univ. Grenoble Alpes, Inria, Grenoble, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | | | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
6
|
Xing Q, Cabioch L, Desrut A, Le Corguillé G, Rousvoal S, Dartevelle L, Rolland E, Guitton Y, Potin P, Markov GV, Faugeron S, Leblanc C. Aldehyde perception induces specific molecular responses in Laminaria digitata and affects algal consumption by a specialist grazer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1617-1632. [PMID: 37658798 DOI: 10.1111/tpj.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
In the marine environment, distance signaling based on water-borne cues occurs during interactions between macroalgae and herbivores. In the brown alga Laminaria digitata from North-Atlantic Brittany, oligoalginates elicitation or grazing was shown to induce chemical and transcriptomic regulations, as well as emission of a wide range of volatile aldehydes, but their biological roles as potential defense or warning signals in response to herbivores remain unknown. In this context, bioassays using the limpet Patella pellucida and L. digitata were carried out for determining the effects of algal transient incubation with 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE) and dodecadienal on algal consumption by grazers. Simultaneously, we have developed metabolomic and transcriptomic approaches to study algal molecular responses after treatments of L. digitata with these chemical compounds. The results indicated that, unlike the treatment of the plantlets with 4-HNE or dodecadienal, treatment with 4-HHE decreases algal consumption by herbivores at 100 ng.ml-1 . Moreover, we showed that algal metabolome was significantly modified according to the type of aldehydes, and more specifically the metabolite pathways linked to fatty acid degradation. RNAseq analysis further showed that 4-HHE at 100 ng.ml-1 can activate the regulation of genes related to oxylipin signaling pathways and specific responses, compared to oligoalginates elicitation. As kelp beds constitute complex ecosystems consisting of habitat and food source for marine herbivores, the algal perception of specific aldehydes leading to targeted molecular regulations could have an important biological role on kelps/grazers interactions.
Collapse
Affiliation(s)
- Qikun Xing
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Léa Cabioch
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
- Centro de Conservación Marina and CeBiB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antoine Desrut
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Gildas Le Corguillé
- Sorbonne Université, CNRS, FR 2424, ABIMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Sylvie Rousvoal
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Laurence Dartevelle
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Elodie Rolland
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - Philippe Potin
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Sylvain Faugeron
- Centro de Conservación Marina and CeBiB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catherine Leblanc
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
7
|
Davison JR, Rajwani R, Zhao G, Bewley CA. The genome of antibiotic-producing colonies of the Pelagophyte alga Chrysophaeum taylorii reveals a diverse and non-canonical capacity for secondary metabolism. Sci Rep 2023; 13:11944. [PMID: 37488207 PMCID: PMC10366177 DOI: 10.1038/s41598-023-38042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/01/2023] [Indexed: 07/26/2023] Open
Abstract
Chrysophaeum taylorii is a member of an understudied clade of marine algae that can be responsible for harmful coastal blooms and is known to accumulate bioactive natural products including antibiotics of the chrysophaentin class. Whole genome sequencing of laboratory-cultivated samples revealed an extensive and diverse complement of secondary metabolite biosynthetic genes in C. taylorii, alongside a small microbiome with a more limited biosynthetic potential. 16S microbiome analysis of laboratory cultured alongside wild-collected samples revealed several common taxa; however, analysis of biosynthetic genes suggested an algal origin for the chrysophaentins, possibly via one of several non-canonical polyketide synthase genes encoded within the genome.
Collapse
Affiliation(s)
- Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
- LifeMine Therapeutics, 30 Acorn Park Dr., Cambridge, MA, 02140, USA.
| | - Rahim Rajwani
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Wu K, Atasoy M, Zweers H, Rijnaarts H, Langenhoff A, Fernandes TV. Impact of wastewater characteristics on the removal of organic micropollutants by Chlorella sorokiniana. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131451. [PMID: 37086668 DOI: 10.1016/j.jhazmat.2023.131451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgae-based technologies can be used for the removal of organic micropollutants (OMPs) from different types of wastewater. However, the effect of wastewater characteristics on the removal is still poorly understood. In this study, the removal of sixteen OMPs by Chlorella sorokiniana, cultivated in three types of wastewater (anaerobically digested black water (AnBW), municipal wastewater (MW), and secondary clarified effluent (SCE)), were assessed. During batch operational mode, eleven OMPs were removed from AnBW and MW. When switching from batch to continuous mode (0.8 d HRT), the removal of most OMPs from AnBW and MW decreased, suggesting that a longer retention time enhances the removal of some OMPs. Most OMPs were not removed from SCE since poor nutrient availability limited C. sorokiniana growth. Further correlation analyses between wastewater characteristics, biomass and OMPs removal indicated that the wastewater soluble COD and biomass concentration predominantly affected the removal of OMPs. Lastly, carbon uptake rate had a higher effect on the removal of OMPs than nitrogen and phosphate uptake rate. These data will give an insight on the implementation of microalgae-based technologies for the removal of OMPs in wastewater with varying strengths and nutrient availability.
Collapse
Affiliation(s)
- Kaiyi Wu
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Merve Atasoy
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands; UNLOCK, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Huub Rijnaarts
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
9
|
Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji MK, Salama ES. The recent progress on the bioactive compounds from algal biomass for human health applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Toporkova YY, Smirnova EO, Mukhtarova LS, Grechkin AN. Lipoxygenase pathway in brown algae: The biosynthesis of novel oxylipins 'ectocarpins' by hydroperoxide bicyclase CYP5164A3 of Ectocarpus siliculosus. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159205. [PMID: 35835431 DOI: 10.1016/j.bbalip.2022.159205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The sequence encoding the CYP5164A3 of the brown alga Ectocarpus siliculosus (Stramenopiles, SAR) was heterologously expressed in E. coli cells. The resulting recombinant CYP74 clan-related protein CYP5164A3 possessed a selective activity towards the α-linolenic acid 13(S)-hydroperoxide (13-HPOTE) and eicosapentaenoic acid 15(S)-hydroperoxide (15-HPEPE). The major products were the heterobicyclic oxylipins. For instance, the 13-HPOTE was converted into plasmodiophorols A, B, and C formed at about 14:3:2 ratio. Plasmodiophorols A-C have been recently described as the products of enzyme hydroperoxide bicyclase CYP50918A1 of cercozoan Plasmodiophora brassicae (Rhizaria, SAR). Furthermore, an unknown compound 1 was detected. Purified product 1 (Me) was identified as a novel substituted 3-propenyl-6-oxabicyclo[3.1.0]hexane based on its MS and NMR spectral data. Conversion of 15-HPEPE by CYP5164A3 resulted in products 7 and 8, analogous to plasmodiophorols A and B. This work uncovered the CYP5164A3 as the first hydroperoxide bicyclase in brown algae. Apparently, this enzyme plays a crucial role in the biosynthesis of heterobicyclic oxylipins like hybridalactone, ecklonilactones, and related natural products, widespread in brown algae.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia.
| |
Collapse
|
11
|
Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. Int J Biol Macromol 2022; 222:1665-1675. [PMID: 36167102 DOI: 10.1016/j.ijbiomac.2022.09.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
Host-induced gene silencing (HIGS) is a RNA-based system depend on the biological macromolecules generated in plants to control diseases. However, the effector proteins active in the HIGS are uncertain, which impedes its further application, especially for oomycete that lack efficient HIGS targets. Phytophthora capsici is an important oomycete causes blight in over 70 crops. Here, we comprehensively screened efficient HIGS vectors targeting PcCesA3 or PcOSBP1 in P. capsici to better control it and explore the characteristics of efficient HIGS vectors. Among the 26 vectors with different lengths and structures, we found that hairpin vectors with a 70 nt loop and ~ 500 bp stem showed the highest control efficacy, with the expressing of the screened vectors, the infection and fertility of P. capsici were greatly inhibited in transgenic Nicotiana benthamiana. Based on these efficient vectors, we demonstrated that the amount of HIGS vector generated small interfering RNAs (siRNAs) was positively related to gene silencing efficiency and resistance, and that NbDCL3 and NbDCL4 were the key effectors producing siRNAs. This work discovers the principles for efficient HIGS vectors design, and elucidates the molecular mechanism of HIGS, which could benefit the control of many other plant diseases based on HIGS.
Collapse
|
12
|
de Souza Silveira J, Brasil CL, Braga CQ, da Silva Moreira Â, Franz HC, Zamboni R, Sallis ES, Albano AP, Zambrano CG, Araujo LC, de Bona da Silva C, Pötter L, de Avila Botton S, Pereira DIB. Melaleuca alternifolia formulations in the treatment of experimental pythiosis. Braz J Microbiol 2022; 53:1011-1017. [PMID: 35239152 PMCID: PMC9151964 DOI: 10.1007/s42770-022-00720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils (EO) are aromatic compounds from the plant secondary metabolism. Melaleuca alternifolia EO is well known for its medicinal properties and promising use as an antimicrobial agent. Pythiosis is a difficult-to-treat and emerging disease caused by the oomycete Pythium insidiosum. This study evaluated a nanoemulsion formulation of M. alternifolia (NEMA) in topical and intralesional application to treat experimental pythiosis. Dermal toxicity tests were performed on M. alternifolia EO in Wistar rats. Pythiosis was reproduced in rabbits (n = 9) that were divided into groups: group 1 (control), cutaneous lesions with daily topical application of a non-ionizable gel-based formulation and intralesional application of sterile distilled water every 48 h; group 2 (topical formulation), lesions treated daily with topical application of a non-ionizable gel-based formulation containing 5 mg/ml of NEMA; and group 3 (intralesional formulation), lesions treated with NEMA at 5 mg/ml in aqueous solution applied intralesionally/48 h. The animals were treated for 45 days, and the subcutaneous lesion areas were measured every 5 days. M. alternifolia EO showed no dermal toxicity. The lesion areas treated with intralesional NEMA reduced at the end of treatment, differing from groups 1 and 2 (P < 0.05). In the topically treated group, the lesion areas did not differ from the control group, although the number of hyphae significantly reduced (P < 0.05). Under the experimental conditions of this study, the NEMA formulations presented a favorable safety profile. However, further studies are required to evaluate if this safety applies to higher concentrations of NEMA and to validate its use in clinical pythiosis.
Collapse
Affiliation(s)
- Júlia de Souza Silveira
- grid.411221.50000 0001 2134 6519Programa de Pós Graduação em Microbiologia e Parasitologia, Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Prédio 18, Sala 14. Campus Universitário Capão do Leão, s/n◦, Pelotas, RS CEP: 96160-000 Brazil
| | - Carolina Litchina Brasil
- grid.411221.50000 0001 2134 6519Programa de Pós Graduação em Microbiologia e Parasitologia, Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Prédio 18, Sala 14. Campus Universitário Capão do Leão, s/n◦, Pelotas, RS CEP: 96160-000 Brazil
| | - Caroline Quintana Braga
- grid.411221.50000 0001 2134 6519Programa de Pós Graduação em Microbiologia e Parasitologia, Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Prédio 18, Sala 14. Campus Universitário Capão do Leão, s/n◦, Pelotas, RS CEP: 96160-000 Brazil
| | - Ândrios da Silva Moreira
- grid.411221.50000 0001 2134 6519Programa de Pós Graduação em Microbiologia e Parasitologia, Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Prédio 18, Sala 14. Campus Universitário Capão do Leão, s/n◦, Pelotas, RS CEP: 96160-000 Brazil
| | - Helen Cabaldi Franz
- grid.411239.c0000 0001 2284 6531Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | - Rosimeri Zamboni
- grid.411221.50000 0001 2134 6519Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Eliza Simone Sallis
- grid.411221.50000 0001 2134 6519Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Ana Paula Albano
- grid.411221.50000 0001 2134 6519Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Cristina Gomes Zambrano
- grid.411221.50000 0001 2134 6519Programa de Pós Graduação em Microbiologia e Parasitologia, Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Prédio 18, Sala 14. Campus Universitário Capão do Leão, s/n◦, Pelotas, RS CEP: 96160-000 Brazil
| | - Lara Colles Araujo
- grid.411239.c0000 0001 2284 6531Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | - Cristiane de Bona da Silva
- grid.411239.c0000 0001 2284 6531Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | - Luciana Pötter
- grid.411239.c0000 0001 2284 6531Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | - Sônia de Avila Botton
- grid.411239.c0000 0001 2284 6531Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | - Daniela Isabel Brayer Pereira
- Programa de Pós Graduação em Microbiologia e Parasitologia, Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Prédio 18, Sala 14. Campus Universitário Capão do Leão, s/n◦, Pelotas, RS, CEP: 96160-000, Brazil.
| |
Collapse
|
13
|
Steele TS, Brunson JK, Maeno Y, Terada R, Allen AE, Yotsu-Yamashita M, Chekan JR, Moore BS. Domoic acid biosynthesis in the red alga Chondria armata suggests a complex evolutionary history for toxin production. Proc Natl Acad Sci U S A 2022; 119:e2117407119. [PMID: 35110408 PMCID: PMC8833176 DOI: 10.1073/pnas.2117407119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
Domoic acid (DA), the causative agent of amnesic shellfish poisoning, is produced by select organisms within two distantly related algal clades: planktonic diatoms and red macroalgae. The biosynthetic pathway to isodomoic acid A was recently solved in the harmful algal bloom-forming diatom Pseudonitzschia multiseries, establishing the genetic basis for the global production of this potent neurotoxin. Herein, we sequenced the 507-Mb genome of Chondria armata, the red macroalgal seaweed from which DA was first isolated in the 1950s, identifying several copies of the red algal DA (rad) biosynthetic gene cluster. The rad genes are organized similarly to the diatom DA biosynthesis cluster in terms of gene synteny, including a cytochrome P450 (CYP450) enzyme critical to DA production that is notably absent in red algae that produce the simpler kainoid neurochemical, kainic acid. The biochemical characterization of the N-prenyltransferase (RadA) and kainoid synthase (RadC) enzymes support a slightly altered DA biosynthetic model in C. armata via the congener isodomoic acid B, with RadC behaving more like the homologous diatom enzyme despite higher amino acid similarity to red algal kainic acid synthesis enzymes. A phylogenetic analysis of the rad genes suggests unique origins for the red macroalgal and diatom genes in their respective hosts, with native eukaryotic CYP450 neofunctionalization combining with the horizontal gene transfer of N-prenyltransferases and kainoid synthases to establish DA production within the algal lineages.
Collapse
Affiliation(s)
- Taylor S Steele
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - John K Brunson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037
| | - Yukari Maeno
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Ryuta Terada
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Andrew E Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27412;
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093;
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
14
|
Zheng S, Guo J, Cheng F, Gao Z, Du L, Meng C, Li S, Zhang X. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction. Acta Pharm Sin B 2022; 12:2832-2844. [PMID: 35755277 PMCID: PMC9214053 DOI: 10.1016/j.apsb.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Algae are a large group of photosynthetic organisms responsible for approximately half of the earth's total photosynthesis. In addition to their fundamental ecological roles as oxygen producers and as the food base for almost all aquatic life, algae are also a rich source of bioactive natural products, including several clinical drugs. Cytochrome P450 enzymes (P450s) are a superfamily of biocatalysts that are extensively involved in natural product biosynthesis by mediating various types of reactions. In the post-genome era, a growing number of P450 genes have been discovered from algae, indicating their important roles in algal life-cycle. However, the functional studies of algal P450s remain limited. Benefitting from the recent technical advances in algae cultivation and genetic manipulation, the researches on P450s in algal natural product biosynthesis have been approaching to a new stage. Moreover, some photoautotrophic algae have been developed into “photo-bioreactors” for heterologous P450s to produce high-value added pharmaceuticals and chemicals in a carbon-neutral or carbon-negative manner. Here, we comprehensively review these advances of P450 studies in algae from 2000 to 2021.
Collapse
Affiliation(s)
- Shanmin Zheng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| |
Collapse
|
15
|
Genome-Wide Characterization and Analysis of Expression of the Histone Gene Family in Razor Clam, Sinonovacula constricta. FISHES 2021. [DOI: 10.3390/fishes7010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Chinese razor clam (Sinonovacula constricta), a bivalve species widely distributed in estuaries and mudflats, is often exposed to extreme environmental and microbial stresses. Histones are fundamental components of chromatin and play an important role in innate immunity, as demonstrated by its antimicrobial activities in clams. However, little attention has been paid to histones in bivalves. To fill this gap, we investigated the genomic distribution, structural characteristics, conserved motifs, and phylogenetic relationships of histones in S. constricta. A total of 114 histone genes were detected in the S. constricta genome, which were divided into 25 types in phylogenetic analysis. Among them, partial histones exhibited a tissue-dependent expression pattern, indicating that they may be involved in sustaining the homeostasis of organs/tissues in adult S. constricta. Furthermore, mRNA expression of certain histones changed significantly in S. constricta when infected with Vibrio parahaemolyticus, suggesting that histones play a role in the immune defense of S. constricta. All together, this study on histone genes in S. constricta not only greatly expands our knowledge of histone function in the clam, but also histone evolution in molluscs.
Collapse
|
16
|
Grechkin AN, Lantsova NV, Khairutdinov BI, Toporkova YY. Hydroperoxide bicyclase CYP50918A1 of Plasmodiophora brassicae (Rhizaria, SAR): Detection of novel enzyme of oxylipin biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159042. [PMID: 34450267 DOI: 10.1016/j.bbalip.2021.159042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
The genome of the cabbage clubroot pathogen Plasmodiophora brassicae Woronin 1877 (Cercozoa, Rhizaria, SAR), possesses two expressed genes encoding the P450s that are phylogenetically related to the enzymes of oxylipin biosynthesis of the CYP74 clan. The cDNA of one of these genes (CYP50918A1) has been expressed in E. coli. The preferred substrate for the recombinant protein, the 13-hydroperoxide of α-linolenic acid (13-HPOT), was converted to the novel heterobicyclic oxylipins, plasmodiophorols A and B (1 and 2) at the ratio ca. 12:1. Compounds 1 and 2 were identified as the substituted 6-oxabicyclo[3.1.0]hexane and 2-oxabicyclo[2.2.1]heptane (respectively) using the MS and NMR spectroscopy, as well as the chemical treatments. The 18O labelling experiments revealed the incorporation of a single 18O atom from [18O2]13-HPOT into the epoxide and ether functions of products 1 and 2 (respectively), but not into their OH groups. In contrast, the 18O from [18O2]water was incorporated only into the hydroxyl functions. One more minor polar product, plasmodiophorol C (3), identified as the cyclopentanediol, was formed through the hydrolysis of compounds 1 and 2. Plasmodiophorols A-C are the congeners of egregiachlorides, hybridalactone, ecklonialactones and related bicyclic oxylipins detected before in some brown and red algae. The mechanism of 13-HPOT conversions to plasmodiophorols A and B involving the epoxyallylic cation intermediate is proposed. The hydroperoxide bicyclase CYP50918A1 is the first enzyme controlling this kind of fatty acid hydroperoxide conversion.
Collapse
Affiliation(s)
- Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Bulat I Khairutdinov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
17
|
Maeda Y, Tsuru Y, Matsumoto N, Nonoyama T, Yoshino T, Matsumoto M, Tanaka T. Prostaglandin production by the microalga with heterologous expression of cyclooxygenase. Biotechnol Bioeng 2021; 118:2734-2743. [PMID: 33851720 DOI: 10.1002/bit.27792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 01/28/2023]
Abstract
Prostaglandins (PGs) are the physiologically active compounds synthesized from C20 polyunsaturated fatty acids (PUFAs) by cyclooxygenase (COX) and a series of PG synthases, and are utilized as pharmaceuticals. Currently, commercialized PGs are mainly produced by chemical synthesis under harsh conditions. By contrast, bioproduction of PGs can be an alternative, environmental-friendly, and inexpensive process with genetic engineering of model plants, although these conventional host organisms contain a limited quantity of PG precursors. In this study, we established an efficient PG production process using the genetically engineered microalga Fistulifera solaris which is rich in C20 PUFAs. A cox gene derived from the red alga Agarophyton vermiculophyllum was introduced into F. solaris. As a result, a transformant clone with high cox expression produced PGs (i.e., PGD2 , PGE2 , PGF2α , and 15-ketoPGF2α derived from arachidonic acid, and PGD3 , PGE3 , and PGF3α derived from eicosapentaenoic acid) as revealed by liquid chromatography/mass spectrometry. The total content of PGs was 1290.4 ng/g of dry cell weight, which was higher than that produced in the transgenic plant reported previously. The results obtained in this study indicate that the C20 PUFA-rich microalga functionally expressing COX is a promising host for PG bioproduction.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuki Tsuru
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Nana Matsumoto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Tomomi Nonoyama
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Mitsufumi Matsumoto
- Biotechnology Laboratory, Electric Power Development Co., Ltd., Kitakyusyu, Fukuoka, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
18
|
Emeline CB, Ludovic D, Laurent V, Catherine L, Kruse I, Erwan AG, Florian W, Philippe P. Induction of Phlorotannins and Gene Expression in the Brown Macroalga Fucus vesiculosus in Response to the Herbivore Littorina littorea. Mar Drugs 2021; 19:185. [PMID: 33810577 PMCID: PMC8067260 DOI: 10.3390/md19040185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Mechanisms related to the induction of phlorotannin biosynthesis in marine brown algae remain poorly known. Several studies undertaken on fucoid species have shown that phlorotannins accumulate in the algae for several days or weeks after being exposed to grazing, and this is measured by direct quantification of soluble phenolic compounds. In order to investigate earlier inducible responses involved in phlorotannin metabolism, Fucus vesiculosus was studied between 6 and 72 h of grazing by the sea snail Littorina littorea. In this study, the quantification of soluble phenolic compounds was complemented by a Quantitative real-time PCR (qRT-PCR) approach applied on genes that are potentially involved in either the phlorotannin metabolism or stress responses. Soluble phlorotannin levels remained stable during the kinetics and increased significantly only after 12 h in the presence of grazers, compared to the control, before decreasing to the initial steady state for the rest of the kinetics. Under grazing conditions, the expression of vbpo, cyp450 and ast6 genes was upregulated, respectively, at 6 h, 12 h and 24 h, and cyp450 gene was downregulated after 72 h. Interestingly, the pksIII gene involved in the synthesis of phloroglucinol was overexpressed under grazing conditions after 24 h and 72 h. This study supports the hypothesis that phlorotannins are able to provide an inducible chemical defense under grazing activity, which is regulated at different stages of the stress response.
Collapse
Affiliation(s)
- Creis Bendelac Emeline
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
- International Research Laboratory IRL 3614, CNRS, Sorbonne Université, PUC, UACH, Evolutionary Biology and Ecology of Algae, EBEA, Station Biologique, 29680 Roscoff, Brittany, France
| | - Delage Ludovic
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Vallet Laurent
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Leblanc Catherine
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Inken Kruse
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany; (I.K.); (W.F.)
| | - Ar Gall Erwan
- Laboratoire des Sciences de l’Environnement Marin, UBO European Institute for Marine Studies IUEM, University of Brest—Western Brittany, UMR 6539 LEMAR, Technopôle Brest Iroise, Rue Dumont d’Urville, 29280 Plouzané, Brittany, France
| | - Weinberger Florian
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany; (I.K.); (W.F.)
| | - Potin Philippe
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| |
Collapse
|
19
|
Liou SH, Chuo SW, Qiu Y, Wang LP, Goodin DB. Linkage between Proximal and Distal Movements of P450cam Induced by Putidaredoxin. Biochemistry 2020; 59:2012-2021. [PMID: 32369344 PMCID: PMC9749489 DOI: 10.1021/acs.biochem.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Putidaredoxin (Pdx) is the exclusive reductase and a structural effector for P450cam (CYP101A1). However, the mechanism of how Pdx modulates the conformational states of P450cam remains elusive. Here we report a putative communication pathway for the Pdx-induced conformational change in P450cam using results of double electron-electron resonance (DEER) spectroscopy and molecular dynamics simulations. Use of solution state DEER measurements allows us to observe subtle conformational changes in the internal helices in P450cam among closed, open, and P450cam-Pdx complex states. Molecular dynamics simulations and dynamic network analysis suggest that Pdx binding is coupled to small coordinated movements of several regions of P450cam, including helices C, B', I, G, and F. These changes provide a linkage between the Pdx binding site on the proximal side of the enzyme and helices F/G on the distal side and the site of the largest movement resulting from the Pdx-induced closed-to-open transition. This study provides a detailed rationale for how Pdx exerts its long-recognized effector function at the active site from its binding site on the opposite face of the enzyme.
Collapse
Affiliation(s)
| | | | - Yudong Qiu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - David B. Goodin
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
20
|
Nègre D, Aite M, Belcour A, Frioux C, Brillet-Guéguen L, Liu X, Bordron P, Godfroy O, Lipinska AP, Leblanc C, Siegel A, Dittami SM, Corre E, Markov GV. Genome-Scale Metabolic Networks Shed Light on the Carotenoid Biosynthesis Pathway in the Brown Algae Saccharina japonica and Cladosiphon okamuranus. Antioxidants (Basel) 2019; 8:E564. [PMID: 31744163 PMCID: PMC6912245 DOI: 10.3390/antiox8110564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Understanding growth mechanisms in brown algae is a current scientific and economic challenge that can benefit from the modeling of their metabolic networks. The sequencing of the genomes of Saccharina japonica and Cladosiphon okamuranus has provided the necessary data for the reconstruction of Genome-Scale Metabolic Networks (GSMNs). The same in silico method deployed for the GSMN reconstruction of Ectocarpus siliculosus to investigate the metabolic capabilities of these two algae, was used. Integrating metabolic profiling data from the literature, we provided functional GSMNs composed of an average of 2230 metabolites and 3370 reactions. Based on these GSMNs and previously published work, we propose a model for the biosynthetic pathways of the main carotenoids in these two algae. We highlight, on the one hand, the reactions and enzymes that have been preserved through evolution and, on the other hand, the specificities related to brown algae. Our data further indicate that, if abscisic acid is produced by Saccharina japonica, its biosynthesis pathway seems to be different in its final steps from that described in land plants. Thus, our work illustrates the potential of GSMNs reconstructions for formalizing hypotheses that can be further tested using targeted biochemical approaches.
Collapse
Affiliation(s)
- Delphine Nègre
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
- Sorbonne Université, CNRS, Plateforme ABiMS (FR2424), Station Biologique de Roscoff, 29680 Roscoff, France
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9, Rue Bias, 44035 Nantes, France
| | - Méziane Aite
- Université de Rennes 1, Institute for Research in IT and Random Systems (IRISA), Equipe Dyliss, 35052 Rennes, France
| | - Arnaud Belcour
- Université de Rennes 1, Institute for Research in IT and Random Systems (IRISA), Equipe Dyliss, 35052 Rennes, France
| | - Clémence Frioux
- Université de Rennes 1, Institute for Research in IT and Random Systems (IRISA), Equipe Dyliss, 35052 Rennes, France
- Quadram Institute, Colney Lane, Norwich NR4 7UQ, UK
| | - Loraine Brillet-Guéguen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
- Sorbonne Université, CNRS, Plateforme ABiMS (FR2424), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Xi Liu
- Sorbonne Université, CNRS, Plateforme ABiMS (FR2424), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Philippe Bordron
- Sorbonne Université, CNRS, Plateforme ABiMS (FR2424), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Agnieszka P. Lipinska
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Anne Siegel
- Université de Rennes 1, Institute for Research in IT and Random Systems (IRISA), Equipe Dyliss, 35052 Rennes, France
| | - Simon M. Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Erwan Corre
- Sorbonne Université, CNRS, Plateforme ABiMS (FR2424), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| |
Collapse
|