Sarro J, Andrews E, Sun L, Behura SK, Tan JC, Zeng E, Severson DW, Duman-Scheel M. Requirement for commissureless2 function during dipteran insect nerve cord development.
Dev Dyn 2013;
242:1466-77. [PMID:
24026811 DOI:
10.1002/dvdy.24059]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/08/2013] [Accepted: 09/03/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND
In Drosophila melanogaster, commissureless (comm) function is required for proper nerve cord development. Although comm orthologs have not been identified outside of Drosophila species, some insects possess orthologs of Drosophila comm2, which may also regulate embryonic nerve cord development. Here, this hypothesis is explored through characterization of comm2 genes in two disease vector mosquitoes.
RESULTS
Culex quinquefasciatus (West Nile and lymphatic filiariasis vector) has three comm2 genes that are expressed in the developing nerve cord. Aedes aegypti (dengue and yellow fever vector) has a single comm2 gene that is expressed in commissural neurons projecting axons toward the midline. Loss of comm2 function in both A. aegypti and D. melanogaster was found to result in loss of commissure defects that phenocopy the frazzled (fra) loss of function phenotypes observed in both species. Loss of fra function in either insect was found to result in decreased comm2 transcript levels during nerve cord development.
CONCLUSIONS
The results of this investigation suggest that Fra down-regulates repulsion in precrossing commissural axons by regulating comm2 levels in both A. aegypti and D. melanogaster, both of which require Comm2 function for proper nerve cord development.
Collapse