1
|
Sachslehner A, Zieger E, Calcino A, Wanninger A. HES and Mox genes are expressed during early mesoderm formation in a mollusk with putative ancestral features. Sci Rep 2021; 11:18030. [PMID: 34504115 PMCID: PMC8429573 DOI: 10.1038/s41598-021-96711-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.
Collapse
Affiliation(s)
- Attila Sachslehner
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andrew Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Analysis of Fox genes in Schmidtea mediterranea reveals new families and a conserved role of Smed-foxO in controlling cell death. Sci Rep 2021; 11:2947. [PMID: 33536473 PMCID: PMC7859237 DOI: 10.1038/s41598-020-80627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The forkhead box (Fox) genes encode transcription factors that control several key aspects of development. Present in the ancestor of all eukaryotes, Fox genes underwent several duplications followed by loss and diversification events that gave rise to the current 25 families. However, few Fox members have been identified from the Lophotrochozoa clade, and specifically from planarians, which are a unique model for understanding development, due to the striking plasticity of the adult. The aim of this study was to identify and perform evolutionary and functional studies of the Fox genes of lophotrochozoan species and, specifically, of the planarian Schmidtea mediterranea. Generating a pipeline for identifying Forkhead domains and using phylogenetics allowed us the phylogenetic reconstruction of Fox genes. We corrected the annotation for misannotated genes and uncovered a new family, the QD, present in all metazoans. According to the new phylogeny, the 27 Fox genes found in Schmidtea mediterranea were classified into 12 families. In Platyhelminthes, family losses were accompanied by extensive gene diversification and the appearance of specific families, the A(P) and N(P). Among the newly identified planarian Fox genes, we found a single copy of foxO, which shows an evolutionary conserved role in controlling cell death.
Collapse
|
3
|
Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, Font-Martín D, Eckelt K, de Sousa N, García-Fernández J, Saló E, Adell T. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development 2020; 147:dev.184044. [PMID: 32122990 DOI: 10.1242/dev.184044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Kay Eckelt
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Jordi García-Fernández
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| |
Collapse
|
4
|
Martín-Durán JM. General Principles of Planarian Embryogenesis and Its Analysis by In Situ Hybridization and Immunohistochemistry Methods. Methods Mol Biol 2018; 1774:405-421. [PMID: 29916167 DOI: 10.1007/978-1-4939-7802-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Thanks to their ability to regrow any missing body part after injury, planarians have become a well-established invertebrate model system in regenerative studies. However, planarians are also unique in their embryonic development, displaying ectolecithality, or the accumulation of embryonic nutrients into accessory cells accompanying the zygotes. Gaining a better understanding of their peculiar embryogenesis can offer answers to some fundamental questions regarding the appearance and evolution of planarian regenerative capacities, and in a broader context, the diversification of embryonic and postembryonic development in animals. In this chapter, I give an overview of the present knowledge of planarian embryogenesis and the methodologies applied to its study. I describe and comment on protocols to fix and dissect planarian egg capsules, and perform whole-mount in situ hybridization and whole-mount immunohistochemistry on planarian embryos.
Collapse
Affiliation(s)
- José María Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
5
|
Plass M, Solana J, Wolf FA, Ayoub S, Misios A, Glažar P, Obermayer B, Theis FJ, Kocks C, Rajewsky N. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 2018; 360:science.aaq1723. [PMID: 29674432 DOI: 10.1126/science.aaq1723] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/14/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022]
Abstract
Flatworms of the species Schmidtea mediterranea are immortal-adult animals contain a large pool of pluripotent stem cells that continuously differentiate into all adult cell types. Therefore, single-cell transcriptome profiling of adult animals should reveal mature and progenitor cells. By combining perturbation experiments, gene expression analysis, a computational method that predicts future cell states from transcriptional changes, and a lineage reconstruction method, we placed all major cell types onto a single lineage tree that connects all cells to a single stem cell compartment. We characterized gene expression changes during differentiation and discovered cell types important for regeneration. Our results demonstrate the importance of single-cell transcriptome analysis for mapping and reconstructing fundamental processes of developmental and regenerative biology at high resolution.
Collapse
Affiliation(s)
- Mireya Plass
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jordi Solana
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - F Alexander Wolf
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Salah Ayoub
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Aristotelis Misios
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Petar Glažar
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Benedikt Obermayer
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Fabian J Theis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, München, Germany
| | - Christine Kocks
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
6
|
Abstract
RNA in situ hybridization techniques are an important tool for the study of gene expression patterns in freshwater planarians. Here I describe a RNA in situ hybridization method on histological paraffin sections of planarian tissue. This protocol allows the visualization of gene expression at cellular or subcellular resolution. Following paraffin-embedding and sectioning of planarians, the resulting sections are hybridized with hapten-labeled RNA probes. Subsequent immunological probe detection is carried out with either chromogenic or fluorescent development. This protocol can be performed alone, or in combination with other immunodetection techniques, and represents a useful alternative to whole-mount protocols more commonly used in the community.
Collapse
Affiliation(s)
- Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
7
|
Morton JM, Saad MA, Beane WS. Surgical Ablation Assay for Studying Eye Regeneration in Planarians. J Vis Exp 2017. [PMID: 28448039 DOI: 10.3791/55594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In the study of adult stem cells and regenerative mechanisms, planarian flatworms are a staple in vivo model system. This is due in large part to their abundant pluripotent stem cell population and ability to regenerate all cell and tissue types after injuries that would be catastrophic for most animals. Recently, planarians have gained popularity as a model for eye regeneration. Their ability to regenerate the entire eye (comprised of two tissue types: pigment cells and photoreceptors) allows for the dissection of the mechanisms regulating visual system regeneration. Eye ablation has several advantages over other techniques (such as decapitation or hole punch) for examining eye-specific pathways and mechanisms, the most important of which is that regeneration is largely restricted to eye tissues alone. The purpose of this video article is to demonstrate how to reliably remove the planarian optic cup without disturbing the brain or surrounding tissues. The handling of worms and maintenance of an established colony is also described. This technique uses a 31 G, 5/16-inch insulin needle to surgically scoop out the optic cup of planarians immobilized on a cold plate. This method encompasses both single and double eye ablation, with eyes regenerating within 1-2 weeks, allowing for a wide range of applications. In particular, this ablation technique can be easily combined with pharmacological and genetic (RNA interference) screens for a better understanding of regenerative mechanisms and their evolution, eye stem cells and their maintenance, and phototaxic behavioral responses and their neurological basis.
Collapse
Affiliation(s)
- Jacob M Morton
- Department of Biological Sciences, Western Michigan University
| | - Marwa A Saad
- Department of Biological Sciences, Western Michigan University
| | - Wendy S Beane
- Department of Biological Sciences, Western Michigan University;
| |
Collapse
|
8
|
Ross KG, Currie KW, Pearson BJ, Zayas RM. Nervous system development and regeneration in freshwater planarians. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.266] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Kelly G. Ross
- Department of Biology San Diego State University San Diego CA USA
| | - Ko W. Currie
- Program in Developmental and Stem Cell Biology The Hospital for Sick Children Toronto Canada
- Department of Molecular Genetics University of Toronto Toronto Canada
- Ontario Institute for Cancer Research Toronto Canada
| | - Bret J. Pearson
- Program in Developmental and Stem Cell Biology The Hospital for Sick Children Toronto Canada
- Department of Molecular Genetics University of Toronto Toronto Canada
- Ontario Institute for Cancer Research Toronto Canada
| | - Ricardo M. Zayas
- Department of Biology San Diego State University San Diego CA USA
| |
Collapse
|
9
|
Sureda-Gómez M, Martín-Durán JM, Adell T. Localization of planarian β-CATENIN-1 reveals multiple roles during anterior-posterior regeneration and organogenesis. Development 2016; 143:4149-4160. [PMID: 27737903 DOI: 10.1242/dev.135152] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
Abstract
The β-catenin-dependent Wnt pathway exerts multiple context-dependent roles in embryonic and adult tissues. In planarians, β-catenin-1 is thought to specify posterior identities through the generation of an anteroposterior gradient. However, the existence of such a gradient has not been directly demonstrated. Here, we use a specific polyclonal antibody to demonstrate that nuclear β-CATENIN-1 exists as an anteroposterior gradient from the pre-pharyngeal region to the tail of the planarian Schmidtea polychroa High levels in the posterior region steadily decrease towards the pre-pharyngeal region but then increase again in the head region. During regeneration, β-CATENIN-1 is nuclearized in both anterior and posterior blastemas, but the canonical WNT1 ligand only influences posterior nuclearization. Additionally, β-catenin-1 is required for proper anterior morphogenesis, consistent with the high levels of nuclear β-CATENIN-1 observed in this region. We further demonstrate that β-CATENIN-1 is abundant in developing and differentiated organs, and is particularly required for the specification of the germline. Altogether, our findings provide the first direct evidence of an anteroposterior nuclear β-CATENIN-1 gradient in adult planarians and uncover novel, context-dependent roles for β-catenin-1 during anterior regeneration and organogenesis.
Collapse
Affiliation(s)
- Miquel Sureda-Gómez
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia E-08028, Spain
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, Bergen 5008, Norway
| | - Teresa Adell
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia E-08028, Spain
| |
Collapse
|
10
|
Barberán S, Fraguas S, Cebrià F. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development 2016; 143:2089-102. [PMID: 27122174 DOI: 10.1242/dev.131995] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
The planarian Schmidtea mediterranea maintains and regenerates all its adult tissues through the proliferation and differentiation of a single population of pluripotent adult stem cells (ASCs) called neoblasts. Despite recent advances, the mechanisms regulating ASC differentiation into mature cell types are poorly understood. Here, we show that silencing of the planarian EGF receptor egfr-1 by RNA interference (RNAi) impairs gut progenitor differentiation into mature cells, compromising gut regeneration and maintenance. We identify a new putative EGF ligand, nrg-1, the silencing of which phenocopies the defects observed in egfr-1(RNAi) animals. These findings indicate that egfr-1 and nrg-1 promote gut progenitor differentiation, and are thus essential for normal cell turnover and regeneration in the planarian gut. Our study demonstrates that the EGFR signaling pathway is an important regulator of ASC differentiation in planarians.
Collapse
Affiliation(s)
- Sara Barberán
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, Edifici Prevosti, Planta 1, Barcelona, Catalunya 08028, Spain
| | - Susanna Fraguas
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, Edifici Prevosti, Planta 1, Barcelona, Catalunya 08028, Spain
| | - Francesc Cebrià
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, Edifici Prevosti, Planta 1, Barcelona, Catalunya 08028, Spain
| |
Collapse
|
11
|
Cheng F, Dong Z, Dong Y, Sima Y, Chen J, Li X, Chen G, Liu D. Identification and expression analysis of a heat-shock protein 70 gene in Polycelis sp. Cell Stress Chaperones 2015; 20:907-15. [PMID: 26311284 PMCID: PMC4595439 DOI: 10.1007/s12192-015-0608-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is ubiquitously found in a variety of organisms and plays an important role in cytoprotection, environmental monitoring, and disease resistance. In this study, the full-length complementary DNA (cDNA) of hsp70 from planarian Polycelis sp. was first cloned using rapid amplification of cDNA ends (RACE). The expression levels of Pyhsp70 were analyzed in the presence of various stressors by real-time PCR, and its temporal-spatial expression patterns were also examined in both intact and regenerative animals by whole-mount in situ hybridization. The results show that (1) the deduced amino acid sequence of Pyhsp70 includes three typical HSP70 family signature motifs and is highly conserved during evolution; (2) Pyhsp70 expression is induced by prolonged starvation, tissue damage, and ionic liquid but inhibited by high or low temperatures; and (3) Pyhsp70 mRNA is mainly expressed in the head peripheral region and in the regenerating blastema during regeneration. These results suggest that the highly expressed Pyhsp70 gene may contribute to enhance cytoprotection and tolerance against stress-induced molecular damage, and the migration of neoblasts to the wound, which might also be involved in the proliferation and differentiation of neoblasts. Our work provides basic data for the study of stress responses and regenerative mechanism in freshwater planarians.
Collapse
Affiliation(s)
- Fangfang Cheng
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yanping Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yingxu Sima
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jing Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xiaoyan Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| |
Collapse
|
12
|
Roberts-Galbraith RH, Newmark PA. On the organ trail: insights into organ regeneration in the planarian. Curr Opin Genet Dev 2015; 32:37-46. [PMID: 25703843 DOI: 10.1016/j.gde.2015.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 11/28/2022]
Abstract
Advances in stem cell biology have led to the derivation of diverse cell types, yet challenges remain in creating complex tissues and functional organs. Unlike humans, some animals regenerate all missing tissues and organs successfully after dramatic injuries. Studies of organisms with exceptional regenerative capacity, like planarians, could complement in vitro studies and reveal mechanistic themes underlying regeneration on the scale of whole organs and tissues. In this review, we outline progress in understanding planarian organ regeneration, with focus on recent studies of the nervous, digestive, and excretory systems. We further examine molecular mechanisms underlying establishment of diverse cell fates from the planarian stem cell pool. Finally, we explore conceptual directions for future studies of organ regeneration in planarians.
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Phillip A Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
13
|
Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration. Mol Genet Genomics 2015; 290:1277-85. [PMID: 25585662 DOI: 10.1007/s00438-015-0990-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.
Collapse
|
14
|
Almuedo-Castillo M, Crespo X, Seebeck F, Bartscherer K, Salò E, Adell T. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling. PLoS Genet 2014; 10:e1004400. [PMID: 24922054 PMCID: PMC4055413 DOI: 10.1371/journal.pgen.1004400] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/09/2014] [Indexed: 01/18/2023] Open
Abstract
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.
Collapse
Affiliation(s)
- María Almuedo-Castillo
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Xenia Crespo
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Florian Seebeck
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Faculty of Medicine, University of Münster, Münster, Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Faculty of Medicine, University of Münster, Münster, Germany
| | - Emili Salò
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Teresa Adell
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Rybak-Wolf A, Solana J. Whole-mount in situ hybridization using DIG-labeled probes in planarian. Methods Mol Biol 2014; 1211:41-51. [PMID: 25218375 DOI: 10.1007/978-1-4939-1459-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In recent years freshwater flatworms (planarian) have become a powerful model for studies of regeneration and stem cell biology. Whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH) are key and most commonly used techniques to determine and visualize gene expression patterns in planaria. Here, we present the established version of whole-mount in situ hybridization (WISH) and whole-mount fluorescence in situ hybridization (WFISH) protocol optimized over the last years by several labs from the rapidly growing planaria field and give an overview of recently introduced modifications which can be critical in the study of low abundant transcripts.
Collapse
Affiliation(s)
- Agnieszka Rybak-Wolf
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany,
| | | |
Collapse
|
16
|
Jaber-Hijazi F, Lo PJKP, Mihaylova Y, Foster JM, Benner JS, Tejada Romero B, Chen C, Malla S, Solana J, Ruzov A, Aziz Aboobaker A. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation. Dev Biol 2013; 384:141-53. [PMID: 24063805 PMCID: PMC3824064 DOI: 10.1016/j.ydbio.2013.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022]
Abstract
Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5mC) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation. A single ancestral MBD2/3 protein is present in the planarian Schmidtea mediterranea. The genome of S. mediterranea does not have pervasive cytosine methylation. MBD2/3 is required for pluripotent stem cell differentiation down multiple but not all cell lineages. MBD2/3 may have had an ancestral role in regulating stem cell pluripotency.
Collapse
Affiliation(s)
- Farah Jaber-Hijazi
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Döring C, Gosda J, Tessmar-Raible K, Hausen H, Arendt D, Purschke G. Evolution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes - a study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata). Front Zool 2013; 10:52. [PMID: 24007384 PMCID: PMC3846555 DOI: 10.1186/1742-9994-10-52] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 08/20/2013] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION In Annelida two types of photoreceptor cells (PRCs) are regarded as generally present, rhabdomeric and ciliary PRCs. In certain taxa, however, an additional type of PRC may occur, the so called phaosomal PRC. Whereas the former two types of PRCs are always organized as an epithelium with their sensory processes projecting into an extracellular cavity formed by the PRCs and (pigmented) supportive cells, phaosomes are seemingly intracellular vacuoles housing the sensory processes. Phaosomal PRCs are the only type of PRC found in one major annelid group, Clitellata. Several hypotheses have been put forward explaining the evolutionary origin of the clitellate phaosomes. To elucidate the evolution of clitellate PRC and eyes the leech Helobdella robusta, for which a sequenced genome is available, was chosen. RESULTS TEM observations showed that extraocular and ocular PRCs are structurally identical. Bioinformatic analyses revealed predictions for four opsin genes, three of which could be amplified. All belong to the rhabdomeric opsin family and phylogenetic analyses showed them in a derived position within annelid opsins. Gene expression studies showed two of them expressed in the eye and in the extraocular PRCs. Polychaete eye-typic key enzymes for ommochromme and pterin shading pigments synthesis are not expressed in leech eyes. CONCLUSIONS By comparative gene-expression studies we herein provide strong evidence that the phaosomal PRCs typical of Clitellata are derived from the rhabdomeric PRCs characteristic for polychaete adult eyes. Thus, they represent a highly derived type of PRC that evolved in the stem lineage of Clitellata rather than another, primitive type of PRC in Metazoa. Evolution of these PRCs in Clitellata is related to a loss of the primary eyes and most of their photoreceptive elements except for the rhabdomeric PRCs. Most likely this happened while changing to an endobenthic mode of life. This hypothesis of PRC evolution is in accordance with a recently published phylogeny of Annelida based on phylogenomic data. The data provide a nice example how morphologically highly divergent light sensitive structures emerged from a standard type of photoreceptor cell.
Collapse
Affiliation(s)
- Carmen Döring
- Universität Osnabrück, Zoologie, Osnabrück 49069, Germany
| | - Jasmin Gosda
- Universität Osnabrück, Zoologie, Osnabrück 49069, Germany
- Present address: Kopernikusstrasse 5, 48477 Hörstel, Germany
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, Universität Wien, Campus Vienna Biocenter, Austria Research Plattform “Marine Rhythms of Life”, Dr. Bohr–Gasse 9/4, 1030 Wien, Austria
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Detlev Arendt
- Developmental Biology Programme, European Molecular Biology Laboratory, Meyerhofstraße 1, D-69012 Heidelberg, Germany
| | | |
Collapse
|
18
|
Blassberg RA, Felix DA, Tejada-Romero B, Aboobaker AA. PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration. Development 2013; 140:730-9. [PMID: 23318635 DOI: 10.1242/dev.082982] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent advances in a number of systems suggest many genes involved in orchestrating regeneration are redeployed from similar processes in development, with others being novel to the regeneration process in particular lineages. Of particular importance will be understanding the architecture of regenerative genetic regulatory networks and whether they are conserved across broad phylogenetic distances. Here, we describe the role of the conserved TALE class protein PBX/Extradenticle in planarians, a representative member of the Lophotrocozoa. PBX/Extradenticle proteins play central roles in both embryonic and post-embryonic developmental patterning in both vertebrates and insects, and we demonstrate a broad requirement during planarian regeneration. We observe that Smed-pbx has pleiotropic functions during regeneration, with a primary role in patterning the anterior-posterior (AP) axis and AP polarity. Smed-pbx is required for expression of polarity determinants notum and wnt1 and for correct patterning of the structures polarized along the AP axis, such as the brain, pharynx and gut. Overall, our data suggest that Smed-pbx functions as a central integrator of positional information to drive patterning of regeneration along the body axis.
Collapse
Affiliation(s)
- Robert A Blassberg
- Department of Zoology, Tinbergen Building, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
19
|
Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome Biol 2012; 13:R19. [PMID: 22439894 PMCID: PMC3439970 DOI: 10.1186/gb-2012-13-3-r19] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/08/2012] [Accepted: 03/22/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. RESULTS We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. CONCLUSIONS Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology.
Collapse
|
20
|
González-Estévez C, Felix DA, Smith MD, Paps J, Morley SJ, James V, Sharp TV, Aboobaker AA. SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genet 2012; 8:e1002619. [PMID: 22479207 PMCID: PMC3315482 DOI: 10.1371/journal.pgen.1002619] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling. Planarian flatworms have a remarkable ability to regenerate that has driven the curiosity of scientists for more than a century. They are also able to continuously grow or degrow their bodies, depending on food availability. Around 25% of the cells in the planarian body are adult stem cells, which are responsible for this incredible plasticity. The initial response of planarians to injury is characterised by a rapid increase in stem cell division. Subsequently planarians form a specialised new tissue called the regenerative blastema to replace missing tissues. Currently, very little is known about the molecular signals controlling the response to injury or the tight regulation of growth. Here we discovered that a gene called Smg-1 and the conserved mTOR signalling pathway, a central regulator of animal growth, are both regulators of this process. SMG-1 is required to limit and act as a brake on the initial response to injury and ensure that it does not run out of control, while in contrast mTOR signalling is required to drive this process forward. Loss of SMG-1 leads to hyperactive responses to injury and subsequent growth that continues out of control. Eventually, these animals form outgrowths, which display several hallmarks of human cancers. These opposing roles suggested that Smg-1 phenotype would require mTOR signalling, and by reducing mTOR signalling and SMG-1 activity at the same time we found that this was the case. We conclude that Smg-1 is a novel regulator of regeneration and animal growth with an antagonistic role to mTOR signalling in planarians.
Collapse
Affiliation(s)
- Cristina González-Estévez
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| | - Daniel A. Felix
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Matthew D. Smith
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon J. Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Victoria James
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Tyson V. Sharp
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| |
Collapse
|
21
|
Martín-Durán JM, Egger B. Developmental diversity in free-living flatworms. EvoDevo 2012; 3:7. [PMID: 22429930 PMCID: PMC3379954 DOI: 10.1186/2041-9139-3-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
Flatworm embryology has attracted attention since the early beginnings of comparative evolutionary biology. Considered for a long time the most basal bilaterians, the Platyhelminthes (excluding Acoelomorpha) are now robustly placed within the Spiralia. Despite having lost their relevance to explain the transition from radially to bilaterally symmetrical animals, the study of flatworm embryology is still of great importance to understand the diversification of bilaterians and of developmental mechanisms. Flatworms are acoelomate organisms generally with a simple centralized nervous system, a blind gut, and lacking a circulatory organ, a skeleton and a respiratory system other than the epidermis. Regeneration and asexual reproduction, based on a totipotent neoblast stem cell system, are broadly present among different groups of flatworms. While some more basally branching groups - such as polyclad flatworms - retain the ancestral quartet spiral cleavage pattern, most flatworms have significantly diverged from this pattern and exhibit unique strategies to specify the common adult body plan. Most free-living flatworms (i.e. Platyhelminthes excluding the parasitic Neodermata) are directly developing, whereas in polyclads, also indirect developers with an intermediate free-living larval stage and subsequent metamorphosis are found. A comparative study of developmental diversity may help understanding major questions in evolutionary biology, such as the evolution of cleavage patterns, gastrulation and axial specification, the evolution of larval types, and the diversification and specialization of organ systems. In this review, we present a thorough overview of the embryonic development of the different groups of free-living (turbellarian) platyhelminths, including the Catenulida, Macrostomorpha, Polycladida, Lecithoepitheliata, Proseriata, Bothrioplanida, Rhabdocoela, Fecampiida, Prolecithophora and Tricladida, and discuss their main features under a consensus phylogeny of the phylum.
Collapse
Affiliation(s)
- José María Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
- Departament de Genética, Universitat de Barcelona, Avda. Diagonal 643, E-08028 Barcelona, Spain
| | - Bernhard Egger
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower St, London WC1E 6BT, UK
- University of Innsbruck, Institute of Zoology, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Martín-Durán JM, Amaya E, Romero R. Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 2010; 340:145-58. [PMID: 20100474 DOI: 10.1016/j.ydbio.2010.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Although patterning during regeneration in adult planarians has been studied extensively, very little is known about how the initial planarian body plan arises during embryogenesis. Herein, we analyze the process of embryo patterning in the species Schmidtea polychroa by comparing the expression of genes involved in the establishment of the metazoan body plan. Planarians present a derived ectolecithic spiralian development characterized by dispersed cleavage within a yolk syncytium and an early transient embryo capable of feeding on the maternally supplied yolk cells. During this stage of development, we only found evidence of canonical Wnt pathway, mostly associated with the development of its transient pharynx. At these stages, genes involved in gastrulation (snail) and germ layer determination (foxA and twist) are specifically expressed in migrating blastomeres and those giving rise to the temporary gut and pharyngeal muscle. After yolk ingestion, the embryo expresses core components of the canonical Wnt pathway and the BMP pathway, suggesting that the definitive axial identities are established late. These data support the division of planarian development into two separate morphogenetic stages: a highly divergent gastrulation stage, which segregates the three germ layers and establishes the primary organization of the feeding embryo; and subsequent metamorphosis, based on totipotent blastomeres, which establishes the definitive adult body plan using mechanisms that are similar to those used during regeneration and homeostasis in the adult.
Collapse
|
23
|
Willems M, Boone M, Couvreur M, De Mulder K, Van Ranst J, Artois T, Borgonie G. Use of freeze-cracking in ontogenetic research in Macrostomum lignano (Macrostomida, Rhabditophora). Dev Genes Evol 2009; 219:273-9. [PMID: 19408011 DOI: 10.1007/s00427-009-0284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
A method for studying whole mount flatworm embryos based on freeze-cracking of the eggs is described. This method allows successful immunohistological and immunocytological studies of whole mount embryos. It does not require the use of sharpened needles or a microinjection system to puncture the eggshell. Moreover, this method is more practical and less time-consuming than classical puncturing and much cheaper than the use of a microinjection system. The advantages of this method are illustrated by results of several immunolocalisation experiments in the macrostomid flatworm Macrostomum lignano. The optimal procedure and crucial steps for this method are discussed.
Collapse
Affiliation(s)
- Maxime Willems
- Nematology Section, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Ghent 9000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Solana J, Lasko P, Romero R. Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 2009; 328:410-21. [PMID: 19389344 PMCID: PMC2674143 DOI: 10.1016/j.ydbio.2009.01.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 12/31/2022]
Abstract
Freshwater planarians exhibit a striking power of regeneration, based on a population of undifferentiated totipotent stem cells, called neoblasts. These somatic stem cells have several characteristics resembling those of germ line stem cells in other animals, such as the presence of perinuclear RNA granules (chromatoid bodies). We have isolated a Tudor domain-containing gene in the planarian species Schmidtea polychroa, Spoltud-1, and show that it is expressed in neoblast cells, germ line cells and central nervous system, and during embryonic development. Within the neoblasts, Spoltud-1 protein is enriched in chromatoid bodies. Spoltud-1 RNAi eliminates protein expression after 3 weeks, and abolishes the power of regeneration of planarians after 7 weeks. Neoblast cells are eliminated by the RNAi treatment, disappearing at the end rather than gradually during the process. Neoblasts with no detectable Spoltud-1 protein are able to proliferate and differentiate. These results suggest that Spoltud-1 is required for long term stem cell self renewal.
Collapse
Affiliation(s)
- Jordi Solana
- Departament de Genètica, Facultat de Biologia, Av. Diagonal 645, Edifici Annex, Planta 1, 08028 Barcelona, Catalunya, Spain.
| | | | | |
Collapse
|
25
|
Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 2009; 9:246-53. [PMID: 19174194 DOI: 10.1016/j.gep.2008.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Noggin genes are mainly known as inhibitors of the Bone Morphogenetic Protein (BMP) signalling pathway. Noggin genes play an important role in various developmental processes such as axis formation and neural differentiation. In vertebrates, inhibition of the BMP pathway is usually carried out together with other inhibitory molecules: chordin and follistatin. Recently, it has been shown in planarians that the BMP pathway has a conserved function in the maintenance and re-establishment of the dorsoventral axis during homeostasis and regeneration. In an attempt to further characterize the BMP pathway in this model we have undertaken an in silico search of noggin genes in the genome of Schmidtea mediterranea. In contrast to other systems in which between one and four noggin genes have been reported, ten genes containing a noggin domain are present in S. mediterranea. These genes have been classified into two groups: noggin genes (two genes) and noggin-like genes (eight genes). Noggin-like genes are characterized by the presence of an insertion of 50-60 amino acids in the middle of the noggin domain. Here, we report the characterization of this expanded family of noggin genes in planarians as well as their expression patterns in both intact and regenerating animals. In situ hybridizations show that planarian noggin genes are expressed in a variety of cell types located in different regions of the planarian body.
Collapse
|
26
|
Solana J, Romero R. SpolvlgA is a DDX3/PL10-related DEAD-box RNA helicase expressed in blastomeres and embryonic cells in planarian embryonic development. Int J Biol Sci 2009; 5:64-73. [PMID: 19159016 PMCID: PMC2615544 DOI: 10.7150/ijbs.5.64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/02/2009] [Indexed: 12/04/2022] Open
Abstract
Planarian flatworms have an impressive regenerative power. Although their embryonic development is still poorly studied and is highly derived it still displays some simple characteristics. We have identified SpolvlgA, a Schmidtea polychroa homolog of the DDX3/PL10 DEAD-box RNA helicase DjvlgA from the planarian species Dugesia japonica. This gene has been previously described as being expressed in planarian adult stem cells (neoblasts), as well as the germ line. Here we present the expression pattern of SpolvlgA in developing embryos of S. polychroa and show that it is expressed from the first cleavage rounds in blastomere cells and blastomere-derived embryonic cells. These cells are undifferentiated cells that engage in a massive wave of differentiation during stage 5 of development. SpolvlgA expression highlights this wave of differentiation, where nearly all previous structures are substituted by blastomere-derived embryonic cells. In late stages of development SpolvlgA is expressed in most proliferating and differentiating cells. Thus, SpolvlgA is a gene expressed in planarian embryos from the first stages of development and a good marker for the zygote-derived cell lineage in these embryos. Expression in adult worms is also monitored and is found in the planarian germ line, where it is showed to be expressed in spermatogonia, spermatocytes and differentiating spermatids.
Collapse
Affiliation(s)
- Jordi Solana
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, Edifici Annex, Planta 1, 08028 Barcelona, Catalunya, Spain.
| | | |
Collapse
|
27
|
Martín-Durán JM, Duocastella M, Serra P, Romero R. New method to deliver exogenous material into developing planarian embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:668-81. [DOI: 10.1002/jez.b.21243] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Trematode embryology: a new method for whole-egg analysis by confocal microscopy. Dev Genes Evol 2008; 218:267-71. [PMID: 18293009 DOI: 10.1007/s00427-008-0209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
Trematode worms have the neoophoran mode of development in which several specialized vitelline cells surround the zygote. This vitelline cell mass appears just before the zygote passes through the ootype, a thickening of the oviduct, where the egg shell is formed. The great amount of vitelline material blurs the visualization of embryo development in whole egg seen by brightfield microscopy. The eggshell is difficult to cut into thin or ultrathin sections and acts as a barrier to fixation and infiltration with embedding media. The egg shell is also brightly fluorescent when analyzed by fluorescence microscopy. To overcome these technical disadvantages a simple staining protocol widely used in adult helminth morphological analysis was adapted for the study of the embryonic development of two different trematode species. The effects of potassium hydroxide as bleach and ethylene glycol as mounting medium were also evaluated. Confocal microscopy allowed virtual sectioning of whole-mounted eggs and made possible internal morphological detailed analysis of different embryonic stages. This method could contribute to the study of helminth egg embryology.
Collapse
|
29
|
Handberg-Thorsager M, Saló E. The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration. Dev Genes Evol 2007; 217:403-11. [PMID: 17390146 DOI: 10.1007/s00427-007-0146-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 03/06/2007] [Indexed: 01/12/2023]
Abstract
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians.
Collapse
Affiliation(s)
- Mette Handberg-Thorsager
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | |
Collapse
|
30
|
Morris J, Ladurner P, Rieger R, Pfister D, Del Mar De Miguel-Bonet M, Jacobs D, Hartenstein V. The Macrostomum lignano EST database as a molecular resource for studying platyhelminth development and phylogeny. Dev Genes Evol 2006; 216:695-707. [PMID: 17021863 DOI: 10.1007/s00427-006-0098-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 06/20/2006] [Indexed: 12/31/2022]
Abstract
We report the development of an Expressed Sequence Tag (EST) resource for the flatworm Macrostomum lignano. This taxon is of interest due to its basal placement within the flatworms. As such, it provides a useful comparative model for understanding the development of neural and sensory organization. It was anticipated on the basis of previous studies [e.g., Sánchez-Alvarado et al., Development, 129:5659-5665, (2002)] that a wide range of developmental markers would be expressed in later-stage macrostomids, and this proved to be the case, permitting recovery of a range of gene sequences important in development. To this end, an adult Macrostomum cDNA library was generated and 7,680 Macrostomum ESTs were sequenced from the 5' end. In addition, 1,536 of these aforementioned sequences were sequenced from the 3' end. Of the roughly 5,416 non-redundant sequences identified, 68% are similar to previously reported genes of known function. In addition, nearly 100 specific clones were obtained with potential neural and sensory function. From these data, an annotated searchable database of the Macrostomum EST collection has been made available on the web. A major objective was to obtain genes that would allow reconstruction of embryogenesis, and in particular neurogenesis, in a basal platyhelminth. The sequences recovered will serve as probes with which the origin and morphogenesis of lineages and tissues can be followed. To this end, we demonstrate a protocol for combined immunohistochemistry and in situ hybridization labeling in juvenile Macrostomum, employing homologs of lin11/lim1 and six3/optix. Expression of these genes is shown in the context of the neuropile/muscle system.
Collapse
Affiliation(s)
- Joshua Morris
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Cardona A, Hartenstein V, Romero R. Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Dev Genes Evol 2006; 216:667-81. [PMID: 16932928 DOI: 10.1007/s00427-006-0094-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/21/2006] [Indexed: 11/29/2022]
Abstract
The early planarian embryo presents a complete ciliated epidermis and a pharynx and feeds on maternal yolk cells. In this paper, we report on all the elements involved in the formation of such an autonomous embryo, which we name cryptic larva. First, we provide a description of the spherical and fusiform yolk cells and their relationship with the blastomeres, from the laying of the egg capsule up to their final fate in mid embryonic stages. Then, we describe the early cleavage and the subsequent development of the tissues of the cryptic larva, namely, the primary epidermis, the embryonic pharynx, and a new cell type, the star cells. Finally, we discuss the possibility that the cryptic larva either constitutes a vestigial larva or, more likely, is the evolutionary result of the competition between multiple embryos for the limited and shared maternal resources in the egg capsule.
Collapse
Affiliation(s)
- Albert Cardona
- Molecular Cell and Developmental Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | | | | |
Collapse
|