1
|
Cocurullo M, Paganos P, Benvenuto G, Arnone MI. Characterization of thyrotropin-releasing hormone producing neurons in sea urchin, from larva to juvenile. Front Neurosci 2024; 18:1378520. [PMID: 38660219 PMCID: PMC11039832 DOI: 10.3389/fnins.2024.1378520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Most sea urchin species are indirect developers, going through a larval stage called pluteus. The pluteus possesses its own nervous system, consisting mainly of the apical organ neurons (controlling metamorphosis and settlement) and ciliary band neurons (controlling swimming behavior and food collection). Additional neurons are located in various areas of the gut. In recent years, the molecular complexity of this apparently "simple" nervous system has become apparent, with at least 12 neuronal populations identified through scRNA-sequencing in the species Strongylocentrotus purpuratus. Among these, there is a cluster of neurosecretory cells that produce a thyrotropin-releasing hormone-type neuropeptide (TRHergic) and that are also photosensory (expressing a Go-Opsin). However, much less is known about the organization of the nervous system in other sea urchin species. The aim of this work was to thoroughly characterize the localization of the TRHergic cells from early pluteus to juvenile stages in the Mediterranean sea urchin species Paracentrotus lividus combining immunostaining and whole mount in situ hybridization. We also compared the localization of TRHergic cells in early plutei of two other sea urchin species, Arbacia lixula and Heliocidaris tuberculata. This work provides new information on the anatomy and development of the nervous system in sea urchins. Moreover, by comparing the molecular signature of the TRHergic cells in P. lividus and S. purpuratus, we have obtained new insights how TRH-type neuropeptide signaling evolved in relatively closely related species.
Collapse
Affiliation(s)
| | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
Pagowski V. A description of the bat star nervous system throughout larval ontogeny. Evol Dev 2024; 26:e12468. [PMID: 38108150 DOI: 10.1111/ede.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Larvae represent a distinct life history stage in which animal morphology and behavior contrast strongly to adult organisms. This life history stage is a ubiquitous aspect of animal life cycles, particularly in the marine environment. In many species, the structure and function of the nervous system differ significantly between metamorphosed juveniles and larvae. However, the distribution and diversity of neural cell types in larval nervous systems remains incompletely known. Here, the expression of neurotransmitter and neuropeptide synthesis and transport genes in the bat star Patiria miniata is examined throughout larval development. This characterization of nervous system structure reveals three main neural regions with distinct but overlapping territories. These regions include a densely innervated anterior region, an enteric neural plexus, and neurons associated with the ciliary band. In the ciliary band, cholinergic cells are pervasive while dopaminergic, noradrenergic, and GABAergic cells show regional differences in their localization patterns. Furthermore, the distribution of some neural subtypes changes throughout larval development, suggesting that changes in nervous system structure align with shifting ecological priorities during different larval stages, before the development of the adult nervous system. While past work has described aspects of P. miniata larval nervous system structure, largely focusing on early developmental timepoints, this work provides a comprehensive description of neural cell type localization throughout the extensive larval period.
Collapse
Affiliation(s)
- Veronica Pagowski
- Hopkins Marine Station of Stanford University, Pacific Grove, California, USA
| |
Collapse
|
3
|
Zheng M, Zueva O, Hinman V. Regeneration of the larval sea star nervous system by wounding induced respecification to the sox2 lineage. eLife 2022; 11:72983. [PMID: 35029145 PMCID: PMC8809897 DOI: 10.7554/elife.72983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
The ability to restore lost body parts following traumatic injury is a fascinating area of biology that challenges current understanding of the ontogeny of differentiation. The origin of new cells needed to regenerate lost tissue, and whether they are pluripotent or have de- or trans-differentiated, remains one of the most important open questions . Additionally, it is not known whether developmental gene regulatory networks are reused or whether regeneration specific networks are deployed. Echinoderms, including sea stars, have extensive ability for regeneration, however, the technologies for obtaining transgenic echinoderms are limited and tracking cells involved in regeneration, and thus identifying the cellular sources and potencies has proven challenging. In this study, we develop new transgenic tools to follow the fate of populations of cells in the regenerating larva of the sea star Patiria miniata. We show that the larval serotonergic nervous system can regenerate following decapitation. Using a BAC-transgenesis approach we show that expression of the pan ectodermal marker, sox2, is induced in previously sox2 minus cells , even when cell division is inhibited. sox2+ cells give rise to new sox4+ neural precursors that then proceed along an embryonic neurogenesis pathway to reform the anterior nervous systems. sox2+ cells contribute to only neural and ectoderm lineages, indicating that these progenitors maintain their normal, embryonic lineage restriction. This indicates that sea star larval regeneration uses a combination of existing lineage restricted stem cells, as well as respecification of cells into neural lineages, and at least partial reuse of developmental GRNs to regenerate their nervous system.
Collapse
Affiliation(s)
- Minyan Zheng
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| | - Veronica Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
4
|
Formery L, Orange F, Formery A, Yaguchi S, Lowe CJ, Schubert M, Croce JC. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J Comp Neurol 2020; 529:1135-1156. [PMID: 32841380 DOI: 10.1002/cne.25012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The echinoderms are a phylum of marine deuterostomes characterized by the pentaradial (five fold) symmetry of their adult bodies. Due to this unusual body plan, adult echinoderms have long been excluded from comparative analyses aimed at understanding the origin and evolution of deuterostome nervous systems. Here, we investigated the neural anatomy of early juveniles of representatives of three of the five echinoderm classes: the echinoid Paracentrotus lividus, the asteroid Patiria miniata, and the holothuroid Parastichopus parvimensis. Using whole mount immunohistochemistry and confocal microscopy, we found that the nervous system of echinoid early juveniles is composed of three main structures: a basiepidermal nerve plexus, five radial nerve cords connected by a circumoral nerve ring, and peripheral nerves innervating the appendages. Our whole mount preparations further allowed us to obtain thorough descriptions of these structures and of several innervation patterns, in particular at the level of the appendages. Detailed comparisons of the echinoid juvenile nervous system with those of asteroid and holothuroid juveniles moreover supported a general conservation of the main neural structures in all three species, including at the level of the appendages. Our results support the previously proposed hypotheses for the existence of two neural units in echinoderms: one consisting of the basiepidermal nerve plexus to process sensory stimuli locally and one composed of the radial nerve cords and the peripheral nerves constituting a centralized control system. This study provides the basis for more in-depth comparisons of the echinoderm adult nervous system with those of other animals, in particular hemichordates and chordates, to address the long-standing controversies about deuterostome nervous system evolution.
Collapse
Affiliation(s)
- Laurent Formery
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - François Orange
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur, Nice, France
| | | | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|
5
|
Ichikawa R, Toyoizumi R. Finely tuned ciliary alignment and coordinated beating generate continuous water flow across the external gills in Pleurodeles waltl larvae. ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Sweet HC, Doolin MC, Yanowiak CN, Coots AD, Freyn AW, Armstrong JM, Spiecker BJ. Abbreviated Development of the Brooding Brittle Star Ophioplocus esmarki. THE BIOLOGICAL BULLETIN 2019; 236:75-87. [PMID: 30933639 DOI: 10.1086/701916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The bilaterally symmetrical, feeding larval stage is an ancestral condition in echinoderms. However, many echinoderms have evolved abbreviated development and form a pentamerous juvenile without a feeding larva. Abbreviated development with a non-feeding vitellaria larva is found in five families of brittle stars, but very little is known about this type of development. In this study, the external anatomy, ciliary bands, neurons, and muscles were examined in the development of the brooded vitellaria larva of Ophioplocus esmarki. The external morphology throughout development shows typical vitellaria features, including morphogenetic movements to set up the vitellaria body plan, an anterior preoral lobe, a posterior lobe, transverse ciliary bands, and development of juvenile structures on the mid-ventral side. An early population of neurons forms at the base of the preoral lobe at the pre-vitellaria stage after the initial formation of the coelomic cavities. These early neurons may be homologous to the apical neurons that develop in echinoderms with feeding larval forms. Neurons form close to the ciliary bands, but the vitellaria larva lacks the tracts of neurons associated with the ciliary bands found in echinoderms with feeding larvae. Additional neurons form in association with the axial complex and persist into the juvenile stage. Juvenile nerves and muscles form with pentamerous symmetry in the late vitellaria stage in a manner similar to their development within the late ophiopluteus larva. Even though O. esmarki is a brooding brittle star, its developmental sequence retains the general vitellaria shape and structure; however, the vitellaria larvae are unable to swim in the water column.
Collapse
|
7
|
Adachi S, Niimi I, Sakai Y, Sato F, Minokawa T, Urata M, Sehara-Fujisawa A, Kobayashi I, Yamaguchi M. Anteroposterior molecular registries in ectoderm of the echinus rudiment. Dev Dyn 2018; 247:1297-1307. [DOI: 10.1002/dvdy.24686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/03/2018] [Accepted: 10/21/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Shinya Adachi
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma Kanazawa Japan
| | - Iyo Niimi
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma Kanazawa Japan
| | - Yui Sakai
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma Kanazawa Japan
| | - Fuminori Sato
- Department of Growth Regulation; Institute for Frontier Medical Sciences, Kyoto University; Sakyo-ku Kyoto Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences; Tohoku University; Asamushi Aomori Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Natural and Environmental Technology; Kanazawa University; Noto Hosu Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation; Institute for Frontier Medical Sciences, Kyoto University; Sakyo-ku Kyoto Japan
| | - Isao Kobayashi
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma Kanazawa Japan
| | - Masaaki Yamaguchi
- Graduate School of Natural Science and Technology; Kanazawa University; Kakuma Kanazawa Japan
| |
Collapse
|
8
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
9
|
Hinman VF, Burke RD. Embryonic neurogenesis in echinoderms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e316. [PMID: 29470839 DOI: 10.1002/wdev.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The phylogenetic position of echinoderms is well suited to revealing shared features of deuterostomes that distinguish them from other bilaterians. Although echinoderm neurobiology remains understudied, genomic resources, molecular methods, and systems approaches have enabled progress in understanding mechanisms of embryonic neurogenesis. Even though the morphology of echinoderm larvae is diverse, larval nervous systems, which arise during gastrulation, have numerous similarities in their organization. Diverse neural subtypes and specialized sensory neurons have been identified and details of neuroanatomy using neuron-specific labels provide hypotheses for neural function. The early patterning of ectoderm and specification of axes has been well studied in several species and underlying gene regulatory networks have been established. The cells giving rise to central and peripheral neural components have been identified in urchins and sea stars. Neurogenesis includes typical metazoan features of asymmetric division of neural progenitors and in some cases limited proliferation of neural precursors. Delta/Notch signaling has been identified as having critical roles in regulating neural patterning and differentiation. Several transcription factors functioning in pro-neural phases of specification, neural differentiation, and sub-type specification have been identified and structural or functional components of neurons are used as differentiation markers. Several methods for altering expression in embryos have revealed aspects of a regulatory hierarchy of transcription factors in neurogenesis. Interfacing neurogenic gene regulatory networks to the networks regulating ectodermal domains and identifying the spatial and temporal inputs that pattern the larval nervous system is a major challenge that will contribute substantially to our understanding of the evolution of metazoan nervous systems. This article is categorized under: Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
10
|
Zhang X, Li S, Wang C, Tian H, Wang W, Ru S. Effects of monocrotophos pesticide on cholinergic and dopaminergic neurotransmitter systems during early development in the sea urchin Hemicentrotus pulcherrimus. Toxicol Appl Pharmacol 2017; 328:46-53. [PMID: 28479505 DOI: 10.1016/j.taap.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023]
Abstract
During early development in sea urchins, classical neurotransmitters, including acetylcholine (ACh), dopamine (DA), and serotonin (5-HT), play important roles in the regulation of morphogenesis and swimming behavior. However, the underlying mechanisms of how organophosphate pesticides cause developmental neurotoxicity by interfering with different neurotransmitter systems are unclear. In this study, we investigated the effects of 0.01, 0.10, and 1.00mg/L monocrotophos (MCP) pesticide on the activity of acetyltransferase (ChAT), acetylcholinesterase (AChE), monoamine oxidase, the concentration of DA, dopamine transporter, and the transcription activity of DA receptor D1 and tyrosine hydroxylase, during critical periods in cholinergic and dopaminergic nervous system development in sea urchin (Hemicentrotus pulcherrimus) embryos and larvae. At the blastula stages, MCP disrupted DA metabolism but not 5-HT metabolism, resulting in abnormal development. High ChAT and AChE activity were observed at the gastrulation-completed stage and the two-armed pluteus stage, respectively, MCP inhibited ChAT activity and AChE activity/distribution and resulted in developmental defects of the plutei. From the gastrula stage to the two-armed pluteus stage, we found ubiquitous disrupting effects of MCP on ACh, DA, and 5-HT metabolism, particularly at critical periods during the development of these neurotransmitter systems. Therefore, we propose that this disruption is one of the main mechanisms of MCP-related developmental neurotoxicity, which would contribute better understanding insight into the mechanism of MCP pesticide's toxic effects.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuman Li
- Nansi Lake Water Quality Monitoring Center of Shandong Province, Jining 272100, China
| | - Cuicui Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Díaz-Balzac CA, Vázquez-Figueroa LD, García-Arrarás JE. Novel markers identify nervous system components of the holothurian nervous system. INVERTEBRATE NEUROSCIENCE 2014; 14:113-25. [PMID: 24740637 DOI: 10.1007/s10158-014-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with antibodies made against the mammalian transcription factors Pax6 and Nurr1, and against phosphorylated histone H3 showed that these markers identified cells and fibers within the nervous system of Holothuria glaberrima. Most of the fibers recognized by these antibodies were co-labeled with the well-known neural marker, RN1. Additional experiments showed that similar immunoreactivity was found in the nervous tissue of three other holothurian species (Holothuria mexicana, Leptosynapta clarki and Sclerodactyla briareus), thus extending our findings to the three orders of Holothuroidea. Furthermore, these markers identified different subdivisions of the holothurian nervous system. Our study presents three additional markers of the holothurian nervous system, expanding the available toolkit to study the anatomy, physiology, development and evolution of the echinoderm nervous system.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann Room 807, Bronx, NY, 10461, USA,
| | | | | |
Collapse
|
12
|
Katow H, Katow T, Abe K, Ooka S, Kiyomoto M, Hamanaka G. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae. Biol Open 2014; 3:94-102. [PMID: 24357228 PMCID: PMC3892164 DOI: 10.1242/bio.20136882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/21/2013] [Indexed: 12/29/2022] Open
Abstract
The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells.
Collapse
Affiliation(s)
- Hideki Katow
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
| | - Tomoko Katow
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
| | - Kouki Abe
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
- Present address: Nara Institute of Science and Technology, Laboratory of Neuronal Cell Morphogenesis, Graduate School of Biological Sciences, Ikoma 630-0192, Japan
| | - Shioh Ooka
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
- Present address: Tokyo University of Marine Science and Technology, Field Science Center, Tateyama Station (Banda), Chiba 294-0308, Japan
| | - Masato Kiyomoto
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301, Japan
| | - Gen Hamanaka
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301, Japan
| |
Collapse
|
13
|
Barbaglio A, Turchi C, Melone G, Di Benedetto C, Martinello T, Patruno M, Biggiogero M, Wilkie IC, Carnevali MDC. Larval development in the feather starAntedon mediterranea. INVERTEBR REPROD DEV 2012. [DOI: 10.1080/07924259.2011.578154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Katow H, Suyemitsu T, Ooka S, Yaguchi J, Jin-Nai T, Kuwahara I, Katow T, Yaguchi S, Abe H. Development of a dopaminergic system in sea urchin embryos and larvae. ACTA ACUST UNITED AC 2010; 213:2808-19. [PMID: 20675551 DOI: 10.1242/jeb.042150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms that regulate the organized swimming movements of sea urchin blastulae are largely unknown. Using immunohistochemistry, we found that dopamine (DA) and the Hemicentrotus pulcherrimus homolog of the dopamine receptor D1 (Hp-DRD1) were strongly co-localized in 1-2 microm diameter granules (DA/DRD1 granules). Furthermore, these granules were arranged across the entire surface of blastulae as they developed locomotory cilia before hatching, and remained evident until metamorphosis. DA/DRD1 granules were associated with the basal bodies of cilia, and were densely packed in the ciliary band by the eight-arm pluteus stage. The transcription of Hp-DRD1 was detected from the unfertilized egg stage throughout the period of larval development. Treatment with S-(-)-carbidopa, an inhibitor of aromatic-l-amino acid decarboxylase, for 20-24 h (i) from soon after insemination until the 20 h post-fertilization (20 hpf) early gastrula stage and (ii) from the 24 hpf prism larva stage until the 48 hpf pluteus stage, inhibited the formation of DA granules and decreased the swimming activity of blastulae and larvae in a dose-dependent manner. Exogenous DA rescued these deprivations. The formation of DRD1 granules was not affected. However, in 48 hpf plutei, the serotonergic nervous system (5HT-NS) developed normally. Morpholino antisense oligonucleotides directed against Hp-DRD1 inhibited the formation of DRD1 granules and the swimming of larvae, but did not disturb the formation of DA granules. Thus, the formation of DRD1 granules and DA granules occurs chronologically closely but mechanically independently and the swimming of blastulae is regulated by the dopaminergic system. In plutei, the 5HT-NS closely surrounded the ciliary bands, suggesting the functional collaboration with the dopaminergic system in larvae.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Elia L, Selvakumaraswamy P, Byrne M. Nervous system development in feeding and nonfeeding asteroid larvae and the early juvenile. THE BIOLOGICAL BULLETIN 2009; 216:322-334. [PMID: 19556597 DOI: 10.1086/bblv216n3p322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Larval and juvenile nervous systems (NS) of three asterinid sea stars with contrasting feeding and nonfeeding modes of development were characterized using the echinoderm-specific synaptotagmin antibody. In the feeding bipinnaria and brachiolaria larvae of Patiriella regularis, the species with ancestral-type development, an extensive NS was associated with the ciliary bands (CBs) and attachment complex. Lecithotrophic planktonic (Meridastra calcar) and benthic (Parvulastra exigua) brachiolariae lacked CBs and the associated NS, but had an extensive NS in the attachment complex. The similarity in the distribution and morphology of synaptotagmin immunoreactive neurons and the anatomy of the NS in the attachment complex of these closely related sea stars suggests conservation of neurogenesis in settlement-stage larvae regardless of larval feeding mode. Nerve cells were prominent on the brachia of all three species. In advanced brachiolariae the larval nervous system was localized to the adhesive disc as the larval body resorbed during metamorphosis. The structures and tissues that contained larval neurons degenerated during metamorphosis. There was no evidence that the larval NS persists through metamorphosis. In juvenile development, synaptotagmin IR was first evident in the NS of the tube feet. As the central nervous system developed, synaptotagmin IR reflected the histological organization of the adult NS. The juvenile NS formed de novo with a temporal lapse between histogenesis and synaptotagmin IR. We evaluated the ontogeny of NS organization in the change in body plan from the bilateral larva to the radial juvenile.
Collapse
Affiliation(s)
- Laura Elia
- Discipline of Anatomy and Histology, Bosch Institute, F13, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|