1
|
Smith MR, Long EJ, Dhungana A, Dobson KJ, Yang J, Zhang X. Organ systems of a Cambrian euarthropod larva. Nature 2024; 633:120-126. [PMID: 39085610 PMCID: PMC11374701 DOI: 10.1038/s41586-024-07756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The Cambrian radiation of euarthropods can be attributed to an adaptable body plan. Sophisticated brains and specialized feeding appendages, which are elaborations of serially repeated organ systems and jointed appendages, underpin the dominance of Euarthropoda in a broad suite of ecological settings. The origin of the euarthropod body plan from a grade of vermiform taxa with hydrostatic lobopodous appendages ('lobopodian worms')1,2 is founded on data from Burgess Shale-type fossils. However, the compaction associated with such preservation obscures internal anatomy3-6. Phosphatized microfossils provide a complementary three-dimensional perspective on early crown group euarthropods7, but few lobopodians8,9. Here we describe the internal and external anatomy of a three-dimensionally preserved euarthropod larva with lobopods, midgut glands and a sophisticated head. The architecture of the nervous system informs the early configuration of the euarthropod brain and its associated appendages and sensory organs, clarifying homologies across Panarthropoda. The deep evolutionary position of Youti yuanshi gen. et sp. nov. informs the sequence of character acquisition during arthropod evolution, demonstrating a deep origin of sophisticated haemolymph circulatory systems, and illuminating the internal anatomical changes that propelled the rise and diversification of this enduringly successful group.
Collapse
Affiliation(s)
- Martin R Smith
- Department of Earth Sciences, Durham University, Durham, UK.
| | - Emma J Long
- Department of Earth Sciences, Durham University, Durham, UK
- Science Group, Natural History Museum, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | | | - Katherine J Dobson
- Department of Earth Sciences, Durham University, Durham, UK
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, UK
| | - Jie Yang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| | - Xiguang Zhang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| |
Collapse
|
2
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Ordoñez JF, Wollesen T. Unfolding the ventral nerve center of chaetognaths. Neural Dev 2024; 19:5. [PMID: 38720353 PMCID: PMC11078758 DOI: 10.1186/s13064-024-00182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Chaetognaths are a clade of marine worm-like invertebrates with a heavily debated phylogenetic position. Their nervous system superficially resembles the protostome type, however, knowledge regarding the molecular processes involved in neurogenesis is lacking. To better understand these processes, we examined the expression profiles of marker genes involved in bilaterian neurogenesis during post-embryonic stages of Spadella cephaloptera. We also investigated whether the transcription factor encoding genes involved in neural patterning are regionally expressed in a staggered fashion along the mediolateral axis of the nerve cord as it has been previously demonstrated in selected vertebrate, insect, and annelid models. METHODS The expression patterns of genes involved in neural differentiation (elav), neural patterning (foxA, nkx2.2, pax6, pax3/7, and msx), and neuronal function (ChAT and VAChT) were examined in S. cephaloptera hatchlings and early juveniles using whole-mount fluorescent in situ hybridization and confocal microscopy. RESULTS The Sce-elav + profile of S. cephaloptera hatchlings reveals that, within 24 h of post-embryonic development, the developing neural territories are not limited to the regions previously ascribed to the cerebral ganglion, the ventral nerve center (VNC), and the sensory organs, but also extend to previously unreported CNS domains that likely contribute to the ventral cephalic ganglia. In general, the neural patterning genes are expressed in distinct neural subpopulations of the cerebral ganglion and the VNC in hatchlings, eventually becoming broadly expressed with reduced intensity throughout the CNS in early juveniles. Neural patterning gene expression domains are also present outside the CNS, including the digestive tract and sensory organs. ChAT and VAChT domains within the CNS are predominantly observed in specific subpopulations of the VNC territory adjacent to the ventral longitudinal muscles in hatchlings. CONCLUSIONS The observed spatial expression domains of bilaterian neural marker gene homologs in S. cephaloptera suggest evolutionarily conserved roles in neurogenesis for these genes among bilaterians. Patterning genes expressed in distinct regions of the VNC do not show a staggered medial-to-lateral expression profile directly superimposable to other bilaterian models. Only when the VNC is conceptually laterally unfolded from the longitudinal muscle into a flat structure, an expression pattern bearing resemblance to the proposed conserved bilaterian mediolateral regionalization becomes noticeable. This finding supports the idea of an ancestral mediolateral patterning of the trunk nervous system in bilaterians.
Collapse
Affiliation(s)
- June F Ordoñez
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria
| | - Tim Wollesen
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria.
| |
Collapse
|
4
|
Strausfeld NJ, Hou X, Sayre ME, Hirth F. The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains. Science 2022; 378:905-909. [PMID: 36423269 DOI: 10.1126/science.abn6264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For more than a century, the origin and evolution of the arthropod head and brain have eluded a unifying rationale reconciling divergent morphologies and phylogenetic relationships. Here, clarification is provided by the fossilized nervous system of the lower Cambrian lobopodian Cardiodictyon catenulum, which reveals an unsegmented head and brain comprising three cephalic domains, distinct from the metameric ventral nervous system serving its appendicular trunk. Each domain aligns with one of three components of the foregut and with a pair of head appendages. Morphological correspondences with stem group arthropods and alignments of homologous gene expression patterns with those of extant panarthropods demonstrate that cephalic domains of C. catenulum predate the evolution of the euarthropod head yet correspond to neuromeres defining brains of living chelicerates and mandibulates.
Collapse
Affiliation(s)
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Janssen R, Schomburg C, Prpic NM, Budd GE. A comprehensive study of arthropod and onychophoran Fox gene expression patterns. PLoS One 2022; 17:e0270790. [PMID: 35802758 PMCID: PMC9269926 DOI: 10.1371/journal.pone.0270790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fox genes represent an evolutionary old class of transcription factor encoding genes that evolved in the last common ancestor of fungi and animals. They represent key-components of multiple gene regulatory networks (GRNs) that are essential for embryonic development. Most of our knowledge about the function of Fox genes comes from vertebrate research, and for arthropods the only comprehensive gene expression analysis is that of the fly Drosophila melanogaster. For other arthropods, only selected Fox genes have been investigated. In this study, we provide the first comprehensive gene expression analysis of arthropod Fox genes including representative species of all main groups of arthropods, Pancrustacea, Myriapoda and Chelicerata. We also provide the first comprehensive analysis of Fox gene expression in an onychophoran species. Our data show that many of the Fox genes likely retained their function during panarthropod evolution highlighting their importance in development. Comparison with published data from other groups of animals shows that this high degree of evolutionary conservation often dates back beyond the last common ancestor of Panarthropoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Christoph Schomburg
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
- Fachgebiet Botanik, Institut für Biologie, Universität Kassel, Kassel, Germany
| | - Nikola-Michael Prpic
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Abstract
Developmental gene expression suggests a cryptic subdivision of the anterior brain in euarthropods. A new study illustrates delicate details of the nervous system from exceptionally preserved 500-million-year-old Chinese fossils, supporting the bipartite origin of the anterior brain among Cambrian representatives.
Collapse
Affiliation(s)
- Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Janssen R, Budd GE. Oscillating waves of Fox, Cyclin and CDK gene expression indicate unique spatiotemporal control of cell cycling during nervous system development in onychophorans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101042. [PMID: 33752095 DOI: 10.1016/j.asd.2021.101042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Forkhead box (Fox) genes code for a class of transcription factors with many different fundamental functions in animal development including cell cycle control. Other important factors of cell cycle control are Cyclins and Cyclin-dependent kinases (CDKs). Here we report on the oscillating expression of three Fox genes, FoxM, FoxN14 (jumeaux) and FoxN23 (Checkpoint suppressor like-1), Cyclins and CDKs in an onychophoran, a representative of a relatively small group of animals that are closely related to the arthropods. Expression of these genes is in the form of several waves that start as dot-like domains in the center of each segment and then transform into concentric rings that run towards the periphery of the segments. This oscillating gene expression, however, occurs exclusively along the anterior-posterior body axis in the tissue ventral to the base of the appendages, a region where the central nervous system and the enigmatic ventral and preventral organs of the onychophoran develop. We suggest that the oscillating gene expression and the resulting waves of expression we report are likely correlated with cell cycle control during the development of the onychophoran nervous system. This intriguing patterning appears to be unique for onychophorans as it is not found in any of the arthropods we also investigated in this study, and is likely correlated with the slow embryonic development of onychophorans compared to arthropods.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| | - Graham E Budd
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
8
|
Klann M, Seaver EC. Functional role of pax6 during eye and nervous system development in the annelid Capitella teleta. Dev Biol 2019; 456:86-103. [PMID: 31445008 DOI: 10.1016/j.ydbio.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
The transcription factor Pax6 is an important regulator of early animal development. Loss of function mutations of pax6 in a range of animals result in a reduction or complete loss of the eye, a reduction of a subset of neurons, and defects in axon growth. There are no studies focusing on the role of pax6 during development of any lophotrochozoan representative, however, expression of pax6 in the developing eye and nervous system in a number of species suggest that pax6 plays a highly conserved role in eye and nervous system formation. We investigated the functional role of pax6 during development of the marine annelid Capitella teleta. Expression of pax6 transcripts in C. teleta larvae is similar to patterns found in other animals, with distinct subdomains in the brain and ventral nerve cord as well as in the larval and juvenile eye. To perturb pax6 function, two different splice-blocking morpholinos and a translation-blocking morpholino were used. Larvae resulting from microinjections with either splice-blocking morpholino show a reduction of the pax6 transcript. Development of both the larval eyes and the central nervous system architecture are highly disrupted following microinjection of each of the three morpholinos. The less severe phenotype observed when only the homeodomain is disrupted suggests that presence of the paired domain is sufficient for partial function of the Pax6 protein. Preliminary downstream target analysis confirms disruption in expression of some components of the retinal gene regulatory network, as well as disruption of genes involved in nervous system development. Results from this study, taken together with studies from other species, reveal an evolutionarily conserved role for pax6 in eye and neural specification and development.
Collapse
Affiliation(s)
- Marleen Klann
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA.
| |
Collapse
|
9
|
Panara V, Budd GE, Janssen R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front Zool 2019; 16:23. [PMID: 31303887 PMCID: PMC6604209 DOI: 10.1186/s12983-019-0322-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function. Results Here we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication. Conclusions Our data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved. Electronic supplementary material The online version of this article (10.1186/s12983-019-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginia Panara
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,Present address: Department for Immunology, Genetic and Pathology, Rudbeckslaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Graham E Budd
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
10
|
Treffkorn S, Mayer G. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae). BMC DEVELOPMENTAL BIOLOGY 2019; 19:7. [PMID: 30987579 PMCID: PMC6466738 DOI: 10.1186/s12861-019-0185-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Background NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. Results The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. Conclusions Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians. Electronic supplementary material The online version of this article (10.1186/s12861-019-0185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
11
|
Smith FW, Cumming M, Goldstein B. Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo 2018; 9:19. [PMID: 30069303 PMCID: PMC6065069 DOI: 10.1186/s13227-018-0106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether they have a tripartite brain or unipartite brain has recently been a focus of debate. RESULTS We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris-formerly misidentified as Hypsibius dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk. CONCLUSION Our results buttress the conclusion of our previous study of Hox genes-that the brain of tardigrades is only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.
Collapse
Affiliation(s)
- Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL USA
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mandy Cumming
- Biology Department, University of North Florida, Jacksonville, FL USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
12
|
Treffkorn S, Kahnke L, Hering L, Mayer G. Expression of NK cluster genes in the onychophoran Euperipatoides rowelli: implications for the evolution of NK family genes in nephrozoans. EvoDevo 2018; 9:17. [PMID: 30026904 PMCID: PMC6050708 DOI: 10.1186/s13227-018-0105-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Background Understanding the evolution and development of morphological traits of the last common bilaterian ancestor is a major goal of the evo-devo discipline. The reconstruction of this "urbilaterian" is mainly based on comparative studies of common molecular patterning mechanisms in recent model organisms. The NK homeobox genes are key players in many of these molecular pathways, including processes regulating mesoderm, heart and neural development. Shared features seen in the expression patterns of NK genes have been used to determine the ancestral bilaterian characters. However, the commonly used model organisms provide only a limited view on the evolution of these molecular pathways. To further investigate the ancestral roles of NK cluster genes, we analyzed their expression patterns in the onychophoran Euperipatoides rowelli. Results We identified nine transcripts of NK cluster genes in E. rowelli, including single copies of NK1, NK3, NK4, NK5, Msx, Lbx and Tlx, and two copies of NK6. All of these genes except for NK6.1 and NK6.2 are expressed in different mesodermal organs and tissues in embryos of E. rowelli, including the anlagen of somatic musculature and the heart. Furthermore, we found distinct expression patterns of NK3, NK5, NK6, Lbx and Msx in the developing nervous system. The same holds true for the NKL gene NK2.2, which does not belong to the NK cluster but is a related gene playing a role in neural patterning. Surprisingly, NK1, Msx and Lbx are additionally expressed in a segment polarity-like pattern early in development-a feature that has been otherwise reported only from annelids. Conclusion Our results indicate that the NK cluster genes were involved in mesoderm and neural development in the last common ancestor of bilaterians or at least nephrozoans (i.e., bilaterians to the exclusion of xenacoelomorphs). By comparing our data from an onychophoran to those from other bilaterians, we critically review the hypothesis of a complex "urbilaterian" with a segmented body, a pulsatile organ or heart, and a condensed mediolaterally patterned nerve cord.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Laura Kahnke
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
13
|
Janssen R, Andersson E, Betnér E, Bijl S, Fowler W, Höök L, Leyhr J, Mannelqvist A, Panara V, Smith K, Tiemann S. Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evol Biol 2018; 18:88. [PMID: 29884143 PMCID: PMC5994082 DOI: 10.1186/s12862-018-1196-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/18/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sox (Sry-related high-mobility-group box) genes represent important factors in animal development. Relatively little, however, is known about the embryonic expression patterns and thus possible function(s) of Sox genes during ontogenesis in panarthropods (Arthropoda+Tardigrada+Onychophora). To date, studies have been restricted exclusively to higher insects, including the model system Drosophila melanogaster, with no comprehensive data available for any other arthropod group, or any tardigrade or onychophoran. RESULTS This study provides a phylogenetic analysis of panarthropod Sox genes and presents the first comprehensive analysis of embryonic expression patterns in the flour beetle Tribolium castaneum (Hexapoda), the pill millipede Glomeris marginata (Myriapoda), and the velvet worm, Euperipatoides kanangrensis (Onychophora). 24 Sox genes were identified and investigated: 7 in Euperipatoides, 8 in Glomeris, and 9 in Tribolium. Each species possesses at least one ortholog of each of the five expected Sox gene families, B, C, D, E, and F, many of which are differentially expressed during ontogenesis. CONCLUSION Sox gene expression (and potentially function) is highly conserved in arthropods and their closest relatives, the onychophorans. Sox B, C and D class genes appear to be crucial for nervous system development, while the Sox B genes Dichaete (D) and Sox21b likely play an additional conserved role in panarthropod segmentation. The Sox B gene Sox21a likely has a conserved function in foregut and Malpighian tubule development, at least in Hexapoda. The data further suggest that Sox D and E genes are involved in mesoderm differentiation, and that Sox E genes are involved in gonadal development. The new data expand our knowledge about the expression and implied function of Sox genes to Mandibulata (Myriapoda+Pancrustacea) and Panarthropoda (Arthropoda+Onychophora).
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Emil Andersson
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Ellinor Betnér
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sifra Bijl
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Will Fowler
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Lars Höök
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Jake Leyhr
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Alexander Mannelqvist
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Virginia Panara
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Kate Smith
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sydney Tiemann
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
14
|
Brenneis G, Scholtz G, Beltz BS. Comparison of ventral organ development across Pycnogonida (Arthropoda, Chelicerata) provides evidence for a plesiomorphic mode of late neurogenesis in sea spiders and myriapods. BMC Evol Biol 2018; 18:47. [PMID: 29621973 PMCID: PMC5887176 DOI: 10.1186/s12862-018-1150-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Comparative studies of neuroanatomy and neurodevelopment provide valuable information for phylogenetic inference. Beyond that, they reveal transformations of neuroanatomical structures during animal evolution and modifications in the developmental processes that have shaped these structures. In the extremely diverse Arthropoda, such comparative studies contribute with ever-increasing structural resolution and taxon coverage to our understanding of nervous system evolution. However, at the neurodevelopmental level, in-depth data remain still largely confined to comparably few laboratory model organisms. Therefore, we studied postembryonic neurogenesis in six species of the bizarre Pycnogonida (sea spiders), which - as the likely sister group of all remaining chelicerates - promise to illuminate neurodevelopmental changes in the chelicerate lineage. RESULTS We performed in vivo cell proliferation experiments with the thymidine analogs 5-bromo-2'-deoxyuridine and 5-ethynl-2'-deoxyuridine coupled to fluorescent histochemical staining and immunolabeling, in order to compare ventral nerve cord anatomy and to localize and characterize centers of postembryonic neurogenesis. We report interspecific differences in the architecture of the subesophageal ganglion (SEG) and show the presence of segmental "ventral organs" (VOs) that act as centers of neural cell production during gangliogenesis. These VOs are either incorporated into the ganglionic soma cortex or found on the external ganglion surface. Despite this difference, several shared features support homology of the two VO types, including (1) a specific arrangement of the cells around a small central cavity, (2) the presence of asymmetrically dividing neural stem cell-like precursors, (3) the migration of newborn cells along corresponding pathways into the cortex, and (4) the same VO origin and formation earlier in development. CONCLUSIONS Evaluation of our findings relative to current hypotheses on pycnogonid phylogeny resolves a bipartite SEG and internal VOs as plesiomorphic conditions in pycnogonids. Although chelicerate taxa other than Pycnogonida lack comparable VOs, they are a characteristic feature of myriapod gangliogenesis. Accordingly, we propose internal VOs with neurogenic function to be part of the ground pattern of Arthropoda. Further, our findings illustrate the importance of dense sampling in old arthropod lineages - even if as gross-anatomically uniform as Pycnogonida - in order to reliably differentiate plesiomorphic from apomorphic neurodevelopmental characteristics prior to outgroup comparison.
Collapse
Affiliation(s)
- Georg Brenneis
- Wellesley College, Neuroscience Program, 106 Central Street, Wellesley, MA, 02481, USA. .,Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstraße 13, Haus 2, 10115, Berlin, Germany.
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstraße 13, Haus 2, 10115, Berlin, Germany
| | - Barbara S Beltz
- Wellesley College, Neuroscience Program, 106 Central Street, Wellesley, MA, 02481, USA
| |
Collapse
|
15
|
Abstract
Recent discoveries of fossil nervous tissue in Cambrian fossils have allowed researchers to trace the origin and evolution of the complex arthropod head and brain based on stem groups close to the origin of the clade, rather than on extant, highly derived members. Here we show that Kerygmachela from Sirius Passet, North Greenland, a primitive stem-group euarthropod, exhibits a diminutive (protocerebral) brain that innervates both the eyes and frontal appendages. It has been surmised, based on developmental evidence, that the ancestor of vertebrates and arthropods had a tripartite brain, which is refuted by the fossil evidence presented here. Furthermore, based on the discovery of eyes in Kerygmachela, we suggest that the complex compound eyes in arthropods evolved from simple ocelli, present in onychophorans and tardigrades, rather than through the incorporation of a set of modified limbs. The arthropod head is complex and its evolution has been difficult to reconstruct. Here, Park et al. describe new specimens of the Cambrian stem-group euarthropod Kerygmachela that preserve evidence of primitive compound eyes and a unipartite brain, providing insight into the structure of the early arthropod head.
Collapse
|
16
|
Redl E, Scherholz M, Wollesen T, Todt C, Wanninger A. Expression of six3 and otx in Solenogastres (Mollusca) supports an ancestral role in bilaterian anterior-posterior axis patterning. Evol Dev 2018; 20:17-28. [PMID: 29243871 PMCID: PMC5814893 DOI: 10.1111/ede.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The homeodomain transcription factors six3 and otx are involved in patterning the anterior body and parts of the central nervous system (CNS) in bilaterians. Their similar expression patterns have been used as an argument for homology of heads, brains, segmentation, and ciliated larvae. We investigated the developmental expression of six3 and otx in the aplacophoran mollusk Wirenia argentea. Six3 is expressed in subepithelial cells delimiting the apical organ of the solenogaster pericalymma larva. Otx is expressed in cells of the prototroch and adjacent regions as well as in posterior extensions of the prototrochal expression domain. Advanced larvae also show pretrochal otx expression in the developing CNS. Comparative analysis of six3 and otx expression in bilaterians argues for an ancestral function in anterior-posterior body axis patterning but, due to its presence in animals lacking a head and/or a brain, not necessarily for the presence of these morphological structures in the last common ancestor (LCA) of bilaterians. Likewise, the hypothesis that the posterior border of otx expression corresponds to the border between the unsegmented head and the segmented trunk of the LCA of protostomes is not supported, since otx is extensively expressed in the trunk in W. argentea and numerous other protostomes.
Collapse
Affiliation(s)
- Emanuel Redl
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Maik Scherholz
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Tim Wollesen
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Christiane Todt
- The Natural History CollectionsUniversity of BergenUniversity MuseumBergenNorway
| | - Andreas Wanninger
- Faculty of Life Sciences, Department of Integrative ZoologyUniversity of ViennaViennaAustria
| |
Collapse
|
17
|
Friedrich M. Ancient genetic redundancy of eyeless and twin of eyeless in the arthropod ocular segment. Dev Biol 2017; 432:192-200. [PMID: 28993201 DOI: 10.1016/j.ydbio.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
Abstract
Pax6 transcription factors are essential upstream regulators in the developing anterior brain and peripheral visual system of most bilaterian animals. While a single homolog is in charge of these functions in vertebrates, two Pax6 genes are in Drosophila: eyeless (ey) and twin of eyeless (toy). At first glance, their co-existence seems sufficiently explained by their differential involvement in the specification of two types of insect visual organs: the lateral compound eyes (ey) and the dorsal ocelli (toy). Less straightforward to understand, however, is their genetic redundancy in promoting defined early and late growth phases of the precursor tissue to these organs: the eye-antennal imaginal disc. Drawing on comparative sequence, expression, and gene function evidence, I here conclude that this gene regulatory network module dates back to the dawn of arthropod evolution, securing the embryonic development of the ocular head segment. Thus, ey and toy constitute a paradigm to explore the organization and functional significance of longterm conserved genetic redundancy of duplicated genes. Indeed, as first steps in this direction, recent studies uncovered the shared use of binding sites in shared enhancers of target genes that are under redundant (string) and, strikingly, even subfunctionalized control by ey and toy (atonal). Equally significant, the evolutionarily recent and paralog-specific function of ey to repress the transcription of the antenna fate regulator Distal-less offers a functionally and phylogenetically well-defined opportunity to study the reconciliation of shared, partitioned, and newly acquired functions in a duplicated developmental gene pair.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201,USA.
| |
Collapse
|
18
|
Martin C, Gross V, Hering L, Tepper B, Jahn H, de Sena Oliveira I, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:565-590. [DOI: 10.1007/s00359-017-1186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
19
|
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:354-379. [PMID: 27989966 DOI: 10.1016/j.asd.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 05/14/2023]
Abstract
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| |
Collapse
|
20
|
Smith FW, Goldstein B. Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:328-340. [PMID: 27725256 DOI: 10.1016/j.asd.2016.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/11/2016] [Accepted: 10/03/2016] [Indexed: 05/03/2023]
Abstract
The origin and diversification of segmented metazoan body plans has fascinated biologists for over a century. The superphylum Panarthropoda includes three phyla of segmented animals-Euarthropoda, Onychophora, and Tardigrada. This superphylum includes representatives with relatively simple and representatives with relatively complex segmented body plans. At one extreme of this continuum, euarthropods exhibit an incredible diversity of serially homologous segments. Furthermore, distinct tagmosis patterns are exhibited by different classes of euarthropods. At the other extreme, all tardigrades share a simple segmented body plan that consists of a head and four leg-bearing segments. The modular body plans of panarthropods make them a tractable model for understanding diversification of animal body plans more generally. Here we review results of recent morphological and developmental studies of tardigrade segmentation. These results complement investigations of segmentation processes in other panarthropods and paleontological studies to illuminate the earliest steps in the evolution of panarthropod body plans.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
22
|
Scherholz M, Redl E, Wollesen T, de Oliveira AL, Todt C, Wanninger A. Ancestral and novel roles of Pax family genes in mollusks. BMC Evol Biol 2017; 17:81. [PMID: 28302062 PMCID: PMC5356317 DOI: 10.1186/s12862-017-0919-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/18/2017] [Indexed: 01/31/2023] Open
Abstract
Background Pax genes are transcription factors with significant roles in cell fate specification and tissue differentiation during animal ontogeny. Most information on their tempo-spatial mode of expression is available from well-studied model organisms where the Pax-subfamilies Pax2/5/8, Pax6, and Paxα/β are mainly involved in the development of the central nervous system (CNS), the eyes, and other sensory organs. In certain taxa, Pax2/5/8 seems to be additionally involved in the development of excretion organs. Data on expression patterns in lophotrochozoans, and in particular in mollusks, are very scarce for all the above-mentioned Pax-subfamilies, which hampers reconstruction of their putative ancestral roles in bilaterian animals. Thus, we studied the developmental expression of Pax2/5/8, Pax6, and the lophotrochozoan-specific Paxβ in the worm-shaped mollusk Wirenia argentea, a member of Aplacophora that together with Polyplacophora forms the Aculifera, the proposed sister taxon to all primarily single-shelled mollusks (Conchifera). Results All investigated Pax genes are expressed in the developing cerebral ganglia and in the ventral nerve cords, but not in the lateral nerve cords of the tetraneural nervous system. Additionally, Pax2/5/8 is expressed in epidermal spicule-secreting or associated cells of the larval trunk and in the region of the developing protonephridia. We found no indication for an involvement of the investigated Pax genes in the development of larval or adult sensory organs of Wirenia argentea. Conclusions Pax2/5/8 seems to have a conserved role in the development of the CNS, whereas expression in the spicule-secreting tissues of aplacophorans and polyplacophorans suggests co-option in aculiferan skeletogenesis. The Pax6 expression pattern in Aculifera largely resembles the common bilaterian expression during CNS development. All data available on Paxβ expression argue for a common role in lophotrochozoan neurogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0919-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maik Scherholz
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Emanuel Redl
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Tim Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - André Luiz de Oliveira
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Christiane Todt
- University Museum of Bergen, University of Bergen, Allégaten 41, 5007, Bergen, Norway
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Janssen R. Comparative analysis of gene expression patterns in the arthropod labrum and the onychophoran frontal appendages, and its implications for the arthropod head problem. EvoDevo 2017; 8:1. [PMID: 28053697 PMCID: PMC5209905 DOI: 10.1186/s13227-016-0064-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
The arthropod head problem has troubled scientists for more than a century. The segmental composition of the arthropod head, homology of its appendages, and especially the nature of the most anterior region of the head are still, at least partially, unclear. One morphological feature of the head that is in the center of current debate is the labrum (upper lip), a fleshy appendicular structure that covers the arthropod mouth. One hypothesis is that the labrum represents a fused pair of protocerebral limbs that likely are homologous with the frontal appendages (primary antennae) of extant onychophorans and the so-called great appendages of stem arthropods. Recently, this hypothesis obtained additional support through genetic data, showing that six3, an anterior-specific gene, is exclusively expressed in the arthropod labrum and the onychophoran frontal appendages, providing an additional line of evidence for homology. Here I present data that put this finding into perspective. The outcome of my study shows that the homologization of a morphological structure by the expression of a single genetic factor is potentially misleading.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
24
|
The Compact Body Plan of Tardigrades Evolved by the Loss of a Large Body Region. Curr Biol 2016; 26:224-229. [DOI: 10.1016/j.cub.2015.11.059] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023]
|
25
|
Chipman AD. An embryological perspective on the early arthropod fossil record. BMC Evol Biol 2015; 15:285. [PMID: 26678148 PMCID: PMC4683962 DOI: 10.1186/s12862-015-0566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the early evolution of the arthropod body plan has recently improved significantly through advances in phylogeny and developmental biology and through new interpretations of the fossil record. However, there has been limited effort to synthesize data from these different sources. Bringing an embryological perspective into the fossil record is a useful way to integrate knowledge from different disciplines into a single coherent view of arthropod evolution. RESULTS I have used current knowledge on the development of extant arthropods, together with published descriptions of fossils, to reconstruct the germband stages of a series of key taxa leading from the arthropod lower stem group to crown group taxa. These reconstruction highlight the main evolutionary transitions that have occurred during early arthropod evolution, provide new insights into the types of mechanisms that could have been active and suggest new questions and research directions. CONCLUSIONS The reconstructions suggest several novel homology hypotheses - e.g. the lower stem group head shield and head capsules in the crown group are all hypothesized to derive from the embryonic head lobes. The homology of anterior segments in different groups is resolved consistently. The transition between "lower-stem" and "upper-stem" arthropods is highlighted as a major transition with a concentration of novelties and innovations, suggesting a gap in the fossil record. A close relationship between chelicerates and megacheirans is supported by the embryonic reconstructions, and I suggest that the depth of the mandibulate-chelicerate split should be reexamined.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel. .,The Department of Paleobiology, The Smithsonian Museum of Natural History, Washington, DC, USA.
| |
Collapse
|
26
|
Martin C, Mayer G. Insights into the segmental identity of post-oral commissures and pharyngeal nerves in Onychophora based on retrograde fills. BMC Neurosci 2015; 16:53. [PMID: 26303946 PMCID: PMC4549126 DOI: 10.1186/s12868-015-0191-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/12/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND While the tripartite brain of arthropods is believed to have evolved by a fusion of initially separate ganglia, the evolutionary origin of the bipartite brain of onychophorans-one of the closest arthropod relatives-remains obscure. Clarifying the segmental identity of post-oral commissures and pharyngeal nerves might provide useful insights into the evolution of the onychophoran brain. We therefore performed retrograde fills of these commissures and nerves in the onychophoran Euperipatoides rowelli. RESULTS Our fills of the anterior and posterior pharyngeal nerves revealed groups of somata that are mainly associated with the deutocerebrum. This resembles the innervation pattern of other feeding structures in Onychophora, including the jaws and several lip papillae surrounding the mouth. Our fills of post-oral commissures in E. rowelli revealed a graded arrangement of anteriorly shifted somata associated with post-oral commissures #1 to #5. The number of deutocerebral somata associated with each commissure decreases posteriorly, i.e., commissure #1 shows the highest and commissure #5 the lowest numbers of associated somata, whereas none of the subsequent median commissures, beginning with commissure #6, shows somata located in the deutocerebrum. CONCLUSIONS Based on the graded and shifted arrangement of somata associated with the anteriormost post-oral commissures, we suggest that the onychophoran brain, which is a bipartite syncerebrum, might have evolved by a successive anterior/anterodorsal migration of neurons towards the protocerebrum in the last onychophoran ancestor. This implies that the composite brain of onychophorans and the compound brain of arthropods might have independent evolutionary origins, as in contrast to arthropods the onychophoran syncerebrum is unlikely to have evolved by a fusion of initially separate ganglia.
Collapse
Affiliation(s)
- Christine Martin
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, 04103, Leipzig, Germany. .,Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| | - Georg Mayer
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, 04103, Leipzig, Germany. .,Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| |
Collapse
|
27
|
Molecular characterization and embryonic origin of the eyes in the common house spider Parasteatoda tepidariorum. EvoDevo 2015; 6:15. [PMID: 26034574 PMCID: PMC4450840 DOI: 10.1186/s13227-015-0011-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 01/30/2023] Open
Abstract
Background Two visual systems are present in most arthropod groups: median and lateral eyes. Most of our current knowledge about the developmental and molecular mechanisms involved in eye formation in arthropods comes from research in the model system Drosophila melanogaster. Here, a core set of retinal determination genes, namely, sine-oculis (so), eyes absent (eya), dachshund (dac), and the two pax6 orthologues eyeless (ey) and twin of eyeless (toy) govern early retinal development. By contrast, not much is known about the development of the up-to-eight eyes present in spiders. Therefore, we analyzed the embryonic expression of core retinal determination genes in the common house spider Parasteatoda tepidariorum. Results We show that the anlagen of the median and lateral eyes in P. tepidariorum originate from different regions of the non-neurogenic ectoderm in the embryonic head. The median eyes are specified as two individual anlagen in an anterior median position in the developing head and subsequently move to their final position following extensive morphogenetic movements of the non-neurogenic ectoderm. The lateral eyes develop from a more lateral position. Intriguingly, they are specified as a unique field of cells that splits into the three individual lateral eyes during late embryonic development. Using gene expression analyses, we identified a unique combination of determination gene expression in the anlagen of the lateral and median eyes, respectively. Conclusions This study of retinal determination genes in the common house spider P. tepidariorum represents the first comprehensive analysis of the well-known retinal determination genes in arthropods outside insects. The development of the individual lateral eyes via the subdivision of one single eye primordium might be the vestige of a larger composite eye anlage, and thus supports the notion that the composite eye is the plesiomorphic state of the lateral eyes in arthropods. The molecular distinction of the two visual systems is similar to the one described for compound eyes and ocelli in Drosophila, suggesting that a unique core determination network for median and lateral eyes, respectively, might have been in place already in the last common ancestor of spiders and insects. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0011-9) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Samadi L, Schmid A, Eriksson BJ. Differential expression of retinal determination genes in the principal and secondary eyes of Cupiennius salei Keyserling (1877). EvoDevo 2015; 6:16. [PMID: 26034575 PMCID: PMC4450993 DOI: 10.1186/s13227-015-0010-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors that determine retinal development seem to be conserved in different phyla throughout the animal kingdom. In most representatives, however, only a few of the involved transcription factors have been sampled and many animal groups remain understudied. In order to fill in the gaps for the chelicerate group of arthropods, we tested the expression pattern of the candidate genes involved in the eye development in the embryo of the wandering spider Cupiennius salei. One main objective was to profile the molecular development of the eyes and to search for possible variation among eye subtype differentiation. A second aim was to form a basis for comparative studies in order to elucidate evolutionary pathways in eye development. RESULTS We screened the spider embryonic transcriptome for retina determination gene candidates and discovered that all except one of the retinal determination genes have been duplicated. Gene expression analysis shows that the two orthologs of all the genes have different expression patterns. The genes are mainly expressed in the developing optic neuropiles of the eyes (lateral furrow, mushroom body, arcuate body) in earlier stages of development (160 to 220 h after egg laying). Later in development (180 to 280 h after egg laying), there is differential expression of the genes in disparate eye vesicles; for example, Cs-otxa is expressed only in posterior-lateral eye vesicles, Cs-otxb, Cs-six1a, and Cs-six3b in all three secondary eye vesicles, Cs-pax6a only in principal eye vesicles, Cs-six1b in posterior-median, and posterior-lateral eye vesicles, and Cs-six3a in lateral and principal eye vesicles. CONCLUSIONS Principle eye development shows pax6a (ey) expression, suggesting pax6 dependence, although secondary eyes develop independently of pax6 genes and show differential expression of several retinal determination genes. Comparing this with the other arthropods suggests that pax6-dependent median eye development is a ground pattern of eye development in this group and that the ocelli of insects, the median eyes of chelicerates, and nauplius eyes can be homologised. The expression pattern of the investigated genes makes it possible to distinguish between secondary eyes and principal eyes. Differences of gene expression among the different lateral eyes indicate disparate function combined with genetic drift.
Collapse
Affiliation(s)
- Leyli Samadi
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Axel Schmid
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Bo Joakim Eriksson
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
29
|
Abstract
The foundation of the diverse metazoan nervous systems is laid by embryonic patterning mechanisms, involving the generation and movement of neural progenitors and their progeny. Here we divide early neurogenesis into discrete elements, including origin, pattern, proliferation, and movement of neuronal progenitors, which are controlled by conserved gene cassettes. We review these neurogenetic mechanisms in representatives of the different metazoan clades, with the goal to build a conceptual framework in which one can ask specific questions, such as which of these mechanisms potentially formed part of the developmental "toolkit" of the bilaterian ancestor and which evolved later.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
30
|
Korthagen NM, van Bilsen K, Swagemakers SMA, van de Peppel J, Bastiaans J, van der Spek PJ, van Hagen PM, Dik WA. Retinal pigment epithelial cells display specific transcriptional responses upon TNF-α stimulation. Br J Ophthalmol 2015; 99:700-4. [PMID: 25680620 DOI: 10.1136/bjophthalmol-2014-306309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Tumour necrosis factor-α (TNF-α) is a key mediator of ocular inflammation and its interaction with the retinal pigment epithelium (RPE) may be a driving force in vitreoretinal disorders such as age-related macular degeneration, proliferative vitreoretinopathy (PVR) and diabetic retinopathy. Under inflammatory conditions, the ability of RPE cells to maintain the blood-retinal barrier and immune privilege may be lost and proliferation of RPE cells is facilitated. To gain insight into the effects of TNF-α on RPE cells, a gene expression study was performed. METHODS ARPE-19 and HT-29 cells were stimulated with 50 ng/mL TNF-α for 6 h. Gene expression patterns were compared between stimulated and control cells using whole genome gene expression arrays. Data were analysed using Partek and OmniViz and validated using quantitative RT-PCR. Functional annotation analysis was performed using Ingenuity and DAVID. RESULTS A total of 97 genes were uniquely modulated by TNF-α in ARPE-19 cells compared with HT-29 cells (86 upregulated and 11 downregulated). Most commonly affected biological processes were apoptosis, cell motility and cell signalling. The highest upregulated gene was EFNA1. Among the downregulated genes were transcription factors implicated in ocular development (SIX3, PAX6) and modulation of p53-mediated apoptosis (CITED2). CONCLUSIONS This study provides insight into the unique responses of RPE cells to TNF-α stimulation and suggests a role for genes involved in apoptosis and retinal epithelial development. These findings contribute to our understanding of the behaviour of RPE cells under inflammatory conditions and the crucial role of RPE cells in vitreoretinal diseases.
Collapse
Affiliation(s)
- Nicoline M Korthagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kiki van Bilsen
- Department of Internal Medicine, Section Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Section Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Jeroen Bastiaans
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands Department of Internal Medicine, Section Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
31
|
Latest anomalocaridid affinities challenged. Nature 2015; 516:E1-2. [PMID: 25503241 DOI: 10.1038/nature13860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 01/30/2023]
|
32
|
Engrailed homeoproteins in visual system development. Cell Mol Life Sci 2014; 72:1433-45. [PMID: 25432704 PMCID: PMC4366559 DOI: 10.1007/s00018-014-1776-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 12/28/2022]
Abstract
Engrailed is a homeoprotein transcription factor. This family of transcription factors is characterized by their DNA-binding homeodomain and some members, including Engrailed, can transfer between cells and regulate protein translation in addition to gene transcription. Engrailed is intimately involved in the development of the vertebrate visual system. Early expression of Engrailed in dorsal mesencephalon contributes to the development and organization of a visual structure, the optic tectum/superior colliculus. This structure is an important target for retinal ganglion cell axons that carry visual information from the retina. Engrailed regulates the expression of Ephrin axon guidance cues in the tectum/superior colliculus. More recently it has been reported that Engrailed itself acts as an axon guidance cue in synergy with the Ephrin system and is proposed to enhance retinal topographic precision.
Collapse
|
33
|
Smith FW, Jockusch EL. The metameric pattern of Hypsibius dujardini(Eutardigrada) and its relationship to that of other panarthropods. Front Zool 2014. [DOI: 10.1186/s12983-014-0066-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
34
|
Brenneis G, Scholtz G. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS One 2014; 9:e95435. [PMID: 24736377 PMCID: PMC3988247 DOI: 10.1371/journal.pone.0095435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented 'opisthosoma' during pycnogonid evolution.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| |
Collapse
|
35
|
Li Y, Li Y, Liu Y, Xie P, Li F, Li G. PAX6, a novel target of microRNA-7, promotes cellular proliferation and invasion in human colorectal cancer cells. Dig Dis Sci 2014; 59:598-606. [PMID: 24185687 DOI: 10.1007/s10620-013-2929-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Paired box 6 (PAX6), a highly conserved transcriptional factor, has been implicated in tumorigenesis. AIM We aimed to explore the roles and molecular mechanisms of PAX6 and microRNA (miR-7) in colorectal cancer cells. METHODS Tissue microarray immunohistochemistry and Western blot were applied to examine the PAX6 expression. Real-time RT-PCR and Western blot were performed to determine the expression of miR-7 and PAX6. Luciferase reporter assay was used to determine whether PAX6 was a target of miR-7. Effects of miR-7 and PAX6 on colorectal cell proliferation, cell cycle progression, colony formation and invasion were then investigated. Western blot was used to determine the activities of the ERK and PI3K signal pathways, as well as the protein expression of MMP2 and MMP9. RESULTS The protein levels of PAX6 were gradually increased, while the expression of miR-7 was gradually reduced with malignancy of colorectal cancer. PAX6 was further identified as a target of miR-7, and its protein expression was negatively regulated by miR-7 in human colorectal cancer cells. Overexpression of PAX6 in Caco-2 and SW480 cells enhanced cellular proliferation, cell cycle progression, colony formation, and invasion, while miR-7 upregulation repressed these biological processes. Furthermore, the activities of ERK and PI3K signal pathways, as well as the protein levels of MMP2 and MMP9, were upregulated in PAX6-overexpressed Caco-2 and SW480 cells but deregulated in miR-7-overexpressed Caco-2 and SW480 cells. CONCLUSIONS Our study suggests that as a novel target of miR-7, PAX6 may serve as a promising therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Yanwen Li
- Tumor Immunobiology Laboratory of Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Ministry of Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | | | | | | | | | | |
Collapse
|