1
|
Wang T, Fu J, Huang Y, Fu C. Mechanism of APC truncation involved in colorectal cancer tumorigenesis (Review). Oncol Lett 2025; 29:2. [PMID: 39526304 PMCID: PMC11544694 DOI: 10.3892/ol.2024.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Adenomatous polyposis coli (APC) is widely recognized as a heavily mutated gene that suppresses tumor growth in colorectal cancer (CRC). Its mutation is considered to be the primary and early event that occurs in the development of CRC. In addition, APC has a crucial role in inhibiting the canonical Wnt signaling pathway. APC mutations in CRC result in the production of shortened gene products. This impairment of β-catenin destruction complexes causes an accumulation of active β-catenin in the cytoplasm and nucleus. In these compartments, β-catenin can bind with DNA-binding proteins of the transcription factor/lymphoid enhancer-binding factor family, thereby activating the Wnt signaling pathway. Consequently, the balance of numerous cellular processes is disrupted, ultimately driving the formation of tumors. There is a growing body of evidence indicating the prevalent occurrence of APC truncation in the majority of CRC cases. Furthermore, it has been observed that these truncated proteins have a crucial role in the activation of the Wnt signaling pathway and the subsequent loss of tumor inhibitory function. This review aimed to provide an overview of the recent advancements in understanding the mechanism behind APC truncation and its association with the onset and progression of CRC.
Collapse
Affiliation(s)
- Tuya Wang
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Jing Fu
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Ye Huang
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Chun Fu
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| |
Collapse
|
2
|
Herz M, Zarowiecki M, Wessels L, Pätzel K, Herrmann R, Braun C, Holroyd N, Huckvale T, Bergmann M, Spiliotis M, Koziol U, Berriman M, Brehm K. Genome-wide transcriptome analysis of Echinococcus multilocularis larvae and germinative cell cultures reveals genes involved in parasite stem cell function. Front Cell Infect Microbiol 2024; 14:1335946. [PMID: 38333034 PMCID: PMC10850878 DOI: 10.3389/fcimb.2024.1335946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.
Collapse
Affiliation(s)
- Michaela Herz
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Leonie Wessels
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Katharina Pätzel
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ruth Herrmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Christiane Braun
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Thomas Huckvale
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Monika Bergmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Markus Spiliotis
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Uriel Koziol
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Matthew Berriman
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Klaus Brehm
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Jiang H, Wang X, Guo L, Tan X, Gui X, Liao Z, Li Z, Chen X, Wu X. Effect of sunitinib against Echinococcus multilocularis through inhibition of VEGFA-induced angiogenesis. Parasit Vectors 2023; 16:407. [PMID: 37936208 PMCID: PMC10631006 DOI: 10.1186/s13071-023-05999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is a lethal zoonosis caused by the fox tapeworm Echinococcus multilocularis. The disease is difficult to treat, and an effective therapeutic drug is urgently needed. Echinococcus multilocularis-associated angiogenesis is required by the parasite for growth and metastasis; however, whether antiangiogenic therapy is effective for treating AE is unclear. METHODS The in vivo efficacy of sunitinib malate (SU11248) was evaluated in mice by secondary infection with E. multilocularis. Enzyme-linked immunosorbent assays (ELISAs) were used to evaluate treatment effects on serum IL-4 and vascular endothelial growth factor A (VEGFA) levels after SU11248 treatment. Gross morphological observations and immunohistochemical staining were used to evaluate the impact of SU11248 on angiogenesis and the expression of pro-angiogenic factors VEGFA and VEGF receptor 2 (VEGFR2) in the metacestode tissues. Furthermore, the anthelmintic effects of SU11248 were tested on E. multilocularis metacestodes in vitro. The effect of SU11248 on the expression of VEGFA, VEGFR2, and phosphorylated VEGFR2 (p-VEGFR2) in liver cells infected with protoscoleces in vitro was detected by western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The influence of SU11248 on endothelial progenitor cell (EPC) proliferation and migration was determined using CCK8 and transwell assays. RESULTS In vivo, SU11248 treatment markedly reduced neovascular lesion formation and substantially inhibited E. multilocularis metacestode growth in mice. Further, it exhibited high anti-hydatid activity as efficiently as albendazole (ABZ), and the treatment resulted in reduced protoscolex development. In addition, VEGFA, VEGFR2, and p-VEGFR2 expression was significantly decreased in the metacestode tissues after SU11248 treatment. However, no effect of SU11248 on serum IL-4 levels was observed. In vitro, SU11248 exhibited some anthelmintic effects and damaged the cellular structure in the germinal layer of metacestodes at concentrations below those generally considered acceptable for treatment (0.12-0.5 μM). Western blotting, RT-qPCR, and ELISA showed that in co-cultured systems, only p-VEGFR2 levels tended to decrease with increasing SU11248 concentrations. Furthermore, SU11248 was less toxic to Reuber rat hepatoma (RH) cells and metacestodes than to EPCs, and 0.1 μM SU11248 completely inhibited EPC migration to the supernatants of liver cell and protoscolex co-cultures. CONCLUSIONS SU11248 is a potential candidate drug for the treatment of AE, which predominantly inhibits parasite-induced angiogenesis. Host-targeted anti-angiogenesis treatment strategies constitute a new avenue for the treatment of AE.
Collapse
Affiliation(s)
- Huijiao Jiang
- National Health Commission of the People's Republic of China Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiaoyi Wang
- National Health Commission of the People's Republic of China Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Lijiao Guo
- National Health Commission of the People's Republic of China Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiaowu Tan
- National Health Commission of the People's Republic of China Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xianwei Gui
- National Health Commission of the People's Republic of China Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Zhenyu Liao
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
- Department of Experimental Medicine, Jintang First People's Hospital West China Hospital Sichuan University Jintang Hospital, Chengdu, 610400, Sichuan, China
| | - Zhiwei Li
- National Health Commission of the People's Republic of China Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xueling Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Xiangwei Wu
- National Health Commission of the People's Republic of China Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
4
|
Grecco A, Macchiaroli N, Pérez MG, Casulli A, Cucher MA, Rosenzvit MC. microRNA silencing in a whole worm cestode model provides insight into miR-71 function. Int J Parasitol 2023; 53:699-710. [PMID: 37699506 DOI: 10.1016/j.ijpara.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023]
Abstract
Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.
Collapse
Affiliation(s)
- Andrés Grecco
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Macchiaroli
- Laboratorio de Genómica y Bioinformática de Patógenos, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Gastón Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; European Reference Laboratory for Parasites. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marcela Alejandra Cucher
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Bobes RJ, Estrada K, Rios-Valencia DG, Calderón-Gallegos A, de la Torre P, Carrero JC, Sanchez-Flores A, Laclette JP. The Genomes of Two Strains of Taenia crassiceps the Animal Model for the Study of Human Cysticercosis. Front Cell Infect Microbiol 2022; 12:876839. [PMID: 35619649 PMCID: PMC9128525 DOI: 10.3389/fcimb.2022.876839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Human cysticercosis by Taenia solium is the major cause of neurological illness in countries of Africa, Southeast Asia, and the Americas. Publication of four cestode genomes (T. solium, Echinococcus multilocularis, E. granulosus and Hymenolepis microstoma) in the last decade, marked the advent of novel approaches on the study of the host-parasite molecular crosstalk for cestode parasites of importance for human and animal health. Taenia crassiceps is another cestode parasite, closely related to T. solium, which has been used in numerous studies as an animal model for human cysticercosis. Therefore, characterization of the T. crassiceps genome will also contribute to the understanding of the human infection. Here, we report the genome of T. crassiceps WFU strain, reconstructed to a noncontiguous finished resolution and performed a genomic and differential expression comparison analysis against ORF strain. Both strain genomes were sequenced using Oxford Nanopore (MinION) and Illumina technologies, achieving high quality assemblies of about 107 Mb for both strains. Dotplot comparison between WFU and ORF demonstrated that both genomes were extremely similar. Additionally, karyotyping results for both strains failed to demonstrate a difference in chromosome composition. Therefore, our results strongly support the concept that the absence of scolex in the ORF strain of T. crassiceps was not the result of a chromosomal loss as proposed elsewhere. Instead, it appears to be the result of subtle and extensive differences in the regulation of gene expression. Analysis of variants between the two strains identified 2,487 sites with changes distributed in 31 of 65 scaffolds. The differential expression analysis revealed that genes related to development and morphogenesis in the ORF strain might be involved in the lack of scolex formation.
Collapse
Affiliation(s)
- Raúl J. Bobes
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Karel Estrada
- Biotechnology Institute, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Patricia de la Torre
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Julio C. Carrero
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Alejandro Sanchez-Flores
- Biotechnology Institute, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- *Correspondence: Juan P. Laclette, ; Alejandro Sanchez-Flores,
| | - Juan P. Laclette
- Biomedical Research Institute, Universidad Nacional Autónoma de México, CDMX, Mexico
- *Correspondence: Juan P. Laclette, ; Alejandro Sanchez-Flores,
| |
Collapse
|
6
|
Stoll K, Bergmann M, Spiliotis M, Brehm K. A MEKK1 - JNK mitogen activated kinase (MAPK) cascade module is active in Echinococcus multilocularis stem cells. PLoS Negl Trop Dis 2021; 15:e0010027. [PMID: 34879059 PMCID: PMC8687709 DOI: 10.1371/journal.pntd.0010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. Methodology/Principal findings Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. Conclusions/Significance We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis. The metacestode larva of the tapeworm E. multilocularis grows infiltrative, like a malignant tumour, within the liver of the host thus causing the lethal disease alveolar echinococcosis. Previous work established that the metacestode senses signals of host hormones and cytokines by expressing surface receptors that share high homology with respective host receptors. However, little is known how these signals are transmitted from the parasite cell surface to the nucleus to alter gene expression. In this work, the authors present a module of several protein kinases that typically transmit cytokine signals from surface receptors to central regulators called mitogen-activated protein kinases (MAPK). The authors demonstrate that this module is active in parasite stem cells, which drive the development of metacestode larva. They also show that inhibitors directed against one component of the module, EmMPK3, affect maintenance and/or survival of stem cells in the metacestode and prevent the formation of metacestode larva from parasite cell cultures. This information facilitates molecular and cellular studies to unravel the complex signalling network that regulate Echinococcus stem cell proliferation in response to host signals. Furthermore, these data could open new ways of anti-parasitic chemotherapy by introducing EmMPK3 as a possible drug target.
Collapse
Affiliation(s)
- Kristin Stoll
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Monika Bergmann
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Markus Spiliotis
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
7
|
Metformin Suppresses Development of the Echinococcus multilocularis Larval Stage by Targeting the TOR Pathway. Antimicrob Agents Chemother 2020; 64:AAC.01808-19. [PMID: 32540980 DOI: 10.1128/aac.01808-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Alveolar echinococcosis (AE) is a severe disease caused by the larval stage of the tapeworm Echinococcus multilocularis Current chemotherapeutic treatment options based on benzimidazoles are of limited effectiveness, which underlines the need to find new antiechinococcosis drugs. Metformin is an antihyperglycemic and antiproliferative agent that shows activity against the related parasite Echinococcus granulosus Hence, we assessed the in vitro and in vivo effects of the drug on E. multilocularis Metformin exerted significant dose-dependent killing effects on in vitro cultured parasite stem cells and protoscoleces and significantly reduced the dedifferentiation of protoscoleces into metacestodes. Likewise, oral administration of metformin (50 mg/kg of body weight/day for 8 weeks) was effective in achieving a significant reduction of parasite weight in a secondary murine AE model. Our results revealed mitochondrial membrane depolarization, activation of Em-AMPK, suppression of Em-TOR, and overexpression of Em-Atg8 in the germinal layer of metformin-treated metacestode vesicles. The opposite effects on the level of active Em-TOR in response to exogenous insulin and rapamycin suggest that Em-TOR is part of the parasite's insulin signaling pathway. Finally, the presence of the key lysosomal pathway components, through which metformin reportedly acts, was confirmed in the parasite by in silico assays. Taken together, these results introduce metformin as a promising candidate for AE treatment. Although our study highlights the importance of those direct mechanisms by which metformin reduces parasite viability, it does not necessarily preclude any additional systemic effects of the drug that might reduce parasite growth in vivo.
Collapse
|
8
|
Paludo GP, Thompson CE, Miyamoto KN, Guedes RLM, Zaha A, de Vasconcelos ATR, Cancela M, Ferreira HB. Cestode strobilation: prediction of developmental genes and pathways. BMC Genomics 2020; 21:487. [PMID: 32677885 PMCID: PMC7367335 DOI: 10.1186/s12864-020-06878-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cestoda is a class of endoparasitic worms in the flatworm phylum (Platyhelminthes). During the course of their evolution cestodes have evolved some interesting aspects, such as their increased reproductive capacity. In this sense, they have serial repetition of their reproductive organs in the adult stage, which is often associated with external segmentation in a developmental process called strobilation. However, the molecular basis of strobilation is poorly understood. To assess this issue, an evolutionary comparative study among strobilated and non-strobilated flatworm species was conducted to identify genes and proteins related to the strobilation process. RESULTS We compared the genomic content of 10 parasitic platyhelminth species; five from cestode species, representing strobilated parasitic platyhelminths, and five from trematode species, representing non-strobilated parasitic platyhelminths. This dataset was used to identify 1813 genes with orthologues that are present in all cestode (strobilated) species, but absent from at least one trematode (non-strobilated) species. Development-related genes, along with genes of unknown function (UF), were then selected based on their transcriptional profiles, resulting in a total of 34 genes that were differentially expressed between the larval (pre-strobilation) and adult (strobilated) stages in at least one cestode species. These 34 genes were then assumed to be strobilation related; they included 12 encoding proteins of known function, with 6 related to the Wnt, TGF-β/BMP, or G-protein coupled receptor signaling pathways; and 22 encoding UF proteins. In order to assign function to at least some of the UF genes/proteins, a global gene co-expression analysis was performed for the cestode species Echinococcus multilocularis. This resulted in eight UF genes/proteins being predicted as related to developmental, reproductive, vesicle transport, or signaling processes. CONCLUSIONS Overall, the described in silico data provided evidence of the involvement of 34 genes/proteins and at least 3 developmental pathways in the cestode strobilation process. These results highlight on the molecular mechanisms and evolution of the cestode strobilation process, and point to several interesting proteins as potential developmental markers and/or targets for the development of novel antihelminthic drugs.
Collapse
Affiliation(s)
- Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
- Departamento de Farmacociências, Universidade Federal de Ciências Médicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Kendi Nishino Miyamoto
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Rafael Lucas Muniz Guedes
- Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil
- Present address: Instituto Hermes Pardini, Vespasiano, MG, Brazil
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | | | - Martin Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
James K, Olson PD. The tapeworm interactome: inferring confidence scored protein-protein interactions from the proteome of Hymenolepis microstoma. BMC Genomics 2020; 21:346. [PMID: 32380953 PMCID: PMC7204028 DOI: 10.1186/s12864-020-6710-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background Reference genome and transcriptome assemblies of helminths have reached a level of completion whereby secondary analyses that rely on accurate gene estimation or syntenic relationships can be now conducted with a high level of confidence. Recent public release of the v.3 assembly of the mouse bile-duct tapeworm, Hymenolepis microstoma, provides chromosome-level characterisation of the genome and a stabilised set of protein coding gene models underpinned by bioinformatic and empirical data. However, interactome data have not been produced. Conserved protein-protein interactions in other organisms, termed interologs, can be used to transfer interactions between species, allowing systems-level analysis in non-model organisms. Results Here, we describe a probabilistic, integrated network of interologs for the H. microstoma proteome, based on conserved protein interactions found in eukaryote model species. Almost a third of the 10,139 gene models in the v.3 assembly could be assigned interaction data and assessment of the resulting network indicates that topologically-important proteins are related to essential cellular pathways, and that the network clusters into biologically meaningful components. Moreover, network parameters are similar to those of single-species interaction networks that we constructed in the same way for S. cerevisiae, C. elegans and H. sapiens, demonstrating that information-rich, system-level analyses can be conducted even on species separated by a large phylogenetic distance from the major model organisms from which most protein interaction evidence is based. Using the interolog network, we then focused on sub-networks of interactions assigned to discrete suites of genes of interest, including signalling components and transcription factors, germline multipotency genes, and genes differentially-expressed between larval and adult worms. Results show not only an expected bias toward highly-conserved proteins, such as components of intracellular signal transduction, but in some cases predicted interactions with transcription factors that aid in identifying their target genes. Conclusions With key helminth genomes now complete, systems-level analyses can provide an important predictive framework to guide basic and applied research on helminths and will become increasingly informative as new protein-protein interaction data accumulate.
Collapse
Affiliation(s)
- Katherine James
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK. .,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, UK.
| | - Peter D Olson
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, UK
| |
Collapse
|