1
|
Kremser M, Weiss N, Kaufmann-Stoeck A, Vierbaum L, Kappler S, Schellenberg I, Hiergeist A, Fingerle V, Baier M, Reischl U. Longitudinal analysis of 20 Years of external quality assurance schemes for PCR/NAAT-based bacterial genome detection in diagnostic testing. Front Mol Biosci 2024; 11:1373114. [PMID: 38601324 PMCID: PMC11004257 DOI: 10.3389/fmolb.2024.1373114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background Quality control (QC), quality assurance, and standardization are crucial for modern diagnostic testing in the field of medical microbiology. The need for efficient QC to ensure accurate laboratory results, treatment, and infection prevention has led to significant efforts in standardizing assay reagents and workflows. External quality assessment (EQA) schemes, like those offered by INSTAND, play a vital role in evaluating in-house and commercial routine diagnostic assays, regarded as mandatory by national and global guidelines. The recent impact of polymerase chain reaction/nucleic acid amplification technology (PCR/NAAT) assays in medical microbiology requires that high-performing assays be distinguished from inadequately performing ones, especially those made by inexperienced suppliers. Objectives The study assesses the evolving diagnostic performance trends over 2 decades for the detection of EHEC/STEC, Borrelia (B.) burgdorferi, and MRSA/cMRSA. It explores the historical context of assay utilization, participant engagement, and rates of correct results in EQA schemes. The research seeks to identify patterns in assay preferences, participant proficiency, and the challenges encountered in detecting emerging variants or clinical strains. Results The study highlights the decline in in-house PCR assay usage, the emergence of new diagnostic challenges, and educational aspects within EQA schemes. Specific examples, such as the inclusion, in certain EQA surveys, of EHEC strains carrying stx-2f or B. miyamotoi, highlight the role of EQAs in increasing awareness and diagnostic capabilities. Advancements in MRSA detection, especially through the adoption of commercial assays, demonstrate the impact that technology evolution has had on diagnostic performance. Conclusion Achieving excellence in diagnostic molecular microbiology involves a multifaceted approach, including well-evaluated assays, careful instrumentation selection, and structured training programs. EQA schemes contribute significantly to this pursuit by providing insights into the evolving diagnostic landscape and identifying areas for improvement in the diagnostic workflow as well as in PCR/NAAT assay design.
Collapse
Affiliation(s)
- Marcel Kremser
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
| | - Nathalie Weiss
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
| | - Anne Kaufmann-Stoeck
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
| | - Laura Vierbaum
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
| | - Silke Kappler
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
| | - Ingo Schellenberg
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
- Institute of Bioanalytical Sciences (IBAS), Center of Life Sciences, Anhalt University of Applied Sciences, Bernburg, Germany
| | - Andreas Hiergeist
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Volker Fingerle
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Michael Baier
- Institute of Medical Microbiology, University Hospital Jena, Jena, Germany
| | - Udo Reischl
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
The Significance of External Quality Assessment Schemes for Molecular Testing in Clinical Laboratories. Cancers (Basel) 2022; 14:cancers14153686. [PMID: 35954349 PMCID: PMC9367251 DOI: 10.3390/cancers14153686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Patients and clinicians often rely on the outcome of laboratory tests, but can we really trust these test results? Good quality management is key for laboratories to guarantee reliable test results. This review focusses on external quality assessment (EQA) schemes which are a tool for laboratories to examine and improve the quality of their testing routines. In this review, an overview of the role and importance of EQA schemes for clinical laboratories is given, and different types of EQA schemes and EQA providers available on the market are discussed, as well as recent developments in the EQA landscape. Abstract External quality assessment (EQA) schemes are a tool for clinical laboratories to evaluate and manage the quality of laboratory practice with the support of an independent party (i.e., an EQA provider). Depending on the context, there are different types of EQA schemes available, as well as various EQA providers, each with its own field of expertise. In this review, an overview of the general requirements for EQA schemes and EQA providers based on international guidelines is provided. The clinical and scientific value of these kinds of schemes for clinical laboratories, clinicians and patients are highlighted, in addition to the support EQA can provide to other types of laboratories, e.g., laboratories affiliated to biotech companies. Finally, recent developments and challenges in laboratory medicine and quality management, for example, the introduction of artificial intelligence in the laboratory and the shift to a more individual-approach instead of a laboratory-focused approach, are discussed. EQA schemes should represent current laboratory practice as much as possible, which poses the need for EQA providers to introduce latest laboratory innovations in their schemes and to apply up-to-date guidelines. By incorporating these state-of-the-art techniques, EQA aims to contribute to continuous learning.
Collapse
|
3
|
Normanno N, Apostolides K, de Lorenzo F, Beer PA, Henderson R, Sullivan R, Biankin AV, Horgan D, Lawler M. Cancer Biomarkers in the era of precision oncology: Addressing the needs of patients and health systems. Semin Cancer Biol 2021; 84:293-301. [PMID: 34389490 DOI: 10.1016/j.semcancer.2021.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Cancer Biomarkers are the key to unlocking the promise of precision oncology, selecting which patients will respond to a more personalised treatment while sparing non-responders the therapy-related toxicity. In this paper, we highlight the primacy of cancer biomarkers, but focus on their importance to patients and to health systems. We also highlight how cancer biomarkers represent value for money. We emphasise the need for cancer biomarkers infrastructure to be embedded into European health systems. We also highlight the need to deploy multiple biomarker testing to deliver the optimal benefit for patients and health systems and consider cancer biomarkers from the perspective of cost, value and regulation. Cancer biomarkers must also be situated in the context of the upcoming In Vitro Diagnostics Regulation, which may pose certain challenges (e.g. non-compliance of laboratory developed tests, leading to cancer biomarker shortages and increased costs) that need to be overcome. Cancer biomarkers must be embedded in the real world of oncology delivery and testing must be implemented across Europe, with the intended aim of narrowing, not widening the inequity gap for patients. Cancer patients must be placed firmly at the centre of a cancer biomarker informed precision oncology care agenda.
Collapse
Affiliation(s)
- Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - "Fondazione G. Pascale", Napoli, Italy
| | - Kathi Apostolides
- European Cancer Patient Coalition, Rue Montoyer 40, 1000, Brussels, Belgium
| | | | - Philip A Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, United Kingdom; Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Raymond Henderson
- Diaceutics PLC, Belfast, United Kingdom; Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, United Kingdom
| | - Richard Sullivan
- King's College London, Institute of Cancer Policy, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, G31 2ER, United Kingdom; South Western Sydney Clinical School, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Denis Horgan
- European Alliance for Personalised Medicine, Avenue de l'Armee Legerlaan 10, 1040, Brussels, Belgium
| | - Mark Lawler
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, United Kingdom.
| |
Collapse
|
4
|
Lantoine J, Brysse A, Dideberg V, Claes K, Symoens S, Coucke W, Benoit V, Rombout S, De Rycke M, Seneca S, Van Laer L, Wuyts W, Corveleyn A, Van Den Bogaert K, Rydlewski C, Wilkin F, Ravoet M, Fastré E, Capron A, Vandevelde NM. Frequency of Participation in External Quality Assessment Programs Focused on Rare Diseases: Belgian Guidelines for Human Genetics Centers. JMIR Med Inform 2021; 9:e27980. [PMID: 34255700 PMCID: PMC8314149 DOI: 10.2196/27980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background Participation in quality controls, also called external quality assessment (EQA) schemes, is required for the ISO15189 accreditation of the Medical Centers of Human Genetics. However, directives on the minimal frequency of participation in genetic quality control schemes are lacking or too heterogeneous, with a possible impact on health care quality. Objective The aim of this project is to develop Belgian guidelines on the frequency of participation in quality controls for genetic testing in the context of rare diseases. Methods A group of experts analyzed 90 EQA schemes offered by accredited providers and focused on analyses used for the diagnosis of rare diseases. On that basis, the experts developed practical recommendations about the minimal frequencies of participation of the Medical Centers of Human Genetics in quality controls and how to deal with poor performances and change management. These guidelines were submitted to the Belgian Accreditation Body and then reviewed and approved by the Belgian College of Human Genetics and Rare Diseases and by the National Institute for Health and Disability Insurance. Results The guidelines offer a decisional algorithm for the minimal frequency of participation in human genetics EQA schemes. This algorithm has been developed taking into account the scopes of the EQA schemes, the levels of experience, and the annual volumes of the Centers of Human Genetics in the performance of the tests considered. They include three key principles: (1) the recommended annual assessment of all genetic techniques and technological platforms, if possible through EQAs covering the technique, genotyping, and clinical interpretation; (2) the triennial assessment of the genotyping and interpretation of specific germline mutations and pharmacogenomics analyses; and (3) the documentation of actions undertaken in the case of poor performances and the participation to quality control the following year. The use of a Bayesian statistical model has been proposed to help the Centers of Human Genetics to determine the theoretical number of tests that should be annually performed to achieve a certain threshold of performance (eg, a maximal error rate of 1%). Besides, the guidelines insist on the role and responsibility of the national public health authorities in the follow-up of the quality of analyses performed by the Medical Centers of Human Genetics and in demonstrating the cost-effectiveness and rationalization of participation frequency in these quality controls. Conclusions These guidelines have been developed based on the analysis of a large panel of EQA schemes and data collected from the Belgian Medical Centers of Human Genetics. They are applicable to other countries and will facilitate and improve the quality management and financing systems of the Medical Centers of Human Genetics.
Collapse
Affiliation(s)
- Joséphine Lantoine
- Rare Diseases Unit, Department of Quality of Laboratories, Sciensano, Brussels, Belgium
| | - Anne Brysse
- Center of Human Genetics, CHU of Liège, University of Liège, Liège, Belgium
| | - Vinciane Dideberg
- Center of Human Genetics, CHU of Liège, University of Liège, Liège, Belgium
| | - Kathleen Claes
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Wim Coucke
- Department of Quality of Laboratories, Sciensano, Brussels, Belgium
| | - Valérie Benoit
- Center of Human Genetics, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Sonia Rombout
- Center of Human Genetics, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Martine De Rycke
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Seneca
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Wim Wuyts
- Center of Medical Genetics, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Catherine Rydlewski
- Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Wilkin
- Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Ravoet
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Elodie Fastré
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Arnaud Capron
- Department of Quality of Laboratories, Sciensano, Brussels, Belgium
| | | |
Collapse
|
5
|
Keppens C, Boone E, Gameiro P, Tack V, Moreau E, Hodges E, Evans P, Brüggemann M, Carter I, Lenze D, Sarasquete ME, Möbs M, Liu H, Dequeker EMC, Groenen PJTA. Evaluation of a worldwide EQA scheme for complex clonality analysis of clinical lymphoproliferative cases demonstrates a learning effect. Virchows Arch 2021; 479:365-376. [PMID: 33686511 PMCID: PMC8364525 DOI: 10.1007/s00428-021-03046-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
Clonality analysis of immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements is routine practice to assist diagnosis of lymphoid malignancies. Participation in external quality assessment (EQA) aids laboratories in identifying systematic shortcomings. The aim of this study was to evaluate laboratories' improvement in IG/TR analysis and interpretation during five EQA rounds between 2014 and 2018. Each year, participants received a total of five cases for IG and five cases for TR testing. Paper-based cases were included for analysis of the final molecular conclusion that should be interpreted based on the integration of the individual PCR results. Wet cases were distributed for analysis of their routine protocol as well as evaluation of the final molecular conclusion. In total, 94.9% (506/533) of wet tests and 97.9% (829/847) of paper tests were correctly analyzed for IG, and 96.8% (507/524) wet tests and 93.2% (765/821) paper tests were correctly analyzed for TR. Analysis scores significantly improved when laboratories participated to more EQA rounds (p=0.001). Overall performance was significantly lower (p=0.008) for non-EuroClonality laboratories (95% for IG and 93% for TR) compared to EuroClonality laboratories (99% for IG and 97% for TR). The difference was not related to the EQA scheme year, anatomic origin of the sample, or final clinical diagnosis. This evaluation showed that repeated EQA participation helps to reduce performance differences between laboratories (EuroClonality versus non-EuroClonality) and between sample types (paper versus wet). The difficulties in interpreting oligoclonal cases highlighted the need for continued education by meetings and EQA schemes.
Collapse
Affiliation(s)
- Cleo Keppens
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35 block d, 1st floor, box 7001, 3000 Leuven, Belgium
| | - Elke Boone
- AZ Delta vzw - Laboratorium Moleculaire Diagnostiek, Deltalaan 1, 8800 Roeselare, Belgium
| | - Paula Gameiro
- Laboratory of Hemato-Oncology, Portuguese Institute of Oncology of Lisbon, Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Véronique Tack
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35 block d, 1st floor, box 7001, 3000 Leuven, Belgium
| | - Elisabeth Moreau
- AZ Delta vzw - Laboratorium Moleculaire Diagnostiek, Deltalaan 1, 8800 Roeselare, Belgium
| | - Elizabeth Hodges
- Precision Medicine Centre, Queen’s University Belfast, Health Science Building, 97 Lisburn Road, Belfast, BT9 7AE UK
| | - Paul Evans
- HMDS, Leeds Institute of Oncology, St. James University Hospital, Level 3 Bexley Wing Leeds, Leeds, LS9 7TF UK
| | - Monika Brüggemann
- Department of Hematology, University Hospital Schleswig-Holstein, Langer Segen 8-10, 24105 Kiel, Germany
| | - Ian Carter
- Molecular Diagnostics, Histopathology, Nottingham University Hospitals NHS Trust, City Campus, Hucknall Rd., Nottingham, NG5 1PB UK
| | - Dido Lenze
- Institut für Pathologie, Molekularpathologie, Charité –Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Maria Eugenia Sarasquete
- Laboratorio Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - Markus Möbs
- Institut für Pathologie, Molekularpathologie, Charité –Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Hongxiang Liu
- Molecular Malignancy Laboratory, Haematopathology and Oncology Diagnostic Service (HODS), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Box 234, Hills Road, Cambridge, CB2 0QQ UK
| | - Elisabeth M. C. Dequeker
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35 block d, 1st floor, box 7001, 3000 Leuven, Belgium
| | - Patricia J. T. A. Groenen
- Department of Pathology, Radboud University Medical Centre Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Kafatos G, Banks V, Burdon P, Neasham D, Anger C, Manuguid F, Lowe KA, Cheung P, Taieb J, van Krieken JH. Biomarker testing and mutation prevalence in metastatic colorectal cancer patients in five European countries using a large oncology database. Future Oncol 2021; 17:1483-1494. [PMID: 33464119 DOI: 10.2217/fon-2020-0975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: The literature on biomarker testing for metastatic colorectal cancer (mCRC) in Europe is scarce. This study aimed to estimate the percentage of mCRC patients from five European countries tested for biomarkers over time. Materials & methods: An oncology database was retrospectively analyzed; evaluated biomarkers were RAS, BRAF and microsatellite instability (MSI). The patients were drug treated during 2018 and tested for relevant biomarkers in 2013-2018. Results: RAS testing was conducted in >90% of mCRC patients from 2014 onwards. BRAF testing increased from 31% of mCRC patients in 2013 to 67% in 2018. MSI testing increased from 10 to 41%. There was no notable trend over time for RAS and BRAF mutation or MSI-high prevalence. Conclusion: Biomarker testing among patients diagnosed with mCRC was increased over time. This study demonstrates the quick uptake of biomarker testing in clinical practice. These findings are significant as biomarker-based drugs are becoming more common.
Collapse
Affiliation(s)
- George Kafatos
- Amgen Ltd, Center for Observational Research, 1 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DK, UK
| | - Victoria Banks
- Amgen Ltd, Center for Observational Research, 1 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DK, UK
| | - Peter Burdon
- Amgen (Europe) GmbH, Suurstoffi 22, Postfach 94, 6343, Rotkreuz, Switzerland
| | - David Neasham
- Amgen Ltd, Center for Observational Research, 1 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DK, UK
| | - Caroline Anger
- IQVIA Ltd, Real-World & Analytics solutions, 210 Pentonville Road, London, N1 9JY, UK
| | - Fil Manuguid
- IQVIA Ltd, Real-World & Analytics solutions, 210 Pentonville Road, London, N1 9JY, UK
| | - Kimberly A Lowe
- Amgen, Inc., Center for Observational Research, One Amgen Center Drive, MS D2262, Thousand Oaks, CA 91320, USA
| | - Patrick Cheung
- Amgen Ltd, Center for Observational Research, 240 Milton Road, Cambridge Science Park, Cambridge, EENG, CB4 0WD, UK
| | - Julien Taieb
- Department of Gastroenterology & Digestive Oncology, Université de Paris, Hopital Européen Georges-Pompidou, 20, Rue Leblanc, Paris, 75015, France
| | - Joannes Han van Krieken
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Causes behind error rates for predictive biomarker testing: the utility of sending post-EQA surveys. Virchows Arch 2020; 478:995-1006. [PMID: 33225398 PMCID: PMC8099794 DOI: 10.1007/s00428-020-02966-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022]
Abstract
External quality assessment (EQA) schemes assess the performance of predictive biomarker testing in lung and colorectal cancer and have previously demonstrated variable error rates. No information is currently available on the underlying causes of incorrect EQA results in the laboratories. Participants in EQA schemes by the European Society of Pathology between 2014 and 2018 for lung and colorectal cancer were contacted to complete a survey if they had at least one analysis error or test failure in the provided cases. Of the 791 surveys that were sent, 325 were completed including data from 185 unique laboratories on 514 incorrectly analyzed or failed cases. For the digital cases and immunohistochemistry, the majority of errors were interpretation-related. For fluorescence in situ hybridization, problems with the EQA materials were reported frequently. For variant analysis, the causes were mainly methodological for lung cancer but variable for colorectal cancer. Post-analytical (clerical and interpretation) errors were more likely detected after release of the EQA results compared to pre-analytical and analytical issues. Accredited laboratories encountered fewer reagent problems and more often responded to the survey. A recent change in test methodology resulted in method-related problems. Testing more samples annually introduced personnel errors and lead to a lower performance in future schemes. Participation to quality improvement projects is important to reduce deviating test results in laboratories, as the different error causes differently affect the test performance. EQA providers could benefit from requesting root cause analyses behind errors to offer even more tailored feedback, subschemes, and cases.
Collapse
|
8
|
Keppens C, Schuuring E, Dequeker EMC. Managing Deviating EQA Results: A Survey to Assess the Corrective and Preventive Actions of Medical Laboratories Testing for Oncological Biomarkers. Diagnostics (Basel) 2020; 10:E837. [PMID: 33080995 PMCID: PMC7603102 DOI: 10.3390/diagnostics10100837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Laboratories testing predictive biomarkers in lung and colorectal cancer are advised to participate in external quality assessment (EQA) schemes. This study aimed to investigate which corrective actions were taken by laboratories if predetermined performance criteria were not met, to ultimately improve current test practices. EQA participants from the European Society of Pathology between 2014 and 2018 for lung and colorectal cancer were contacted, if they had at least one analysis error or test failure in the provided cases, to complete a survey. For 72.4% of 514 deviating EQA results, an appropriate action was performed, most often including staff training (15.2%) and protocol revisions (14.6%). Main assigned persons were the molecular biologist (40.0%) and pathologist (46.5%). A change in test method or the use of complex techniques, such as next-generation sequencing, required more training and the involvement of dedicated personnel to reduce future test failures. The majority of participants adhered to ISO 15189 and implemented suitable actions by designated staff, not limited to accredited laboratories. However, for 27.6% of cases (by 20 laboratories) no corrective action was taken, especially for pre-analytic problems and complex techniques. The surveys were feasible to request information on results follow-up and further recommendations were provided.
Collapse
Affiliation(s)
- Cleo Keppens
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35d, 3000 Leuven, Belgium;
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands;
| | - Elisabeth MC Dequeker
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35d, 3000 Leuven, Belgium;
| |
Collapse
|
9
|
Gašperšič J, Videtič Paska A. Potential of modern circulating cell-free DNA diagnostic tools for detection of specific tumour cells in clinical practice. Biochem Med (Zagreb) 2020; 30:030504. [PMID: 32774122 PMCID: PMC7394254 DOI: 10.11613/bm.2020.030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
Personalized medicine is a developing field of medicine that has gained in importance in recent decades. New diagnostic tests based on the analysis of circulating cell-free DNA (cfDNA) were developed as a tool of diagnosing different cancer types. By detecting the subpopulation of mutated DNA from cancer cells, it is possible to detect the presence of a specific tumour in early stages of the disease. Mutation analysis is performed by quantitative polymerase chain reaction (qPCR) or the next generation sequencing (NGS), however, cfDNA protocols need to be modified carefully in preanalytical, analytical, and postanalytical stages. To further improve treatment of cancer the Food and Drug Administration approved more than 20 companion diagnostic tests that combine cancer drugs with highly efficient genetic diagnostic tools. Tools detect mutations in the DNA originating from cancer cells directly through the subpopulation of cfDNA, the circular tumour DNA (ctDNA) analysis or with visualization of cells through intracellular DNA probes. A large number of ctDNA tests in clinical studies demonstrate the importance of new findings in the field of cancer diagnosis. We describe the innovations in personalized medicine: techniques for detecting ctDNA and genomic DNA (gDNA) mutations approved Food and Drug Administration companion genetic diagnostics, candidate genes for assembling the cancer NGS panels, and a brief mention of the multitude of cfDNA currently in clinical trials. Additionally, an overview of the development steps of the diagnostic tools will refresh and expand the knowledge of clinics and geneticists for research opportunities beyond the development phases.
Collapse
Affiliation(s)
- Jernej Gašperšič
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Dufraing K, Fenizia F, Torlakovic E, Wolstenholme N, Deans ZC, Rouleau E, Vyberg M, Parry S, Schuuring E, Dequeker EMC. Biomarker testing in oncology - Requirements for organizing external quality assessment programs to improve the performance of laboratory testing: revision of an expert opinion paper on behalf of IQNPath ABSL. Virchows Arch 2020; 478:553-565. [PMID: 33047156 PMCID: PMC7550230 DOI: 10.1007/s00428-020-02928-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
In personalized medicine, predictive biomarker testing is the basis for an appropriate choice of therapy for patients with cancer. An important tool for laboratories to ensure accurate results is participation in external quality assurance (EQA) programs. Several providers offer predictive EQA programs for different cancer types, test methods, and sample types. In 2013, a guideline was published on the requirements for organizing high-quality EQA programs in molecular pathology. Now, after six years, steps were taken to further harmonize these EQA programs as an initiative by IQNPath ABSL, an umbrella organization founded by various EQA providers. This revision is based on current knowledge, adds recommendations for programs developed for predictive biomarkers by in situ methodologies (immunohistochemistry and in situ hybridization), and emphasized transparency and an evidence-based approach. In addition, this updated version also has the aim to give an overview of current practices from various EQA providers.
Collapse
Affiliation(s)
- K Dufraing
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok d, 3000, Leuven, Belgium
| | - F Fenizia
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - E Torlakovic
- Department of Pathology and Laboratory Medicine, Royal University Hospital, College of Medicine, University of Saskatchewan and Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
| | - N Wolstenholme
- European Molecular Quality Network (EMQN), Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, M13 9WL, UK
| | - Z C Deans
- UK NEQAS for Molecular Genetics, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, EH16 4SA, UK
| | - E Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, Villejuif, France
| | - M Vyberg
- NordiQC, Institute of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - S Parry
- UK NEQAS ICC & ISH, University College London Cancer Institute, London, UK
| | - E Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30001, 9700, RB, Groningen, The Netherlands
| | - Elisabeth M C Dequeker
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok d, 3000, Leuven, Belgium.
| |
Collapse
|