1
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Schmid MB, Demmer I, Floriani S, Born D, Jochum W. Real-World Performance of the EasyPGX ® Ready Epidermal Growth Factor Receptor Assay for Genomic Testing of Non-Small Cell Lung Cancer Samples. Biomedicines 2025; 13:814. [PMID: 40299437 PMCID: PMC12024863 DOI: 10.3390/biomedicines13040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Activating epidermal growth factor receptor (EGFR) variants is the most common targetable alteration in non-small cell lung cancer (NSCLC). Clinical decision-making requires fast and reliable detection of EGFR variants in early and advanced NSCLC, but limited available tissue necessitates tissue-sparing approaches and optimized sample management. The objective of this study was to assess the performance of the commercial EasyPGX® ready EGFR assay using real-world clinical NSCLC samples. Methods: A consecutive cohort of 804 non-squamous NSCLC samples was prospectively analyzed with the real-time quantitative polymerase chain reaction (RT-qPCR)-based EasyPGX® ready EGFR assay (Diatech Pharmacogenetics, Jesi, Ancona, Italy) and compared to next-generation sequencing (NGS) assays. Results: NGS revealed conclusive results in 99.7% samples, of which 11.1% had at least one EGFR variant. The most common variants were exon 19 deletions and p.L858R. The RT-qPCR-based assay identified EGFR variants with high accuracy (overall concordance rate 94.3%) over a broad range of clinical sample types, variant allele frequencies, tumor cell contents and deoxyribonucleic acid (DNA) input amounts. Conclusions: This study demonstrates that the EasyPGX® ready EGFR assay is a valid approach for the rapid detection of common EGFR variants in real-world clinical NSCLC samples with DNA inputs as low as 5 ng (less than the 15 ng recommended by the manufacturer), improving sample management in small specimens with limited quantity of nucleic acids.
Collapse
Affiliation(s)
- Michael Bento Schmid
- Institute of Pathology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland; (M.B.S.); (I.D.)
| | - Izadora Demmer
- Institute of Pathology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland; (M.B.S.); (I.D.)
| | - Sandra Floriani
- Institute of Pathology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland; (M.B.S.); (I.D.)
| | - Diana Born
- Institute of Pathology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland; (M.B.S.); (I.D.)
| | - Wolfram Jochum
- Institute of Pathology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland; (M.B.S.); (I.D.)
- University of Zurich (UZH), 8006 Zurich, Switzerland
| |
Collapse
|
3
|
Penault-Llorca F, Socinski MA. Emerging molecular testing paradigms in non-small cell lung cancer management-current perspectives and recommendations. Oncologist 2025; 30:oyae357. [PMID: 40126879 PMCID: PMC11966107 DOI: 10.1093/oncolo/oyae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/20/2024] [Indexed: 03/26/2025] Open
Abstract
Advances in molecular testing and precision oncology have transformed the clinical management of lung cancer, especially non-small cell lung cancer, enhancing diagnosis, treatment, and outcomes. Practical guidelines offer insights into selecting appropriate biomarkers and assays, emphasizing the importance of comprehensive testing. However, real-world data reveal the underutilization of biomarker testing and consequently targeted therapies. Molecular testing often occurs late in diagnosis or not at all in clinical practice, leading to delayed or inadequate treatment. Enhancing precision requires adherence to best practices by all health care professionals involved, which can ultimately improve lung cancer patient outcomes. The future of precision oncology for lung cancer will likely involve a more personalized approach, starting increasingly from earlier disease settings, with novel and more complex targeted therapies, immunotherapies, and combination regimens, and relying on liquid biopsies, muti-detection advanced genomic technologies and data integration, with artificial intelligence as a central orchestrator. This review presents the currently known actionable mutations in lung cancer and new upcoming ones that are likely to enter clinical practice soon and provides an overview of established and emerging concepts in testing methodologies. Challenges are discussed and best practice recommendations are made that are relevant today, will continue to be relevant in the future, and are likely to be relevant for other cancer types too.
Collapse
Affiliation(s)
- Frédérique Penault-Llorca
- Department of Pathology, Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont Ferrand F-63000, France
| | - Mark A Socinski
- Oncology and Hematology, AdventHealth Cancer Institute, Orlando, FL 32804, United States
| |
Collapse
|
4
|
Subramanian J, Gregg J, Berktas M, Li J, Leighl NB. EGFR testing practices, treatment choice and clinical outcomes in advanced NSCLC in a real-world setting: A retrospective analysis of a US-based electronic health records database. Lung Cancer 2025; 201:108412. [PMID: 39933217 DOI: 10.1016/j.lungcan.2025.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES Guidelines recommend epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small cell lung cancer (NSCLC) and initiation of first-line EGFR tyrosine kinase inhibitors (EGFR-TKIs) for EGFR mutation-positive (EGFRm) NSCLC. We analyzed a nationwide electronic health record-derived de-identified database to describe EGFR testing practices, treatment choice, and outcomes in patients from the United States (US) with advanced NSCLC. MATERIALS AND METHODS Adults diagnosed with stage IIIB-IV NSCLC January 2015-January 2020, who received first-line treatment from a network of ∼280 US cancer clinics were included. Demographics/characteristics, EGFR status, time from advanced diagnosis to EGFR test result, first-line treatment, time from treatment initiation to discontinuation/death (TTD), next treatment/death (TTNTD), and overall survival (OS) were extracted. RESULTS 12,577/16,309 (77 %) eligible patients had an EGFR test recorded; 1,914/12,577 (15 %) patients had EGFRm NSCLC. Of 1,778 patients with confirmed EGFRm NSCLC before first-line treatment, 75 % received first-line EGFR-TKIs, 11 % chemotherapy, 9 % immunotherapy, and 4 % other treatment. Of 136 patients with an EGFRm result after initiating first-line treatment, 13 % received EGFR-TKIs, 50 % chemotherapy, 19 % immunotherapy, and 18 % other treatment in first-line. Among patients with EGFRm NSCLC, median time from advanced diagnosis to EGFR test result was shorter in patients who received first-line EGFR-TKIs versus first-line chemotherapy/immunotherapy/other treatment. Patients treated with first-line EGFR-TKIs had significantly improved TTD/TTNTD versus those who received first-line chemotherapy/immunotherapy/other treatment (p < 0.001). OS was significantly longer in patients receiving treatment ≥21 versus <21 days after index (p < 0.001). CONCLUSIONS Nearly one-quarter of patients with advanced NSCLC in a US health network were not tested for EGFR mutations. Of patients who received a EGFRm result after initiating first-line treatment, 13 % received first-line EGFR-TKIs. These real-world data support the need to improve EGFR testing implementation and time to result to optimize first-line treatment for advanced NSCLC.
Collapse
Affiliation(s)
- Janakiraman Subramanian
- Saint Luke's Cancer Institute, Kansas City, MO, USA; Inova Schar Cancer Institute, Fairfax, VA, USA.
| | - Jeffrey Gregg
- Department of Pathology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| | - Mehmet Berktas
- Oncology Outcome Research, AstraZeneca, Cambridge, United Kingdom.
| | - Jingyi Li
- Global Medical Affairs, AstraZeneca, Gaithersburg, MD, USA.
| | | |
Collapse
|
5
|
Balbi M, Righi L, Culasso NC, Bignoli M, Senkeev R, Garello LF, Carota D, Sobrero S, Novello S, Veltri A. CT-guided transthoracic needle biopsy: How we do it. Eur J Radiol 2025; 184:111994. [PMID: 39955836 DOI: 10.1016/j.ejrad.2025.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
CT-guided transthoracic needle biopsy is a well-established method for diagnosing pulmonary lesions. However, despite extensive literature on the subject, many aspects of the procedure remain unexamined in large controlled trials. Consequently, practices vary across centers due to differences in local facilities, operators' preferences, and experience. This article summarizes the essential steps of CT-guided transthoracic needle biopsy, covering patient selection to technical tips and tricks, complication management, and rapid onsite cytology evaluation. The techniques described here are based on years of clinical practice, research findings, and close collaboration with colleagues from various specialties, aiming to maximize tissue retrieval while minimizing complications. Moreover, given the growing importance of molecular analyses in the diagnosis and management of lung cancer, this article provides a concise and practical guide on proper biopsy specimen handling.
Collapse
Affiliation(s)
- Maurizio Balbi
- Radiology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy.
| | - Luisella Righi
- Pathology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Noemi Cristina Culasso
- Radiology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Marta Bignoli
- Radiology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Rouslan Senkeev
- Radiology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Ludwig Federico Garello
- Radiology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Damiano Carota
- Pathology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Simona Sobrero
- Thoracic Surgery Unit, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Silvia Novello
- Oncology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Andrea Veltri
- Radiology Unit, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| |
Collapse
|
6
|
Malapelle U, Chen C, de Álava E, Hofman P, Kazdal D, Kim T, Lim TKH, Ryška A, Saetta AA, Schuuring E, Troncone G, Biscuola M, Chen Y, Tan GS, Marquette CH, Michelli M, ter Elst A, Vošmiková H, Kapp J, Gonzalez‐McQuire S, Giannopoulou A, Franzini JM, Aramburu VLR, Baggi A, Stenzinger A. Costs of biomarker testing in advanced non-small cell lung cancer: a global study comparing next-generation sequencing and single-gene testing. J Pathol Clin Res 2025; 11:e70018. [PMID: 40052485 PMCID: PMC11886603 DOI: 10.1002/2056-4538.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 03/10/2025]
Abstract
Current European/US guidelines recommend that molecular testing in advanced non-small cell lung cancer (aNSCLC) be performed using next-generation sequencing (NGS). However, the global uptake of NGS is limited, largely owing to reimbursement constraints. We compared real-world costs of NGS and single-gene testing (SGT) in nonsquamous aNSCLC. This observational study was conducted across 10 pathology centers in 10 different countries worldwide. Biomarker data collected via structured questionnaires (1 January-31 December 2021) were used to feed micro-costing analyses for three scenarios ['Starting Point' (SP; 2021-2022), 'Current Practice' (CP; 2023-2024), and 'Future Horizons' (FH; 2025-2028)] in both a real-world model, comprising all biomarkers tested by each center, and a standardized model, comprising the same sets of biomarkers across centers. Testing costs (including retesting) encompassed personnel costs, consumables, equipment, and overheads. Overall, 4,491 patients with aNSCLC were evaluated. Mean per-patient costs decreased for NGS relative to SGT over time, with real-world model costs 18% lower for NGS than for SGT in the SP scenario, and 26% lower for NGS than for SGT in the CP scenario. Mean per-biomarker costs also decreased over time for NGS relative to SGT. In the standardized model, the tipping point for the minimum number of biomarkers required for NGS to result in cost savings (per patient) was 10 and 12 in the SP and CP scenarios, respectively. Retesting had a negligible impact on cost analyses, and results were robust to variation in cost parameters. This study provides robust real-world global evidence for cost savings with NGS-based panels over SGT to evaluate predictive biomarkers in nonsquamous aNSCLC when the number of biomarkers to be tested exceeds 10. Widespread adoption of NGS may enable more efficient use of limited healthcare resources.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public HealthUniversity of Naples Federico IINaplesItaly
| | - Chien‐Chin Chen
- Department of PathologyDitmanson Medical Foundation Chia‐Yi Christian HospitalChia‐YiTaiwan
| | - Enrique de Álava
- Virgen del Rocio University Hospital, Institute of Biomedicine of Sevilla (IBiS), CSICUniversity of Sevilla, CIBERONCSevilleSpain
- Department of Normal and Pathological Cytology and Histology, School of MedicineUniversity of SevilleSevilleSpain
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, FHU OncoAge, Biobank 0033‐00025University Côte d'AzurNiceFrance
| | - Daniel Kazdal
- Institute of PathologyUniversity Hospital Heidelberg, Center for Personalized Medicine (ZPM)HeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC‐H)Member of the German Center for Lung Research (DZL)HeidelbergGermany
| | - Tae‐Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | | | - Aleš Ryška
- The Fingerland Department of PathologyCharles University Faculty of Medicine and University HospitalHradec KrálovéCzech Republic
| | - Angelica A Saetta
- Molecular Diagnostic Unit, First Department of Pathology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ed Schuuring
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | | | - Michele Biscuola
- Virgen del Rocio University Hospital, Institute of Biomedicine of Sevilla (IBiS), CSICUniversity of Sevilla, CIBERONCSevilleSpain
| | - Yi‐Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Gek San Tan
- Division of PathologySingapore General HospitalSingapore
| | - Charles Hugo Marquette
- Department of Thoracic OncologyUniversity Cote d'Azur, CHU de Nice, IHU RespirERANiceFrance
| | - Maria Michelli
- Molecular Diagnostic Unit, First Department of Pathology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Arja ter Elst
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Hana Vošmiková
- The Fingerland Department of PathologyCharles University Faculty of Medicine and University HospitalHradec KrálovéCzech Republic
| | | | | | | | | | | | - Anna Baggi
- Life Sciences DivisionBIP ConsultingMilanItaly
| | - Albrecht Stenzinger
- Institute of PathologyUniversity Hospital Heidelberg, Center for Personalized Medicine (ZPM)HeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC‐H)Member of the German Center for Lung Research (DZL)HeidelbergGermany
| |
Collapse
|
7
|
Malhotra J, Kim ES. How to Keep Up With Molecular Testing and Targeted Therapies in Lung Cancer. JCO Oncol Pract 2024; 20:1471-1480. [PMID: 39531842 DOI: 10.1200/op.24.00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
Until the early 2000s, advanced or metastatic non-small cell lung cancer (NSCLC) was treated as a single disease with all histologic subtypes treated alike with standard chemotherapy agents. Over the past two decades, the treatment paradigms for advanced NSCLC have changed dramatically with the discovery of multiple targeted therapies that are now approved for the treatment of NSCLC tumors with specific oncogene drivers or molecular alterations. Molecular testing has become integrated and critical for the clinical management of advanced NSCLC. The discovery and success of these targeted therapies have reshaped the classification of NSCLC on the basis of molecular classification and enabled a personalized approach in thoracic oncology. In this review, we discuss recent developments in the molecular profiling of NSCLC, and approved and emerging targeted therapies for the treatment of NSCLC.
Collapse
Affiliation(s)
| | - Edward S Kim
- City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
8
|
Pisapia P, Iaccarino A, De Luca C, Pepe F, Russo G, Nacchio M, Ambrosio F, Bianco R, Campione S, Caputo A, Carotenuto P, D'Antonio A, D'Armiento M, Damiano V, Daniele B, De Chiara G, De Felice M, Della Gravara L, Fabozzi T, Feliciano S, Gridelli C, Guadagno E, Ilardi G, Leopardo D, Libroia A, Maione P, Morgillo F, Orefice J, Panico L, Rocco D, Servetto A, Varricchio S, Zeppa P, Vigliar E, Bellevicine C, Troncone G, Malapelle U. RNA-Based Next-Generation Sequencing in Non-Small Cell Lung Cancer patients: data from Campania, Italy. Pathologica 2024; 116:310-319. [PMID: 39748713 DOI: 10.32074/1591-951x-1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/29/2024] [Indexed: 01/04/2025] Open
Abstract
Objective ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations represent fundamental predictive biomarkers for advanced non-small cell lung cancer (NSCLC) patients to ensure the best treatment choice. In this scenario, RNA-based NGS approach has emerged as an extremely useful tool for detecting these alterations. In this study, we report our NGS molecular records on ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations detected by using a narrow RNA-based NGS panel, namely SiRe fusion. Methods We retrospectively reviewed data on 201 advanced stage NSCLC patients who were referred to our laboratory for RNA-based molecular evaluation of ALK, ROS1, RET, NTRK gene rearrangements as well as MET exon 14 skipping. Results Overall, 23 (11.4%) positive cases were retrieved. Regarding molecular assessment, 11 (5.5%), 2 (1.0%), 9 (4.5%), and 1 (0.5%) out of 201 harbored an ALK, ROS1, RET gene rearrangement, or MET exon 14 skipping, respectively. Conclusions In this study, we provide real-world experience on RNA-based NGS analysis in patients with advanced stage NSCLC.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesca Ambrosio
- Oncology Unit, A.O.R.N. Cardarelli, Hospital Antonio Cardarelli, Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Severo Campione
- Pathology Unit, A.O.R.N. Cardarelli, Hospital Antonio Cardarelli, Naples, Italy
| | - Alessandro Caputo
- Department of Pathology, University Hospital of Salerno, Salerno, Italy
| | - Pietro Carotenuto
- Department of Translational Medical Science, Medical Genetics, University of Naples Federico II, Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Maria D'Armiento
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Vincenzo Damiano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | | | - Marco De Felice
- Medical Oncology Unit, Ospedale Ave Gratia Plena, Piedimonte Matese, Caserta, Italy
| | - Luigi Della Gravara
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Salvatore Feliciano
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, ASL Caserta, Caserta, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, "S.G. Moscati" Hospital, Avellino, Italy
| | - Elia Guadagno
- Pathology Unit, A.O.R.N. Cardarelli, Hospital Antonio Cardarelli, Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Davide Leopardo
- Department of Oncology, A.O.R.N. Sant'Anna e San Sebastiano, Caserta, Italy
| | - Annamaria Libroia
- Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, Pagani, Italy
| | - Paolo Maione
- Division of Medical Oncology, "S.G. Moscati" Hospital, Avellino, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Luigi Panico
- Department of Pathology, A.O.R.N. dei Colli Monaldi, Naples, Italy
| | - Danilo Rocco
- Department of Pulmonary Oncology, A.O.R.N. dei Colli Monaldi, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Pio Zeppa
- Department of Pathology, University Hospital of Salerno, Salerno, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
La Salvia A, Meyer ML, Hirsch FR, Kerr KM, Landi L, Tsao MS, Cappuzzo F. Rediscovering immunohistochemistry in lung cancer. Crit Rev Oncol Hematol 2024; 200:104401. [PMID: 38815876 DOI: 10.1016/j.critrevonc.2024.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Several observations indicate that protein expression analysis by immunohistochemistry (IHC) remains relevant in individuals with non-small-cell lung cancer (NSCLC) when considering targeted therapy, as an early step in diagnosis and for therapy selection. Since the advent of next-generation sequencing (NGS), the role of IHC in testing for NSCLC biomarkers has been forgotten or ignored. We discuss how protein-level investigations maintain a critical role in defining sensitivity to lung cancer therapies in oncogene- and non-oncogene-addicted cases and in patients eligible for immunotherapy, suggesting that IHC testing should be reconsidered in clinical practice. We also argue how a panel of IHC tests should be considered complementary to NGS and other genomic assays. This is relevant to current clinical diagnostic practice but with potential future roles to optimize the selection of patients for innovative therapies. At the same time, strict validation of antibodies, assays, scoring systems, and intra- and interobserver reproducibility is needed.
Collapse
Affiliation(s)
- Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome 00161, Italy
| | - May-Lucie Meyer
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Kerr
- Aberdeen University School of Medicine & Aberdeen Royal Infirmary, Aberdeen, UK
| | - Lorenza Landi
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy
| | - Ming-Sound Tsao
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Federico Cappuzzo
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy.
| |
Collapse
|
10
|
Malapelle U, Leighl N, Addeo A, Hershkovitz D, Hochmair MJ, Khorshid O, Länger F, de Marinis F, Peled N, Sheffield BS, Smit EF, Viteri S, Wolf J, Venturini F, O'Hara RM, Rolfo C. Recommendations for reporting tissue and circulating tumour (ct)DNA next-generation sequencing results in non-small cell lung cancer. Br J Cancer 2024; 131:212-219. [PMID: 38750115 PMCID: PMC11263606 DOI: 10.1038/s41416-024-02709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 07/24/2024] Open
Abstract
Non-small cell lung cancer is a heterogeneous disease and molecular characterisation plays an important role in its clinical management. Next-generation sequencing-based panel testing enables many molecular alterations to be interrogated simultaneously, allowing for comprehensive identification of actionable oncogenic drivers (and co-mutations) and appropriate matching of patients with targeted therapies. Despite consensus in international guidelines on the importance of broad molecular profiling, adoption of next-generation sequencing varies globally. One of the barriers to its successful implementation is a lack of accepted standards and guidelines specifically for the reporting and clinical annotation of next-generation sequencing results. Based on roundtable discussions between pathologists and oncologists, we provide best practice recommendations for the reporting of next-generation sequencing results in non-small cell lung cancer to facilitate its use and enable easy interpretation for physicians. These are intended to complement existing guidelines related to the use of next-generation sequencing (solid and liquid). Here, we discuss next-generation sequencing workflows, the structure of next-generation sequencing reports, and our recommendations for best practice thereof. The aim of these recommendations and considerations is ultimately to ensure that reports are fully interpretable, and that the most appropriate treatment options are selected based on robust molecular profiles in well-defined reports.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Natasha Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alfredo Addeo
- Oncology Unit, Geneva University Hospital, Geneva, Switzerland
| | | | - Maximilian J Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Ola Khorshid
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Nir Peled
- Helmesely Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Brandon S Sheffield
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON, Canada
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Santiago Viteri
- UOMI Cancer Center, Clínica Mi Tres Torres, Barcelona, Spain
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Center for Integrated Oncology, University Hospital of Cologne, Cologne, Germany
| | | | | | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Ilié M, Goffinet S, Rignol G, Lespinet-Fabre V, Lalvée S, Bordone O, Zahaf K, Bonnetaud C, Washetine K, Lassalle S, Long-Mira E, Heeke S, Hofman V, Hofman P. Shifting from Immunohistochemistry to Screen for ALK Rearrangements: Real-World Experience in a Large Single-Center Cohort of Patients with Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:2219. [PMID: 38927925 PMCID: PMC11201761 DOI: 10.3390/cancers16122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The identification of ALK fusions in advanced non-small-cell lung carcinoma (aNSCLC) is mandatory for targeted therapy. The current diagnostic approach employs an algorithm using ALK immunohistochemistry (IHC) screening, followed by confirmation through ALK FISH and/or next-generation sequencing (NGS). Challenges arise due to the infrequency of ALK fusions (3-7% of aNSCLC), the suboptimal specificity of ALK IHC and ALK FISH, and the growing molecular demands placed on small tissue samples, leading to interpretative, tissue availability, and time-related issues. This study investigates the effectiveness of RNA NGS as a reflex test for identifying ALK fusions in NSCLC, with the goal of replacing ALK IHC in the systematic screening process. The evaluation included 1246 NSCLC cases using paired techniques: ALK IHC, ALK FISH, and ALK NGS. ALK IHC identified 51 positive cases (4%), while RNA NGS detected ALK alterations in 59 cases (4.8%). Of the 59 ALK-positive cases identified via NGS, 53 (89.8%) were confirmed to be positive. This included 51 cases detected via both FISH and IHC, and 2 cases detected only via FISH, as they were completely negative according to IHC. The combined reporting time for ALK IHC and ALK FISH averaged 13 days, whereas ALK IHC and RNA NGS reports were obtained in an average of 4 days. These results emphasize the advantage of replacing systematic ALK IHC screening with RNA NGS reflex testing for a more comprehensive and accurate assessment of ALK status.
Collapse
Affiliation(s)
- Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Samantha Goffinet
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Guylène Rignol
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Salomé Lalvée
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Olivier Bordone
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Kevin Washetine
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| |
Collapse
|
12
|
Borczuk AC. Molecular Testing in Lung Cancer: Recommendations and Update. Surg Pathol Clin 2024; 17:307-320. [PMID: 38692813 DOI: 10.1016/j.path.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Adoption of molecular testing in lung cancer is increasing. Molecular testing for staging and prediction of response for targeted therapy remain the main indications, and although utilization of blood-based testing for tumor is growing, the use of the diagnostic cytology and tissue specimens is equally important. The pathologist needs to optimize reflex testing, incorporate stage-based algorithms, and understand types of tests for timely and complete assessment in the majority of cases. When tissue is limited, testing should capture the most frequent alterations to maximize the yield of what are largely mutually exclusive alterations, avoiding the need for repeat biopsy.
Collapse
Affiliation(s)
- Alain C Borczuk
- Anatomic Pathology, Northwell Health, 2200 Northern Boulevard Suite 104, Greenvale, NY 11548, USA.
| |
Collapse
|
13
|
Zameer U, Shaikh W, Khan AM. A Paradigm Shift in Non-Small-Cell Lung Cancer (NSCLC) Diagnostics: From Single Gene Tests to Comprehensive Genomic Profiling. Cancer Inform 2024; 23:11769351241243243. [PMID: 38586547 PMCID: PMC10998481 DOI: 10.1177/11769351241243243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Lung cancer imposes a burden on the health care system worldwide affecting 2 million people and causing 1.8 million deaths in 2021.More than 85% of all lung cancer cases are reported under Non-small-cell lung cancer (NSCLC). It is critical to discover gene alterations to treat non-small cell lung cancer successfully. The CAP/IASLC/AMP recommendations supported use of polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) EGFR (epidermal growth factor receptor) mutations and ALK (Anaplastic lymphoma kinase) rearrangements, respectively. A study presented in the annual meeting of the American Society of Clinical Oncology (ASCO) in Chicago emphasized the need for comprehensive genomic profiling (CGP) before single gene tests (SGTs) since it demonstrated that SGT can result in the depletion of precious biopsy samples. As a result, the efficacy of thorough genetic Profiling (CGP) is reduced, preventing patients from receiving valuable genetic information about their tumors.
Collapse
Affiliation(s)
- Ushna Zameer
- Karachi Medical and Dental College, Karachi, Pakistan
| | - Wajiha Shaikh
- Karachi Medical and Dental College, Karachi, Pakistan
| | | |
Collapse
|
14
|
Hofman P, Berezowska S, Kazdal D, Mograbi B, Ilié M, Stenzinger A, Hofman V. Current challenges and practical aspects of molecular pathology for non-small cell lung cancers. Virchows Arch 2024; 484:233-246. [PMID: 37801103 PMCID: PMC10948551 DOI: 10.1007/s00428-023-03651-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The continuing evolution of treatment options in thoracic oncology requires the pathologist to regularly update diagnostic algorithms for management of tumor samples. It is essential to decide on the best way to use tissue biopsies, cytological samples, as well as liquid biopsies to identify the different mandatory predictive biomarkers of lung cancers in a short turnaround time. However, biological resources and laboratory member workforce are limited and may be not sufficient for the increased complexity of molecular pathological analyses and for complementary translational research development. In this context, the surgical pathologist is the only one who makes the decisions whether or not to send specimens to immunohistochemical and molecular pathology platforms. Moreover, the pathologist can rapidly contact the oncologist to obtain a new tissue biopsy and/or a liquid biopsy if he/she considers that the biological material is not sufficient in quantity or quality for assessment of predictive biomarkers. Inadequate control of algorithms and sampling workflow may lead to false negative, inconclusive, and incomplete findings, resulting in inappropriate choice of therapeutic strategy and potentially poor outcome for patients. International guidelines for lung cancer treatment are based on the results of the expression of different proteins and on genomic alterations. These guidelines have been established taking into consideration the best practices to be set up in clinical and molecular pathology laboratories. This review addresses the current predictive biomarkers and algorithms for use in thoracic oncology molecular pathology as well as the central role of the pathologist, notably in the molecular tumor board and her/his participation in the treatment decision-making. The perspectives in this setting will be discussed.
Collapse
Affiliation(s)
- Paul Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France.
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France.
| | - Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Baharia Mograbi
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Marius Ilié
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Véronique Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| |
Collapse
|
15
|
Hochmair MJ, Unk M, Spasic J, Cerić T, Konsoulova A, Dediu M, Bogos K, Hegmane A, Oselin K, Stojiljkovic M, Roblek T, Jakopovic M. Unmet needs in EGFR exon 20 insertion mutations in Central and Eastern Europe: reimbursement, diagnostic procedures, and treatment availability. BMC Proc 2024; 18:2. [PMID: 38233854 PMCID: PMC10795200 DOI: 10.1186/s12919-023-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths in Europe, with non-small cell lung cancer (NSCLC) accounting for approximately 85% of cases. NSCLC is a heterogeneous disease encompassing various oncogenic alterations. Among them, EGFR exon 20 insertion mutations, constituting 0.3-2.2% of NSCLC cases, rank as the third most common EGFR alteration after exon 19 deletions and the L858R point mutation in exon 21, also known as "typical" EGFR alterations. Recent advancements in understanding the molecular pathogenesis of NSCLC have led to significant breakthroughs in targeted therapies, revolutionizing treatment options for patients with specific genetic alterations.This article presents the outcomes of a Virtual Meeting conducted on the online platform (provided Within3©) from September 19 to October 30, 2022. The meeting focused on addressing the challenges in the diagnosis and treatment of NSCLC patients with EGFR exon 20 insertion mutations. The participants consisted of healthcare professionals from ten Central and Eastern European countries who shared their experiences and opinions on various aspects, including epidemiology, treatment options, and diagnostic approaches employed in their respective healthcare institutions. The discussions were facilitated through open-ended and multiple-choice questions.The primary objective of this article is to provide an overview of the identified challenges associated with the diagnosis and treatment of this heterogeneous disease, based on the assessments of the meeting participants. Among the major emerging challenges discussed, the reimbursement issues concerning next-generation sequencing (NGS), a recommended method in NSCLC molecular diagnosis, and the availability of approved targeted treatments to enhance patient outcomes were of paramount importance. Furthermore, fostering community awareness of lung cancer and promoting harmonized lung cancer care were identified as areas deserving greater attention. Notably, the rapidly evolving treatment landscape, particularly with NGS for NSCLC patients with genomic alterations like EGFR, ALK, RET, MET, NTRK, and ROS1, necessitates prioritizing the development of new drugs, even for the relatively smaller subgroup with exon 20 insertion mutations.
Collapse
Affiliation(s)
- Maximilian J Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Mojca Unk
- Institute of Oncology Ljubljana, Zaloška Cesta 2, Ljubljana, Slovenia
| | - Jelena Spasic
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | - Timur Cerić
- University Clinical Center Sarajevo, Bolnička 25, Sarajevo, Bosnia and Herzegovina
| | - Assia Konsoulova
- National Oncology Hospital, "Plovdivsko Pole" 6, Sofia, 1756, Bulgaria
| | - Mircea Dediu
- Sanador Oncology Center Bucharest, Strada Sevastopol 5, Bucharest, Romania
| | - Krisztina Bogos
- National Koranyi Institute for Pulmonology, Korányi Frigyes út 1, Budapest, Hungary
| | - Alinta Hegmane
- Riga East University Hospital, Oncology Center of Latvia, Hipokrāta iela 4, Rīga, Latvia
| | - Kersti Oselin
- North Estonia Medical Centre, J. Sütiste tee 19, Tallinn, Estonia
| | | | - Tina Roblek
- Takeda Pharmaceuticals d.o.o., Bleiweisova cesta 30, Ljubljana, Slovenia
| | - Marko Jakopovic
- Zagreb Medical School, University Clinical Hospital Center Zagreb, Jordanovac 104, Zagreb, Croatia.
| |
Collapse
|
16
|
Malapelle U, Donne AD, Pagni F, Fraggetta F, Rocco EG, Pasello G, Perrone G, Pepe F, Vatrano S, Pignata S, Pinto C, Pruneri G, Russo A, Soto Parra HJ, Vallone S, Marchetti A, Troncone G, Novello S. Standardized and simplified reporting of next-generation sequencing results in advanced non-small-cell lung cancer: Practical indications from an Italian multidisciplinary group. Crit Rev Oncol Hematol 2024; 193:104217. [PMID: 38040072 DOI: 10.1016/j.critrevonc.2023.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Molecular biomarker testing is increasingly becoming standard of care for advanced non-small cell lung cancer (NSCLC). Tissue and liquid biopsy-based next-generation sequencing (NGS) is now highly recommended and has become an integral part of the routine management of advanced NSCLC patients. This highly sensitive approach can simultaneously and efficiently detect multiple biomarkers even in scant samples. However full optimization of NGS in clinical practice requires accurate reporting and interpretation of NGS findings. Indeed, as the number of NSCLC biomarkers continues to grow, clinical reporting of NGS data is becoming increasingly complex. In this scenario, achieving standardization, simplification, and improved readability of NGS reports is key to ensuring timely and appropriate treatment decisions. In an effort to address the complexity and lengthy reporting of NGS mutation results, an Italian group of 14 healthcare professionals involved in NSCLC management convened in 2023 to address the content, structure, and ease-of-use of NGS reporting practices and proposed a standard report template for clinical use This article presents the key discussion points addressed by the Italian working group and describes the essential elements of the report template.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | | | - Fabio Pagni
- Pathology Unit, University Bicocca of Milan, Italy
| | - Filippo Fraggetta
- Pathology Unit, Gravina Hospital Caltagirone, ASP Catania, Caltagirone, Italy
| | - Elena Guerini Rocco
- Anatomia Patologica, Istituto Europeo Oncologia, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giulia Pasello
- Dipartimento di Scienze Chirurgiche, Oncologichee Gastroenterologiche (DiSCOG) dell'Università di Padova, Oncologia 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giuseppe Perrone
- Research Unit of Anatomical Pathology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Simona Vatrano
- Pathology Unit, Gravina Hospital Caltagirone, ASP Catania, Caltagirone, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale Napoli, Italy
| | - Carmine Pinto
- Medical Oncology, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giancarlo Pruneri
- Dipartimento di Diagnostica Avanzata, Fondazione IRCCS Istituto Tumori di Milano; Università degli Studi di Milano, Italy
| | - Antonio Russo
- Oncologia Medica, Università degli studi di Palermo, AOUP "Paolo Giaccone", Palermo, Italy
| | | | | | - Antonio Marchetti
- Unit of Diagnostic Molecular Oncology, Center for Advanced Studies and Technology, University of Chieti, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, Orbassano, TO, Italy.
| |
Collapse
|
17
|
Isla D, Álvarez R, Arnal M, Arriola E, Azkarate A, Azkona E, García-Campelo R, Garrido P, Nadal E, Ortega AL, Carcedo D, Crespo M, Lavara J, Córcoles F, Bernabé R. Detection of genomic alterations in liquid biopsies from patients with non-small cell lung cancer using FoundationOne Liquid CDx: a cost-effectiveness analysis. J Med Econ 2024; 27:1379-1387. [PMID: 39387325 DOI: 10.1080/13696998.2024.2413289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Liquid biopsy (LB) is a non-invasive technique to detect genetic alterations by next-generation sequencing (NGS) when tissue biopsy is not available. This study aims to estimate in the Spanish setting, the cost-effectiveness of using FoundationOne Liquid CDx (F1L CDx), a novel blood-derived LB test based on NGS, versus non-molecular diagnosis (non-mDx) in patients with advanced non-small cell lung cancer (NSCLC) in whom tissue sampling is not feasible. METHODS A joint model was developed combining a decision-tree with partitioned survival models to calculate the costs and health outcomes over a lifetime horizon, comparing F1L CDx in LB versus non-mDx. Only direct costs (expressed in € of 2023) were included and a 3% discount rate for future costs and effects was considered. Health outcomes were expressed in Life Years (LYs) and Quality-Adjusted Life Years (QALYs). Utilities and treatment efficacy were obtained from the literature. An expert panel of 11 Spanish oncologists determined the treatment allocation and validated all model inputs and assumptions. Several sensitivity analyses were performed to assess the robustness of the results. RESULTS In a hypothetical cohort of 1,000 patients, LB using F1L CDx would detect 386 alterations, so those patients could be treated with targeted therapies or enrolled in clinical trials. Cost-effectiveness results showed that F1L CDx provides greater effectiveness than non-mDx (+383.95 LYs and +305.94 QALYs), with an additional cost of €2,898,308. The incremental cost-utility ratio was €9,473/QALY gained. The probabilistic sensitivity analysis confirmed the robustness of the cost-effectiveness results. LIMITATIONS Various limitations inherent to cost-effectiveness analyses were described. CONCLUSION LB with F1L CDx test is a cost-effective strategy in Spain for patients with advanced NSCLC without tissue sample available for molecular diagnosis, improving the personalized treatment of these patients.
Collapse
Affiliation(s)
- Dolores Isla
- Hospital Clínico Universitario Lozano Blesa, IIS Aragón, Zaragoza, Spain
| | - Rosa Álvarez
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Arnal
- Hospital Provincial de Castellón, Castellón, Spain
| | | | - Aitor Azkarate
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Eider Azkona
- Hospital Universitario de Cruces, Baracaldo, Spain
| | | | | | - Ernest Nadal
- Institut Català d'Oncologia, L'Hospitalet De Llobregat, Spain
| | | | | | | | | | | | - Reyes Bernabé
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
18
|
Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis. Crit Rev Clin Lab Sci 2023; 60:573-594. [PMID: 37518938 DOI: 10.1080/10408363.2023.2230290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Over the last decade, great advancements have been made in the field of liquid biopsy through extensive research and the development of new technologies that facilitate the use of liquid biopsy for cancer patients. This is shown by the numerous liquid biopsy tests that gained clearance by the US Food and Drug Administration (FDA) in recent years. Liquid biopsy has significantly altered cancer treatment by providing clinicians with powerful and immediate information about therapeutic decisions. However, the clinical integration of liquid biopsy is still challenging and there are many critical factors to consider prior to its implementation into routine clinical practice. Lack of standardization due to technical challenges and the definition of the clinical utility of specific assays further complicates the establishment of Standard Operating Procedures (SOPs) in liquid biopsy. Harmonization of laboratories to established guidelines is of major importance to overcome inter-lab variabilities observed. Quality control assessment in diagnostic laboratories that offer liquid biopsy testing will ensure that clinicians can base their therapeutic decisions on robust results. The regular participation of laboratories in external quality assessment schemes for liquid biopsy testing aims to promptly pinpoint deficiencies and efficiently educate laboratories to improve their quality of services. Accreditation of liquid biopsy diagnostic laboratories based on the ISO15189 standard in Europe or by CLIA/CAP accreditation procedures in the US is the best way to achieve the adaptation of liquid biopsy into the clinical setting by assuring reliable results for the clinicians and their cancer patients. Nowadays, various organizations from academia, industry, and regulatory agencies collaborate to set a framework that will include all procedures from the pre-analytical phase and the analytical process to the final interpretation of results. In this review, we underline several challenges in the analysis of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) concerning standardization of protocols, quality control assessment, harmonization of laboratories, and compliance to specific guidelines that need to be thoroughly considered before liquid biopsy enters the clinic.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Hofman P, Calabrese F, Kern I, Adam J, Alarcão A, Alborelli I, Anton NT, Arndt A, Avdalyan A, Barberis M, Bégueret H, Bisig B, Blons H, Boström P, Brcic L, Bubanovic G, Buisson A, Caliò A, Cannone M, Carvalho L, Caumont C, Cayre A, Chalabreysse L, Chenard MP, Conde E, Copin MC, Côté JF, D'Haene N, Dai HY, de Leval L, Delongova P, Denčić-Fekete M, Fabre A, Ferenc F, Forest F, de Fraipont F, Garcia-Martos M, Gauchotte G, Geraghty R, Guerin E, Guerrero D, Hernandez S, Hurník P, Jean-Jacques B, Kashofer K, Kazdal D, Lantuejoul S, Leonce C, Lupo A, Malapelle U, Matej R, Merlin JL, Mertz KD, Morel A, Mutka A, Normanno N, Ovidiu P, Panizo A, Papotti MG, Parobkova E, Pasello G, Pauwels P, Pelosi G, Penault-Llorca F, Picot T, Piton N, Pittaro A, Planchard G, Poté N, Radonic T, Rapa I, Rappa A, Roma C, Rot M, Sabourin JC, Salmon I, Prince SS, Scarpa A, Schuuring E, Serre I, Siozopoulou V, Sizaret D, Smojver-Ježek S, Solassol J, Steinestel K, Stojšić J, Syrykh C, Timofeev S, Troncone G, Uguen A, Valmary-Degano S, Vigier A, Volante M, Wahl SGF, Stenzinger A, Ilié M. Real-world EGFR testing practices for non-small-cell lung cancer by thoracic pathology laboratories across Europe. ESMO Open 2023; 8:101628. [PMID: 37713929 PMCID: PMC10594022 DOI: 10.1016/j.esmoop.2023.101628] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 08/02/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Testing for epidermal growth factor receptor (EGFR) mutations is an essential recommendation in guidelines for metastatic non-squamous non-small-cell lung cancer, and is considered mandatory in European countries. However, in practice, challenges are often faced when carrying out routine biomarker testing, including access to testing, inadequate tissue samples and long turnaround times (TATs). MATERIALS AND METHODS To evaluate the real-world EGFR testing practices of European pathology laboratories, an online survey was set up and validated by the Pulmonary Pathology Working Group of the European Society of Pathology and distributed to 64 expert testing laboratories. The retrospective survey focussed on laboratory organisation and daily EGFR testing practice of pathologists and molecular biologists between 2018 and 2021. RESULTS TATs varied greatly both between and within countries. These discrepancies may be partly due to reflex testing practices, as 20.8% of laboratories carried out EGFR testing only at the request of the clinician. Many laboratories across Europe still favour single-test sequencing as a primary method of EGFR mutation identification; 32.7% indicated that they only used targeted techniques and 45.1% used single-gene testing followed by next-generation sequencing (NGS), depending on the case. Reported testing rates were consistent over time with no significant decrease in the number of EGFR tests carried out in 2020, despite the increased pressure faced by testing facilities during the COVID-19 pandemic. ISO 15189 accreditation was reported by 42.0% of molecular biology laboratories for single-test sequencing, and by 42.3% for NGS. 92.5% of laboratories indicated they regularly participate in an external quality assessment scheme. CONCLUSIONS These results highlight the strong heterogeneity of EGFR testing that still occurs within thoracic pathology and molecular biology laboratories across Europe. Even among expert testing facilities there is variability in testing capabilities, TAT, reflex testing practice and laboratory accreditation, stressing the need to harmonise reimbursement technologies and decision-making algorithms in Europe.
Collapse
Affiliation(s)
- P Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Biobank Côte d'Azur BB-0033-00025, Louis Pasteur Hospital, IRCAN, Université Côte d'Azur, Nice, France.
| | - F Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - I Kern
- Department of Pathology, University Clinic Golnik, Golnik, Slovenia
| | - J Adam
- Department of Pathology, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - A Alarcão
- IAP-PM, Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - I Alborelli
- Department of Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - N T Anton
- Department of Genetics, University Hospital Bichat-Claude Bernard, Paris University, Paris, France
| | - A Arndt
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - A Avdalyan
- Multidisciplinary Clinical Center "Kommunarka" of the Moscow Health Department, Moscow, Russia
| | - M Barberis
- Oncogenomics Unit, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - H Bégueret
- Department of Pathology, University Hospital of Bordeaux, Hôpital Haut-Lévêque, Pessac, France
| | - B Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - H Blons
- Pharmacogenomics and Molecular Oncology Unit, Biochemistry Department, Assistance Publique-Hopitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - P Boström
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - L Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - G Bubanovic
- Laboratory for Molecular Pathology, Department of Pathology, University of Zagreb School of Medicine and University Hospital Centre Zagreb, Zagreb, Croatia
| | - A Buisson
- Department of Biopathology, Centre Léon Bérard, Lyon, France
| | - A Caliò
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - M Cannone
- Inter-Hospital Pathology Division, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - L Carvalho
- IAP-PM, Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - C Caumont
- Department of Tumor Biology, University Hospital of Bordeaux, Hospital Haut-Lévêque, Pessac, France
| | - A Cayre
- Department of Biopathology, Jean Perrin Centre, Clermont-Ferrand, France
| | - L Chalabreysse
- Department of Pathology, Groupement Hospitalier Est, Bron, France
| | - M P Chenard
- Department of Pathology, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - E Conde
- Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain
| | - M C Copin
- Department of Pathology, Université d'Angers, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - J F Côté
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - N D'Haene
- Department of Pathology, Erasme Hospital, HUB ULB, Brussels, Belgium
| | - H Y Dai
- Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - L de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - P Delongova
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | | | - A Fabre
- Department of Histopathology, St. Vincent's University Hospital, University College Dublin School of Medicine, Dublin, Ireland
| | - F Ferenc
- Department of Pathology, University of Oradea, Oradea, Romania
| | - F Forest
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - F de Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology), Grenoble University Hospital, Grenoble, France
| | - M Garcia-Martos
- Department of Pathology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - G Gauchotte
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - R Geraghty
- Department of Histopathology, St. Vincent's University Hospital, University College Dublin School of Medicine, Dublin, Ireland
| | - E Guerin
- Department of Molecular Cancer Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - D Guerrero
- Biomedical Research Centre, Navarra Health Service, Pamplona, Navarra, Spain
| | - S Hernandez
- Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain
| | - P Hurník
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - B Jean-Jacques
- Department of Pathology, CHU de Caen Côte de Nacre, Caen, France
| | - K Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - D Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - S Lantuejoul
- Department of Biopathology, Centre Leon Berard Unicancer and Pathology Research Platform, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - C Leonce
- Department of Pathology, Groupement Hospitalier Est, Bron, France
| | - A Lupo
- Department of Pathology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - U Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - R Matej
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic
| | - J L Merlin
- Department of Biopathology, Institut de Cancérologie de Lorraine, University of Lorraine, Vandoeuvre-Les-Nancy, France
| | - K D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - A Morel
- Department of Innate Immunity and Immunotherapy, Institut de Cancérologie de l'Ouest - Centre Paul Papin, Angers, France
| | - A Mutka
- HUSLAB, Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - N Normanno
- Cell Biology and Biotherapy Unit, INT-Fondazione Pascale, Via M. Semmola, Naples, Italy
| | - P Ovidiu
- Department of Pathology, University of Oradea, Oradea, Romania
| | - A Panizo
- Department of Pathology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain
| | - M G Papotti
- Division of Pathology, University Hospital Città Della Salute, Turin, Italy
| | - E Parobkova
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic
| | - G Pasello
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - P Pauwels
- Department of Pathology, University Hospital Antwerp and University of Antwerp, Antwerp, Belgium
| | - G Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - F Penault-Llorca
- Department of Pathology, Clermont Auvergne University, "Molecular Imaging and Theranostic Strategies", Center Jean Perrin, Montalembert, Clermont-Ferrand, France
| | - T Picot
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - N Piton
- Department of Pathology, Rouen University Hospital, France and Normandie University, UNIROUEN, Inserm U1245, Rouen, France
| | - A Pittaro
- Division of Pathology, University Hospital Città Della Salute, Turin, Italy
| | - G Planchard
- Department of Pathology, CHU de Caen Côte de Nacre, Caen, France
| | - N Poté
- Department of Pathology, Hospital Bichat Bichat, Assistance Publique Hôpitaux de Paris; Université Paris Cité, Paris, France
| | - T Radonic
- Department of Pathology, Amsterdam University Medical Center, VUMC, University of Amsterdam, Amsterdam, Netherlands
| | - I Rapa
- Pathology Unit, San Luigi Hospital, Orbassano Turin, Italy
| | - A Rappa
- Oncogenomics Unit, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - C Roma
- Cell Biology and Biotherapy Unit, INT-Fondazione Pascale, Via M. Semmola, Naples, Italy
| | - M Rot
- Department of Pathology, University Clinic Golnik, Golnik, Slovenia
| | - J C Sabourin
- Department of Pathology, Rouen University Hospital, France and Normandie University, UNIROUEN, Inserm U1245, Rouen, France
| | - I Salmon
- Department of Pathology, Erasme Hospital, HUB ULB, Brussels, Belgium; CurePath, Jumet, Belgium
| | - S Savic Prince
- Department of Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - A Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - E Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - I Serre
- Department of Pathology, Gui de Chauliac Hospital, Montpellier University Medical Center, University of Montpellier, 80 Avenue Augustin Fliche, Montpellier, France
| | - V Siozopoulou
- Department of Pathology, University Hospital Antwerp and University of Antwerp, Antwerp, Belgium
| | - D Sizaret
- Department of Pathology, CHRU Tours - Hôpital Trousseau, Chambray-lès-Tours, France
| | - S Smojver-Ježek
- Division for Pulmonary Cytology, Department of Pathology and Cytology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - J Solassol
- Solid Tumour Laboratory, Pathology and Oncobiology Department, CHU Montpellier, University of Montpellier, Montpellier, France
| | - K Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - J Stojšić
- Department of Thoracic Pathology, Section of Pathology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - C Syrykh
- Department of Pathology, IUC-T-Oncopole, Toulouse, France
| | - S Timofeev
- Multidisciplinary Clinical Center "Kommunarka" of the Moscow Health Department, Moscow, Russia
| | - G Troncone
- Department of Pathology, University of Oradea, Oradea, Romania
| | - A Uguen
- Department of Pathological Anatomy and Cytology, CHRU de Brest, Brest, France; LBAI, UMR1227, INSERM, University of Brest, CHU de Brest, Brest, France
| | - S Valmary-Degano
- Department of Pathology, Institute for Advanced Biosciences, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - A Vigier
- Department of Pathology, IUC-T-Oncopole, Toulouse, France
| | - M Volante
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - S G F Wahl
- Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - A Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - M Ilié
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Biobank Côte d'Azur BB-0033-00025, Louis Pasteur Hospital, IRCAN, Université Côte d'Azur, Nice, France
| |
Collapse
|
20
|
Lim TKH, Skoulidis F, Kerr KM, Ahn MJ, Kapp JR, Soares FA, Yatabe Y. KRAS G12C in advanced NSCLC: Prevalence, co-mutations, and testing. Lung Cancer 2023; 184:107293. [PMID: 37683526 DOI: 10.1016/j.lungcan.2023.107293] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 09/10/2023]
Abstract
KRAS is the most commonly mutated oncogene in advanced, non-squamous, non-small cell lung cancer (NSCLC) in Western countries. Of the various KRAS mutants, KRAS G12C is the most common variant (~40%), representing 10-13% of advanced non-squamous NSCLC. Recent regulatory approvals of the KRASG12C-selective inhibitors sotorasib and adagrasib for patients with advanced or metastatic NSCLC harboring KRASG12C have transformed KRAS into a druggable target. In this review, we explore the evolving role of KRAS from a prognostic to a predictive biomarker in advanced NSCLC, discussing KRAS G12C biology, real-world prevalence, clinical relevance of co-mutations, and approaches to molecular testing. Real-world evidence demonstrates significant geographic differences in KRAS G12C prevalence (8.9-19.5% in the US, 9.3-18.4% in Europe, 6.9-9.0% in Latin America, and 1.4-4.3% in Asia) in advanced NSCLC. Additionally, the body of clinical data pertaining to KRAS G12C co-mutations such as STK11, KEAP1, and TP53 is increasing. In real-world evidence, KRAS G12C-mutant NSCLC was associated with STK11, KEAP1, and TP53 co-mutations in 10.3-28.0%, 6.3-23.0%, and 17.8-50.0% of patients, respectively. Whilst sotorasib and adagrasib are currently approved for use in the second-line setting and beyond for patients with advanced/metastatic NSCLC, testing and reporting of the KRAS G12C variant should be included in routine biomarker testing prior to first-line therapy. KRAS G12C test results should be clearly documented in patients' health records for actionability at progression. Where available, next-generation sequencing is recommended to facilitate simultaneous testing of potentially actionable biomarkers in a single run to conserve tissue. Results from molecular testing should inform clinical decisions in treating patients with KRAS G12C-mutated advanced NSCLC.
Collapse
Affiliation(s)
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith M Kerr
- Department of Pathology, Aberdeen University Medical School and Aberdeen Royal Infirmary, Aberdeen, UK
| | - Myung-Ju Ahn
- Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Fernando A Soares
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; Faculty of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
21
|
Mahrous M, Omar Jebriel A, Allehebi A, Shafik A, El Karak F, Venturini F, Alhusaini H, Meergans M, Ali Nahit Sendur M, Ouda M, Al-Nassar M, Kilickap S, Al Turki S, Al-Fayea T, Abdel Kader Y. Consensus Recommendations for the Diagnosis, Biomarker Testing, and Clinical Management of Advanced or Metastatic Non-small Cell Lung Cancer With Mesenchymal-Epithelial Transition Exon 14 Skipping Mutations in the Middle East, Africa, and Russia. Cureus 2023; 15:e41992. [PMID: 37492039 PMCID: PMC10365828 DOI: 10.7759/cureus.41992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
Mesenchymal-epithelial transition exon 14 (METex14) skipping mutations occur in about 3%-4% of patients with non-small cell lung cancer (NSCLC). This is an aggressive subtype associated with poor prognosis. METex14 skipping is a potentially targetable mutation. Targeted therapy is a promising treatment modality for patients with advanced/metastatic METex14-mutant NSCLC. Performing systematic molecular testing to detect the driver mutation is essential for initiating targeted therapy. However, there is a lack of guidelines on molecular testing for assessing the eligibility of patients for targeted therapy. Therefore, a multidisciplinary panel consisting of experts from the Middle East, Africa, and Russia convened via a virtual advisory board meeting to provide their insights on various molecular testing techniques for the diagnosis of METex14 skipping mutation, management of patients with targeted therapies, and developing consensus recommendations for improving the processes. The expert panel emphasized performing molecular testing and liquid biopsy before treatment initiation and tissue re-biopsy for patients with failed molecular testing. Liquid biopsy was recommended as complementary to tissue biopsy for disease monitoring and prognosis. Selective MET inhibitors were recommended as the first and subsequent lines of therapy. These consensus recommendations will facilitate the management of METex14 skipping NSCLC in routine practice and warrant optimum outcomes for these patients.
Collapse
Affiliation(s)
- Mervat Mahrous
- Oncology, Minia University, Minia, EGY
- Oncology, Prince Sultan Military Medical City, Riyadh, SAU
| | | | - Ahmed Allehebi
- Oncology, King Faisal Specialist Hospital & Research Center, Jeddah, SAU
| | - Amr Shafik
- Oncology, Faculty of Medicine, Ain Shams University, Cairo, EGY
| | - Fadi El Karak
- Oncology, Saint Joseph University of Beirut, School of Medicine, Beirut, LBN
- Oncology, Hôtel-Dieu de France, Beirut, LBN
- Oncology, Clemenceau Medical Center, Dubai, ARE
| | | | - Hamed Alhusaini
- Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, SAU
| | | | | | - Mohamed Ouda
- Oncology, Merck Serono Middle East FZ-Ltd., Dubai, ARE
| | | | | | | | - Turki Al-Fayea
- Oncology, King Fahad Medical City - Ministry of National Guard, Jeddah, SAU
- Oncology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | | |
Collapse
|
22
|
Fernandes G, Rodrigues A, Matos C, Barata F, Cirnes L, Ferreira L, Lopes JA, Felizardo M, Fidalgo P, Brito U, Parente B. Liquid biopsy in the management of advanced lung cancer: Implementation and practical aspects. Cancer Treat Res Commun 2023; 36:100725. [PMID: 37321073 DOI: 10.1016/j.ctarc.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide. In recent years, the discovery of actionable molecular alterations has changed the treatment paradigm of the disease. Tissue biopsies have been the gold standard for the identification of targetable alterations but present several limitations, calling for alternatives to detect driver and acquired resistance alterations. Liquid biopsies reveal great potential in this setting and also in the evaluation and monitoring of treatment response. However, several challenges currently hamper its widespread adoption in clinical practice. This perspective article evaluates the potential and challenges associated with liquid biopsy testing, considering a Portuguese expert panel dedicated to thoracic oncology point of view, and providing practical insights for its implementation based on the experience and applicability in the Portuguese context.
Collapse
Affiliation(s)
- Gabriela Fernandes
- Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal, Faculdade de Medicina da Universidade do Porto, Porto, Portugal, IBMC/i3S - Instituto de Biologia Molecular e Celular/Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | | | - Cláudia Matos
- Lung Unit, Champalimaud Foundation, Lisboa, Portugal
| | - Fernando Barata
- Pulmonology Department, Centro Hospitalar e Universitário de Coimbra, EPE - Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | | | | | - José Albino Lopes
- Pulmonology Department, ULSAM, Viana do Castelo, Portugal; Unidade CUF de Oncologia, Hospital CUF Porto, Porto Portugal
| | | | - Paula Fidalgo
- Medical Oncology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ulisses Brito
- Pulmonology Department, Centro Hospitalar e Universitário do Algarve, Faro, Portugal
| | | |
Collapse
|
23
|
Enko D, Schaflinger E, Müller DJ. [Clinical Application Examples of a Next-Generation Sequencing based Multi-Genepanel Analysis]. Dtsch Med Wochenschr 2023; 148:695-702. [PMID: 37216946 DOI: 10.1055/a-2033-5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review provides an overview of clinically useful applications of a next-generation sequencing (NGS)-based multi-gene panel testing strategy in the areas of oncology, hereditary tumor syndromes, and hematology. In the case of solid tumors (e.g. lung carcinoma, colon-rectal carcinoma), the detection of somatic mutations contributes not only to a better diagnostic but also therapeutic stratification of those affected. The increasing genetic complexity of hereditary tumor syndromes (e.g. breast and ovarian carcinoma, lynch syndrome/polyposis) requires a multi-gene panel analysis of germline mutations in affected families. Another useful indication for a multi-gene panel diagnostics and prognosis assessment are acute and chronic myeloid diseases. The criteria of the WHO-classification and the European LeukemiaNet-prognosis system for acute myeloid leukemia can only be met by a multi-gene panel test strategy.
Collapse
Affiliation(s)
- Dietmar Enko
- Medizinische Universität Graz Klinisches Institut für Medizinische und Chemische Labordiagnostik, Graz, Austria
| | - Erich Schaflinger
- Institut für Humangenetik, Medizinische Universität Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Daniel J Müller
- Klinisches Institut für Pharmakogenetische Wissenschaft, Cambell Family Mental Health Research Institute, Zentrum für Suchtkrankheit und psychische Gesundheit, College Street 250, Toronto, ON M5T 1R8, Toronto, Kanada
| |
Collapse
|
24
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Hofman V, Goffinet S, Bontoux C, Long-Mira E, Lassalle S, Ilié M, Hofman P. A Real-World Experience from a Single Center (LPCE, Nice, France) Highlights the Urgent Need to Abandon Immunohistochemistry for ROS1 Rearrangement Screening of Advanced Non-Squamous Non-Small Cell Lung Cancer. J Pers Med 2023; 13:jpm13050810. [PMID: 37240980 DOI: 10.3390/jpm13050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The detection of ROS1 rearrangements in metastatic non-squamous non-small cell lung carcinoma (NS-NSCLC) permits administration of efficient targeted therapy. Detection is based on a testing algorithm associated with ROS1 immunohistochemistry (IHC) screening followed by ROS1 FISH and/or next generation sequencing (NGS) to confirm positivity. However, (i) ROS1 rearrangements are rare (1-2% of NS-NSCLC), (ii) the specificity of ROS1 IHC is not optimal, and (iii) ROS1 FISH is not widely available, making this algorithm challenging to interpret time-consuming. We evaluated RNA NGS, which was used as reflex testing for ROS1 rearrangements in NS-NSCLC with the aim of replacing ROS1 IHC as a screening method. ROS1 IHC and RNA NGS were prospectively performed in 810 NS-NSCLC. Positive results were analyzed by ROS1 FISH. ROS1 IHC was positive in 36/810 (4.4%) cases that showed variable staining intensity while NGS detected ROS1 rearrangements in 16/810 (1.9%) cases. ROS1 FISH was positive in 15/810 (1.8%) of ROS1 IHC positive cases and in all positive ROS1 NGS cases. Obtaining both ROS1 IHC and ROS1 FISH reports took an average of 6 days, while obtaining ROS1 IHC and RNA NGS reports took an average of 3 days. These results showed that systematic screening for the ROS1 status using IHC must be replaced by NGS reflex testing.
Collapse
Affiliation(s)
- Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Samantha Goffinet
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| |
Collapse
|
26
|
Simarro J, Pérez-Simó G, Mancheño N, Ansotegui E, Muñoz-Núñez CF, Gómez-Codina J, Juan Ó, Palanca S. Impact of Molecular Testing Using Next-Generation Sequencing in the Clinical Management of Patients with Non-Small Cell Lung Cancer in a Public Healthcare Hospital. Cancers (Basel) 2023; 15:cancers15061705. [PMID: 36980591 PMCID: PMC10046107 DOI: 10.3390/cancers15061705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Next-generation sequencing (NGS) is a molecular approach able to provide a comprehensive molecular profile of non-small cell lung cancer (NSCLC). The broad spectrum of biomarker-guided therapies has positioned molecular diagnostic laboratories as a central component of patient clinical management. Here, we show the results of an UNE-EN ISO 15189:2022 NGS-accredited assay in a cohort of 350 patients. TP53 (51.0%), KRAS (26.6%) and EGFR (12.9%) were the most frequently mutated genes. Furthermore, we detected co-occurring and mutually exclusive alterations, as well as distinct molecular profiles according to sex and smoking habits. Actionable genetic alterations were significantly more frequent in female patients (80.5%, p < 0.001) and in never-smoker patients (87.7%, p < 0.001). When NGS was established as the main molecular testing strategy, 36.4% of patients received at least one line of targeted treatment. Among 200 patients with stage IV NSCLC, first-line treatment with targeted therapies was associated with a longer progression-free survival (PFS) (13.4 months (95% CI, 10.2–16.6) (p = 0.001)). Similarly, the overall survival (OS) of patients receiving at least one targeted drug was significantly longer (26.2 months (95% CI, 11.8–40.5) (p < 0.001)). Our results show that the implementation of NGS in the public healthcare system has provided a broader application of precision medicine.
Collapse
Affiliation(s)
- Javier Simarro
- Molecular Biology Unit, Service of Clinical Analysis, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Gema Pérez-Simó
- Molecular Biology Unit, Service of Clinical Analysis, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Nuria Mancheño
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Emilio Ansotegui
- Pulmonology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | | | - José Gómez-Codina
- Clinical and Translational Cancer Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
- Medical Oncology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Óscar Juan
- Medical Oncology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Sarai Palanca
- Molecular Biology Unit, Service of Clinical Analysis, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
- Biochemistry and Molecular Biology Department, Universidad de Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-961-244586
| |
Collapse
|
27
|
Da BL, Suchman KI, Lau L, Rabiee A, He AR, Shetty K, Yu H, Wong LL, Amdur RL, Crawford JM, Fox SS, Grimaldi GM, Shah PK, Weinstein J, Bernstein D, Satapathy SK, Chambwe N, Xiang X, Mishra L. Pathogenesis to management of hepatocellular carcinoma. Genes Cancer 2022; 13:72-87. [PMID: 36533190 PMCID: PMC9746873 DOI: 10.18632/genesandcancer.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer whose incidence continues to rise in many parts of the world due to a concomitant rise in many associated risk factors, such as alcohol use and obesity. Although early-stage HCC can be potentially curable through liver resection, liver-directed therapies, or transplantation, patients usually present with intermediate to advanced disease, which continues to be associated with a poor prognosis. This is because HCC is a cancer with significant complexities, including substantial clinical, histopathologic, and genomic heterogeneity. However, the scientific community has made a major effort to better characterize HCC in those aspects via utilizing tissue sampling and histological classification, whole genome sequencing, and developing viable animal models. These efforts ultimately aim to develop clinically relevant biomarkers and discover molecular targets for new therapies. For example, until recently, there was only one approved systemic therapy for advanced or metastatic HCC in the form of sorafenib. Through these efforts, several additional targeted therapies have gained approval in the United States, although much progress remains to be desired. This review will focus on the link between characterizing the pathogenesis of HCC with current and future HCC management.
Collapse
Affiliation(s)
- Ben L. Da
- Department of Internal Medicine, Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Kelly I. Suchman
- Department of Internal Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Lawrence Lau
- Department of Surgery, North Shore University Hospital, Northwell Health, Manhasset, NY 11030, USA
| | - Atoosa Rabiee
- Department of Gastroenterology and Hepatology, VA Medical Center, Washington, DC 20422, USA
| | - Aiwu Ruth He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, University of Maryland, Baltimore, MD 21201, USA
| | - Herbert Yu
- Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI 96813-5516, USA
| | - Linda L. Wong
- Department of Surgery, University of Hawaii, Honolulu, HI 96813-5516, USA
| | - Richard L. Amdur
- Quantitative Intelligence, The Institutes for Health Systems Science and Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 10022, USA
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Sharon S. Fox
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Gregory M. Grimaldi
- Department of Radiology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Priya K. Shah
- Department of Radiology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Jonathan Weinstein
- Division of Vascular and Interventional Radiology, Department of Radiology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - David Bernstein
- Department of Internal Medicine, Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Sanjaya K. Satapathy
- Department of Internal Medicine, Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Nyasha Chambwe
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY 11030, USA
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
28
|
Penault-Llorca F, Kerr KM, Garrido P, Thunnissen E, Dequeker E, Normanno N, Patton SJ, Fairley J, Kapp J, de Ridder D, Ryška A, Moch H. Expert opinion on NSCLC small specimen biomarker testing - Part 1: Tissue collection and management. Virchows Arch 2022; 481:335-350. [PMID: 35857102 PMCID: PMC9485167 DOI: 10.1007/s00428-022-03343-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022]
Abstract
Biomarker testing is crucial for treatment selection in advanced non-small cell lung cancer (NSCLC). However, the quantity of available tissue often presents a key constraint for patients with advanced disease, where minimally invasive tissue biopsy typically returns small samples. In Part 1 of this two-part series, we summarise evidence-based recommendations relating to small sample processing for patients with NSCLC. Generally, tissue biopsy techniques that deliver the greatest quantity and quality of tissue with the least risk to the patient should be selected. Rapid on-site evaluation can help to ensure sufficient sample quality and quantity. Sample processing should be managed according to biomarker testing requirements, because tissue fixation methodology influences downstream nucleic acid, protein and morphological analyses. Accordingly, 10% neutral buffered formalin is recommended as an appropriate fixative, and the duration of fixation is recommended not to exceed 24-48 h. Tissue sparing techniques, including the 'one biopsy per block' approach and small sample cutting protocols, can help preserve tissue. Cytological material (formalin-fixed paraffin-embedded [FFPE] cytology blocks and non-FFPE samples such as smears and touch preparations) can be an excellent source of nucleic acid, providing either primary or supplementary patient material to complete morphological and molecular diagnoses. Considerations on biomarker testing, reporting and quality assessment are discussed in Part 2.
Collapse
Affiliation(s)
| | - Keith M Kerr
- Department of Pathology, Aberdeen University Medical School and Aberdeen Royal Infirmary, Aberdeen, UK
| | - Pilar Garrido
- Medical Oncology Department, Hospital Universitario Ramón Y Cajal, University of Alcalá, Madrid, Spain
| | - Erik Thunnissen
- Amsterdam University Medical Center, VU Medical Center, Amsterdam, the Netherlands
| | - Elisabeth Dequeker
- Department of Public Health, Biomedical Quality Assurance Research Unit, Campus Gasthuisberg, University Leuven, Leuven, Belgium
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione Giovanni Pascale" IRCCS, Naples, Italy
| | | | | | | | | | - Aleš Ryška
- Department of Pathology, Charles University Medical Faculty Hospital, Hradec Králové, Czech Republic
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|