1
|
|
2
|
Reinhart F, Massri NE, Chabrol C, Cretallaz C, Johnstone DM, Torres N, Darlot F, Costecalde T, Stone J, Mitrofanis J, Benabid AL, Moro C. Intracranial application of near-infrared light in a hemi-parkinsonian rat model: the impact on behavior and cell survival. J Neurosurg 2015; 124:1829-41. [PMID: 26613166 DOI: 10.3171/2015.5.jns15735] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECT The authors of this study used a newly developed intracranial optical fiber device to deliver near-infrared light (NIr) to the midbrain of 6-hydroxydopamine (6-OHDA)-lesioned rats, a model of Parkinson's disease. The authors explored whether NIr had any impact on apomorphine-induced turning behavior and whether it was neuroprotective. METHODS Two NIr powers (333 nW and 0.16 mW), modes of delivery (pulse and continuous), and total doses (634 mJ and 304 J) were tested, together with the feasibility of a midbrain implant site, one considered for later use in primates. Following a striatal 6-OHDA injection, the NIr optical fiber device was implanted surgically into the midline midbrain area of Wistar rats. Animals were tested for apomorphine-induced rotations, and then, 23 days later, their brains were aldehyde fixed for routine immunohistochemical analysis. RESULTS The results showed that there was no evidence of tissue toxicity by NIr in the midbrain. After 6-OHDA lesion, regardless of mode of delivery or total dose, NIr reduced apomorphine-induced rotations at the stronger, but not at the weaker, power. The authors found that neuroprotection, as assessed by tyrosine hydroxylase expression in midbrain dopaminergic cells, could account for some, but not all, of the observed behavioral improvements; the groups that were associated with fewer rotations did not all necessarily have a greater number of surviving cells. There may have been other "symptomatic" elements contributing to behavioral improvements in these rats. CONCLUSIONS In summary, when delivered at the appropriate power, delivery mode, and dosage, NIr treatment provided both improved behavior and neuroprotection in 6-OHDA-lesioned rats.
Collapse
Affiliation(s)
- Florian Reinhart
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| | | | - Claude Chabrol
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| | - Celine Cretallaz
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| | | | - Napoleon Torres
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| | - Fannie Darlot
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| | - Thomas Costecalde
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| | - Jonathan Stone
- Physiology, University of Sydney, New South Wales, Australia
| | | | - Alim-Louis Benabid
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| | - Cécile Moro
- CEA, Leti, and Clinatec Departments, University Grenoble Alpes, Minatec Campus, Grenoble, France; and
| |
Collapse
|
3
|
Tagliaferro P, Kareva T, Oo TF, Yarygina O, Kholodilov N, Burke RE. An early axonopathy in a hLRRK2(R1441G) transgenic model of Parkinson disease. Neurobiol Dis 2015; 82:359-371. [PMID: 26192625 DOI: 10.1016/j.nbd.2015.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 01/03/2023] Open
Abstract
Mutations in the gene for LRRK2 are the most common cause of familial Parkinson's disease (PD) and patients with these mutations manifest clinical features that are indistinguishable from those of the more common sporadic form. Thus, investigations of disease mechanisms based on disease-causing LRRK2 mutations can be expected to shed light on the more common sporadic form as well as the inherited form. We have shown that as human BAC transgenic hLRRK2(R1441G) mice age, they exhibit two abnormalities in the nigrostriatal dopaminergic system: an axonopathy and a diminished number of dendrites in the substantia nigra (SN). To better understand disease mechanisms it is useful to determine where in the affected neural system the pathology first begins. We therefore examined the nigrostriatal dopaminergic system in young mice to determine the initial site of pathology. Brains from hLRRK2(R1441G) and littermate control mice at 2-4months of age were examined by immunohistochemistry, anterograde fluorescent axon labeling and ultrastructural analysis. SN neurons, their projecting axons and the striatal terminal fields were assessed. The first identifiable abnormality in this system is an axonopathy characterized by giant polymorphic axon spheroids, the presence of intra-axonal autophagic vacuoles and intra-axonal myelin invagination. An initial involvement of axons has also been reported for other genetic models of PD. These observations support the concept that axons are involved early in the course of the disease. We suggest that effective neuroprotective approaches will be aimed at preventing axonal degeneration.
Collapse
Affiliation(s)
- Patricia Tagliaferro
- Departments of Neurology, Columbia University Medical Center, 650 W 168th St., New York, NY 10032, USA
| | - Tatyana Kareva
- Departments of Neurology, Columbia University Medical Center, 650 W 168th St., New York, NY 10032, USA
| | - Tinmarla F Oo
- Departments of Neurology, Columbia University Medical Center, 650 W 168th St., New York, NY 10032, USA
| | - Olga Yarygina
- Departments of Neurology, Columbia University Medical Center, 650 W 168th St., New York, NY 10032, USA
| | - Nikolai Kholodilov
- Departments of Neurology, Columbia University Medical Center, 650 W 168th St., New York, NY 10032, USA
| | - Robert E Burke
- Departments of Neurology, Columbia University Medical Center, 650 W 168th St., New York, NY 10032, USA; Pathology and Cell Biology, Columbia University Medical Center, 650 W 168th St., New York, NY 10032, USA.
| |
Collapse
|
4
|
Dopeso-Reyes IG, Rico AJ, Roda E, Sierra S, Pignataro D, Lanz M, Sucunza D, Chang-Azancot L, Lanciego JL. Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 2014; 8:146. [PMID: 25520629 PMCID: PMC4253956 DOI: 10.3389/fnana.2014.00146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022] Open
Abstract
Calbindin (CB) is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH) and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA) and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv) co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%), followed by neurons located in the SNcd (34.7%). As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%), whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%). Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB) into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus (GPi). As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not giving rise to nigrostriatal projections and indeed CB-ir/TH-ir neurons only originate nigroextrastriatal projections.
Collapse
Affiliation(s)
- Iria G Dopeso-Reyes
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Alberto J Rico
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Elvira Roda
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Salvador Sierra
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Diego Pignataro
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Maria Lanz
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain
| | - Diego Sucunza
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain
| | - Luis Chang-Azancot
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain
| | - Jose L Lanciego
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| |
Collapse
|
5
|
Joksimovic M, Awatramani R. Wnt/ -catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J Mol Cell Biol 2013; 6:27-33. [DOI: 10.1093/jmcb/mjt043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
6
|
Halpin LE, Collins SA, Yamamoto BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 2013; 97:37-44. [PMID: 23892199 DOI: 10.1016/j.lfs.2013.07.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023]
Abstract
Amphetamines are a class of psychostimulant drugs that are widely abused for their stimulant, euphoric, empathogenic and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, methamphetamine and 3,4 methylenedioxymethamphetamine (MDMA) produce persistent damage to dopamine and serotonin nerve terminals. This review summarizes the numerous interdependent mechanisms including excitotoxicity, mitochondrial damage and oxidative stress that have been demonstrated to contribute to this damage. Emerging non-neuronal mechanisms by which the drugs may contribute to monoaminergic terminal damage, as well as the neuropsychiatric consequences of this terminal damage are also presented. Methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) have similar chemical structures and pharmacologic properties compared to other abused substances including cathinone (khat), as well as a relatively new class of novel synthetic amphetamines known as 'bath salts' that have gained popularity among drug abusers.
Collapse
Affiliation(s)
- Laura E Halpin
- Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Stuart A Collins
- Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614, USA.
| |
Collapse
|
7
|
Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Parkinsonism Relat Disord 2012; 18:469-76. [DOI: 10.1016/j.parkreldis.2012.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/03/2012] [Accepted: 01/08/2012] [Indexed: 11/21/2022]
|
8
|
Peoples C, Shaw VE, Stone J, Jeffery G, Baker GE, Mitrofanis J. Survival of Dopaminergic Amacrine Cells after Near-Infrared Light Treatment in MPTP-Treated Mice. ISRN NEUROLOGY 2012; 2012:850150. [PMID: 22701184 PMCID: PMC3369478 DOI: 10.5402/2012/850150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/01/2012] [Indexed: 11/23/2022]
Abstract
We examined whether near-infrared light (NIr) treatment (photobiomodulation) saves dopaminergic amacrine cells of the retina in an acute and a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. For the acute model, BALB/c mice had MPTP (100 mg/kg) or saline injections over 30 hours, followed by a six-day-survival period. For the chronic model, mice had MPTP (200 mg/kg) or saline injections over five weeks, followed by a three-week-survival period. NIr treatment was applied either at the same time (simultaneous series) or well after (posttreatment series) the MPTP insult. There were four groups within each series: Saline, Saline-NIr, MPTP, and MPTP-NIr. Retinae were processed for tyrosine hydroxylase (TH) immunochemistry, and cell number was analysed. In the MPTP groups, there was a significant reduction in TH+ cell number compared to the saline controls; this reduction was greater in the acute (~50%) compared to the chronic (~30%) cases. In the MPTP-NIr groups, there were significantly more TH+ cells than in the MPTP groups of both series (~30%). In summary, we showed that NIr treatment was able to both protect (simultaneous series) and rescue (posttreatment series) TH+ cells of the retina from parkinsonian insult.
Collapse
Affiliation(s)
- Cassandra Peoples
- Discipline of Anatomy & Histology F13, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Shaw VE, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, Mitrofanis J. Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment. J Comp Neurol 2010; 518:25-40. [PMID: 19882716 DOI: 10.1002/cne.22207] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study explores whether near-infrared (NIr) light treatment neuroprotects dopaminergic cells in the substantia nigra pars compacta (SNc) and the zona incerta-hypothalamus (ZI-Hyp) from degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. BALB/c albino mice were divided into four groups: 1) Saline, 2) Saline-NIr, 3) MPTP, 4) MPTP-NIr. The injections were intraperitoneal and they were followed immediately by NIr light treatment (or not). Two doses of MPTP, mild (50 mg/kg) and strong (100 mg/kg), were used. Mice were perfused transcardially with aldehyde fixative 6 days after their MPTP treatment. Brains were processed for tyrosine hydroxylase (TH) immunochemistry. The number of TH(+) cells was estimated using the optical fractionator method. Our major finding was that in the SNc there were significantly more dopaminergic cells in the MPTP-NIr compared to the MPTP group (35%-45%). By contrast, in the ZI-Hyp there was no significant difference in the numbers of cells in these two groups. In addition, our results indicated that survival in the two regions after MPTP insult was dose-dependent. In the stronger MPTP regime, the magnitude of loss was similar in the two regions ( approximately 60%), while in the milder regime cell loss was greater in the SNc (45%) than ZI-Hyp ( approximately 30%). In summary, our results indicate that NIr light treatment offers neuroprotection against MPTP toxicity for dopaminergic cells in the SNc, but not in the ZI-Hyp.
Collapse
Affiliation(s)
- Victoria E Shaw
- Discipline of Anatomy & Histology F13, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Soto-Ortolaza AI, Behrouz B, Wider C, Vilariño-Güell C, Heckman MG, Aasly JO, Mark Gibson J, Lynch T, Jasinska-Myga B, Krygowska-Wajs A, Opala G, Barcikowska M, Czyzewski K, Uitti RJ, Wszolek ZK, Farrer MJ, Ross OA. Calbindin-1 association and Parkinson's disease. Eur J Neurol 2009; 17:208-11. [PMID: 19674066 DOI: 10.1111/j.1468-1331.2009.02769.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Calcium levels have been proposed to play an important role in the selective vulnerability of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Recently, an association was reported between the calcium buffer, calbindin (rs1805874) and risk of PD in a Japanese patient-control series. METHODS We genotyped rs1805874 in four independent Caucasian patient-control series (1543 PD patients, 1771 controls). RESULTS There was no evidence of an association between rs1805874 and disease risk in individual populations or in the combined series (odds ratio: 1.04, 95% CI: 0.82-1.31, P = 0.74). DISCUSSION Our study shows there is no association between rs1805874 and risk for PD in four Caucasian populations. This suggests the effect of calbindin on PD risk displays population specificity.
Collapse
Affiliation(s)
- A I Soto-Ortolaza
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Reyes S, Mitrofanis J. Patterns of FOS expression in the spinal cord and periaqueductal grey matter of 6OHDA-lesioned rats. Int J Neurosci 2008; 118:1053-79. [PMID: 18576208 DOI: 10.1080/00207450701239210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A less well-known feature of Parkinson disease is that up to 40% of patients experience distinct sensory disturbances, including hyperalgesia and chronic pain. There is a limited understanding of the neural mechanisms that generate these symptoms, however. This study explores the patterns of Fos expression (a well-known marker for changes in cell activity) in the spinal cord and periaqueductal grey matter (PaG), two major sensory (nociceptive) centers, of hemiParkinsonian rats. The medial forebrain bundle (mfb; major tract carrying dopaminergic nigrostriatal axons) was injected with either 6OHDA or saline (controls). A week later, some rats were subjected to mechanical stimulation (pinching) of the hindpaw for 2 h, whereas others received no stimulation. Thereafter, brains were processed using routine tyrosine hydroxylase (marker for dopaminergic cells) or Fos immunocytochemistry. In the PaG, there were many more Fos(+) cells in the 6OHDA-lesioned than in the Control group, in both the stimulation and, in particular, the non-stimulation cases. In the spinal cord, there were also more Fos(+) cells in the 6OHDA-lesioned than in the Control group, but in the stimulation cases only. Overall, the results show distinct changes in Fos expression in the spinal cord and PaG of 6OHDA-lesioned rats, suggesting a substrate for some of the abnormal sensory (nociceptive) circuits that may be evident in parkinsonian cases.
Collapse
Affiliation(s)
- Stephanie Reyes
- Department Anatomy and Histology, University of Sydney, Sydney, Australia
| | | |
Collapse
|
12
|
Luquin N, Mitrofanis J. Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats? Parkinsonism Relat Disord 2008; 14:213-23. [DOI: 10.1016/j.parkreldis.2007.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/25/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
|
13
|
Heise CE, Mitrofanis J. Fos immunoreactivity in some locomotor neural centres of 6OHDA-lesioned rats. ACTA ACUST UNITED AC 2006; 211:659-71. [PMID: 17006656 DOI: 10.1007/s00429-006-0130-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2006] [Indexed: 12/18/2022]
Abstract
In this study, we explore Fos expression (a measure of cell activity) in three nuclei associated with locomotion, namely the zona incerta, pedunculopontine tegmental nucleus and cuneiform nucleus (the latter two form the mesencephalic locomotor region) in hemiparkinsonian rats. Sprague-Dawley rats had small volumes of either saline (control) or 6 hydroxydopamine (6OHDA) injected into the medial forebrain bundle, the major tract carrying dopaminergic nigrostriatal axons. After various post-lesion survival periods, ranging from 2 h to 28 days, rats were perfused with formaldehyde and their brains processed for routine tyrosine hydroxylase and Fos immunocytochemistry. Our results showed a significant increase (P < 0.05) in the number of strongly labelled Fos+ cells in the cuneiform nucleus in the 6OHDA-lesioned cases compared to the controls after 7 and 28 days survival periods. By contrast, there were no significant differences (P > 0.05) in the number of strong-labelled Fos+ cells in the zona incerta and pedunculopontine nucleus of 6OHDA-lesioned rats compared to controls at any survival period. Many of the Fos+ cells within the pedunculopontine and cuneiform nuclei were glutamatergic (35-60%), while none or very few were nitric oxide synthase+. In conclusion, we reveal an increase in the number of strongly labelled Fos+ cells within the cuneiform nucleus of the so-called defensive locomotive system in 6OHDA-lesioned rats. In relation to Parkinson disease, we suggest that this increase is associated with the akinesia or lack of movement seen in patients.
Collapse
Affiliation(s)
- Claire E Heise
- Department Anatomy and Histology, University of Sydney, Sydney, Australia
| | | |
Collapse
|
14
|
Nadon NL. Of Mice and Monkeys: National Institute on Aging Resources Supporting the Use of Animal Models in Biogerontology Research. J Gerontol A Biol Sci Med Sci 2006; 61:813-5. [PMID: 16912097 DOI: 10.1093/gerona/61.8.813] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The preponderance of our understanding of the biological changes that occur with aging has come from studies using rodents. Rodents are a valuable model for biogerontology research because of similarities to humans in the physiology and cell biology of aging. There are, however, many differences between rodents and humans, so application of findings in rodents to human aging requires the use of a model that is closer to humans at the genetic and physiological level. In aging research, the macaque has filled this need. There are many challenges associated with using nonhuman primates in aging research, not the least of which are the limited availability of aged monkeys and the cost of using them. To facilitate this research, the National Institute on Aging has developed several resources to assist investigators and promote the use of the nonhuman primate model in aging research.
Collapse
Affiliation(s)
- Nancy L Nadon
- Biology of Aging Program, National Institute on Aging/NIH, 7201 Wisconsin Avenue, GW 2C231, Bethesda, MD 20892, USA.
| |
Collapse
|