1
|
Lafeber AH, Bosch M, de Roos SF, Aarnoudse-Moens CSH, van Veenendaal NR, van Goudoever JB, de Groof F. Neurodevelopment and the association with early life nutrition in moderate and late preterm infants. J Pediatr Gastroenterol Nutr 2025. [PMID: 40325898 DOI: 10.1002/jpn3.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES Long-term neurodevelopment of moderate and late preterm infants (MLPTI; gestational age [GA] 32 0/7 weeks to 36 6/7 weeks) is at a lower level than that of those at term age. Increased protein and energy intakes in the first week of life have been associated with better neurodevelopment early in life, in very preterm infants. This study aimed to evaluate the neurodevelopmental outcome of MLPTI at 2 years corrected age (CA) for prematurity (i.e., after term equivalent age) and its association with nutritional intake in the first week of life. METHODS We prospectively collected nutritional data during the first week of life from 100 MLPTI (GA 32 0/7 weeks to 35 6/7 weeks). At 2 years CA, children underwent a neurodevelopmental assessment using the Bayley Scales of Infant and Toddler Development, Third edition, Dutch version (BSID-III-NL). RESULTS The mean BSID-III-NL (mean ± standard deviation [SD]) score was 103.1 (10.9) on the cognitive composite, 101.1 (SD ± 15.0) on the language composite, and 100.8 (SD ± 9.6) on the motor composite. Boys scored significantly lower than girls on both cognitive and language composite scores. We found no significant associations between nutritional intake in the first week of life and neurodevelopment at 2 years CA. CONCLUSION Neurodevelopment at 2 years CA was within normal limits, while boys scored lower than girls. First week nutritional intakes do not seem to be associated with neurodevelopmental outcomes at 2 years CA. This study emphasizes the need for more long-term follow-up and research concerning neurodevelopment in MLPTI, especially in boys.
Collapse
Affiliation(s)
- Anne H Lafeber
- Department of Pediatrics and Neonatology, North West Clinics, Alkmaar, the Netherlands
| | - Mark Bosch
- Department of Pediatrics and Neonatology, North West Clinics, Alkmaar, the Netherlands
| | - Sophie F de Roos
- Department of Pediatrics and Neonatology, North West Clinics, Alkmaar, the Netherlands
| | - Cornelieke S H Aarnoudse-Moens
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nicole R van Veenendaal
- Department of Pediatrics and Neonatology, North West Clinics, Alkmaar, the Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Pediatrics and Neonatology, OLVG, Amsterdam, the Netherlands
| | - Johannes B van Goudoever
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development (AR&D), Research Institute, Amsterdam, the Netherlands
| | - Femke de Groof
- Department of Pediatrics and Neonatology, North West Clinics, Alkmaar, the Netherlands
| |
Collapse
|
2
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
3
|
Brandt M, Kosmeijer C, Achterberg E, de Theije C, Nijboer C. Timed fetal inflammation and postnatal hypoxia cause cortical white matter injury, interneuron imbalances, and behavioral deficits in a double-hit rat model of encephalopathy of prematurity. Brain Behav Immun Health 2024; 40:100817. [PMID: 39188404 PMCID: PMC11345510 DOI: 10.1016/j.bbih.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Extreme preterm birth-associated adversities are a major risk factor for aberrant brain development, known as encephalopathy of prematurity (EoP), which can lead to long-term neurodevelopmental impairments. Although progress in clinical care for preterm infants has markedly improved perinatal outcomes, there are currently no curative treatment options available to combat EoP. EoP has a multifactorial etiology, including but not limited to pre- or postnatal immune activation and oxygen fluctuations. Elucidating the underlying mechanisms of EoP and determining the efficacy of potential therapies relies on valid, clinically translatable experimental models that reflect the neurodevelopmental and pathophysiological hallmarks of EoP. Here, we expand on our double-hit rat model that can be used to study EoP disease mechanisms and therapeutic options in a preclinical setting. Pregnant Wistar dams were intraperitoneally injected with 10 μg/kg LPS on embryonic day (E)20 and offspring was subjected to hypoxia (140 min, 8% O2) at postnatal day 4. Rats exposed to fetal inflammation and postnatal hypoxia (FIPH) showed neurodevelopmental impairments, such as reduced nest-seeking ability, ultrasonic vocalizations, social engagement, and working memory, and increased anxiety and sensitivity. Impairments in myelination, oligodendrocyte maturation and interneuron development were examined as hallmarks for EoP, in different layers and coordinates of the cortex using histological and molecular techniques. Myelin density and complexity was decreased in the cortex, which partially coincided with a decrease in mature oligodendrocytes. Furthermore, interneuron populations (GAD67+ and PVALB+) were affected. To determine if the timing of inducing fetal inflammation affected the severity of EoP hallmarks in the cortex, multiple timepoints of fetal inflammation were compared. Inflammation at E20 combined with postnatal hypoxia gave the most severe EoP phenotype in the cortex. In conclusion, we present a double-hit rat model which displays various behavioral, anatomical and molecular hallmarks of EoP, including diffuse white matter injury. This double-hit model can be used to investigate pathophysiological mechanisms and potential therapies for EoP.
Collapse
Affiliation(s)
- M.J.V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.M. Kosmeijer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - E.J.M. Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - C.G.M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| |
Collapse
|
4
|
Fernández de Gamarra-Oca L, Ojeda N, Ontañón JM, Loureiro-Gonzalez B, Gómez-Gastiasoro A, Peña J, Ibarretxe-Bilbao N, García-Guerrero MA, Zubiaurre-Elorza L. Long-term brain structural and cognitive outcomes in a low-risk preterm-born sample. Sci Rep 2024; 14:21110. [PMID: 39256424 PMCID: PMC11387778 DOI: 10.1038/s41598-024-70355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
Prematurity has been related to altered brain structure and cognition, and so our aim was to describe them in the absence of major structural brain injury following low-risk preterm birth during adolescence and young adulthood. The sample consisted of 250 participants, 132 of whom were low-risk preterm (30-36 weeks' gestational age) and 118 were full-term individuals (37-42 weeks' gestational age), aged between 16 and 38 years old. All participants underwent an extensive neuropsychological assessment. T1- and diffusion-weighted MRI images of 33 low-risk preterm and 31 full-term young adults (20-32 years old) were analyzed. No differences were found in terms of general cognitive functioning score or current socioeconomic status; however, the low-risk preterm group obtained lower scores in phonetic and semantic fluencies, and theory of mind. Significant reductions were identified in the thalamus volume as well as thicker cortex in the inferior temporal gyrus in the low-risk preterm group. Low-risk preterm young adults evidenced greater regional AD and MD compared to the full-term sample; while low-risk preterm group showed lower mean NDI and ODI (FWE-corrected, p < 0.05). Being born preterm is associated with poorer performance in various cognitive domains (i.e., phonetic and semantic fluencies, and theory of mind) later in life, along with differences in normative structural brain development in inferior temporal gyrus and regional white matter microstructure.
Collapse
Affiliation(s)
- L Fernández de Gamarra-Oca
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avda de las Universidades 24, 48007, Bilbao, Bizkaia, Spain.
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avda de las Universidades 24, 48007, Bilbao, Bizkaia, Spain.
| | - J M Ontañón
- OSATEK, MR Unit, Hospital of Galdakao, Galdakao, Bizkaia, Spain
| | - B Loureiro-Gonzalez
- Division of Neonatology, Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - A Gómez-Gastiasoro
- Department of Basic Psychological Processes and Development, Faculty of Psychology, University of the Basque Country, Donostia, Gipuzkoa, Spain
| | - J Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avda de las Universidades 24, 48007, Bilbao, Bizkaia, Spain
| | - N Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avda de las Universidades 24, 48007, Bilbao, Bizkaia, Spain
| | - M A García-Guerrero
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avda de las Universidades 24, 48007, Bilbao, Bizkaia, Spain
| | - L Zubiaurre-Elorza
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avda de las Universidades 24, 48007, Bilbao, Bizkaia, Spain
| |
Collapse
|
5
|
Thalhammer M, Nimpal M, Schulz J, Meedt V, Menegaux A, Schmitz-Koep B, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Hedderich D, Sorg C. Consistently lower volumes across thalamus nuclei in very premature-born adults. Neuroimage 2024; 297:120732. [PMID: 39004408 DOI: 10.1016/j.neuroimage.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Lasting thalamus volume reduction after preterm birth is a prominent finding. However, whether thalamic nuclei volumes are affected differentially by preterm birth and whether nuclei aberrations are relevant for cognitive functioning remains unknown. Using T1-weighted MR-images of 83 adults born very preterm (≤ 32 weeks' gestation; VP) and/or with very low body weight (≤ 1,500 g; VLBW) as well as of 92 full-term born (≥ 37 weeks' gestation) controls, we compared thalamic nuclei volumes of six subregions (anterior, lateral, ventral, intralaminar, medial, and pulvinar) across groups at the age of 26 years. To characterize the functional relevance of volume aberrations, cognitive performance was assessed by full-scale intelligence quotient using the Wechsler Adult Intelligence Scale and linked to volume reductions using multiple linear regression analyses. Thalamic volumes were significantly lower across all examined nuclei in VP/VLBW adults compared to controls, suggesting an overall rather than focal impairment. Lower nuclei volumes were linked to higher intensity of neonatal treatment, indicating vulnerability to stress exposure after birth. Furthermore, we found that single results for lateral, medial, and pulvinar nuclei volumes were associated with full-scale intelligence quotient in preterm adults, albeit not surviving correction for multiple hypotheses testing. These findings provide evidence that lower thalamic volume in preterm adults is observable across all subregions rather than focused on single nuclei. Data suggest the same mechanisms of aberrant thalamus development across all nuclei after premature birth.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany.
| | - Mehul Nimpal
- Faculty of Biology, Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Veronica Meedt
- Faculty of Biology, Ludwig Maximilian University of Munich
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Marcel Daamen
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany; Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Dennis Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany; Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| |
Collapse
|
6
|
Pereira S, Silva A, Santos R, Costa Silva C. Assessing Postural Control From Birth to Adulthood Among Individuals Born Preterm: A Systematic Review. Motor Control 2024; 28:276-304. [PMID: 38580301 DOI: 10.1123/mc.2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 04/07/2024]
Abstract
Premature life exposure, meaning an immature central nervous system, presents a significant challenge for the development of postural control and, in turn, overall motor development. Preventing motor delay thus requires identifying, characterizing, and quantifying deficit in postural control as early as possible. In our study, we reviewed the procedures used in past studies to assess postural control among individuals born preterm, specifically the characterization of participants, the instruments and motor tasks involved, the types of data collected and analyzed, and the outcomes. To that end, we performed a literature search on PubMed, Wiley Online Library, Web of Science, and Scopus using Boolean logic and assessed the quality of the studies with a standardized assessment based on the Strengthening the Reporting of Observational Studies in Epidemiology guidelines and the Cochrane Handbook for Systematic Reviews of Interventions. Of 35 potential studies, 24 were included; all evaluated infants born preterm, but six did not include a control group of full-term infants. Although the heterogeneity of measurements, variability of instruments, and divergence in motor tasks examined limit definitive conclusions based on quantitative synthesis and the generalization of the results, most studies revealed dysfunctional postural control among individuals born preterm.
Collapse
|
7
|
Lapidaire W, Clayden JD, Fewtrell MS, Clark CA. Increased white matter fibre dispersion and lower IQ scores in adults born preterm. Hum Brain Mapp 2024; 45:e26545. [PMID: 38070181 PMCID: PMC10789207 DOI: 10.1002/hbm.26545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Preterm birth has been associated with altered microstructural properties of the white matter and lower cognitive ability in childhood and adulthood. Due to methodological limitations of the diffusion tensor model, it is not clear whether alterations in myelination or variation in fibre orientation are driving these differences. Novel models applied to multi-shell diffusion imaging have been used to disentangle these effects, but to date this has not been used to study the preterm brain in adulthood. This study investigated whether novel advanced diffusion MRI metrics such as microscopic anisotropy and orientation dispersion are altered in adults born preterm, and whether this was associated with cognitive performance. Seventy-two preterm born participants (<37 weeks gestational age) were recruited from a 1982-1984 cohort (33 males, mean age 33.5 ± 1.0 years). Seventy-two term born (>37 weeks gestational age) controls (34 males, mean age 30.9 ± 4.0 years) were recruited from the general population. Tensor FA was calculated with FSL, while microscopic FA and orientation dispersion entropy (ODE) were estimated using the Spherical Mean Technique (SMT). Estimated Full Scale IQ (FSIQ), Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) were obtained from the WASI-II (abbreviated) IQ test. Voxel-wise comparisons using FSL's tract-based spatial statistics were performed to test between-group differences in diffusion MRI metrics as well as within-group associations of diffusion MRI metrics and IQ outcomes. The preterm group had significantly lower FSIQ, VCI and PRI scores. Preterm subjects demonstrated widespread decreases in ODE reflecting increased fibre dispersion, but no differences in microscopic FA. Tensor FA was increased in a small area in the anterior corona radiata. Lower FA values in the preterm population were associated with lower FSIQ and PRI scores. An increase in fibre dispersion in white matter and lower IQ scores after preterm birth exist in adulthood. Advanced diffusion MRI metrics such as the orientation dispersion entropy can be used to monitor white matter alterations across the lifespan in preterm born individuals. Although not significantly different between preterm and term groups, tensor FA values in the preterm group were associated with cognitive outcome.
Collapse
Affiliation(s)
- Winok Lapidaire
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Jonathan D. Clayden
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Mary S. Fewtrell
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Christopher A. Clark
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
8
|
Schinz D, Schmitz‐Koep B, Zimmermann J, Brandes E, Tahedl M, Menegaux A, Dukart J, Zimmer C, Wolke D, Daamen M, Boecker H, Bartmann P, Sorg C, Hedderich DM. Indirect evidence for altered dopaminergic neurotransmission in very premature-born adults. Hum Brain Mapp 2023; 44:5125-5138. [PMID: 37608591 PMCID: PMC10502650 DOI: 10.1002/hbm.26451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.
Collapse
Affiliation(s)
- David Schinz
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Benita Schmitz‐Koep
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Elin Brandes
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Marlene Tahedl
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Aurore Menegaux
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juergen Dukart
- Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Claus Zimmer
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Peter Bartmann
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
- Department of Psychiatry, School of MedicineTechnical University of MunichMunichGermany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|
9
|
Bousquet A, Sanderson K, O’Shea TM, Fry RC. Accelerated Aging and the Life Course of Individuals Born Preterm. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1683. [PMID: 37892346 PMCID: PMC10605448 DOI: 10.3390/children10101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Individuals born preterm have shorter lifespans and elevated rates of chronic illness that contribute to mortality risk when compared to individuals born at term. Emerging evidence suggests that individuals born preterm or of low birthweight also exhibit physiologic and cellular biomarkers of accelerated aging. It is unclear whether, and to what extent, accelerated aging contributes to a higher risk of chronic illness and mortality among individuals born preterm. Here, we review accelerated aging phenotypes in adults born preterm and biological pathways that appear to contribute to accelerated aging. We highlight biomarkers of accelerated aging and various resiliency factors, including both pharmacologic and non-pharmacologic factors, that might buffer the propensity for accelerated aging among individuals born preterm.
Collapse
Affiliation(s)
- Audrey Bousquet
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| | - Keia Sanderson
- Department of Internal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| |
Collapse
|
10
|
Mathewson KJ, Beaton EA, Hobbs D, Hall GBC, Schulkin J, Van Lieshout RJ, Saigal S, Schmidt LA. Brain structure and function in the fourth decade of life after extremely low birth weight: An MRI and EEG study. Clin Neurophysiol 2023; 154:85-99. [PMID: 37595482 DOI: 10.1016/j.clinph.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 06/03/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE To examine potential long-term effects of extremely low birth weight (ELBW; ≤ 1000 g) on adult brain structure, brain function, and cognitive-behavioral performance. METHODS A subset of survivors from the prospectively-followed McMaster ELBW Cohort (n = 23, MBW = 816 g) and their peers born at normal birth weight (NBW; ≥ 2500 g; n = 14, MBW = 3361 g) provided T1-weighted magnetic resonance imaging (MRI) brain scans, resting electroencephalographic (EEG) recordings, and behavioral responses to a face-processing task in their early thirties. RESULTS Visual discrimination accuracy for human faces, resting EEG alpha power, and long-distance alpha coherence were lower in ELBW survivors than NBW adults, and volumes of white matter hypointensities (WMH) were higher. Across groups, face-processing performance was correlated positively with posterior EEG spectral power and long-distance alpha and theta coherence, and negatively with WMH. The associations between face-processing scores and parietal alpha power and theta coherence were reduced after adjustment for WMH. CONCLUSIONS Electrocortical activity, brain functional connectivity, and higher-order processing ability may be negatively affected by WMH burden, which is greater in adults born extremely preterm. SIGNIFICANCE Decrements in electrocortical activity and behavioral performance in adult ELBW survivors may be partly explained by increased WMH volumes in this vulnerable population.
Collapse
Affiliation(s)
- Karen J Mathewson
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada.
| | - Elliott A Beaton
- Department of Psychology, University of New Orleans, New Orleans, LA, USA
| | - Diana Hobbs
- Department of Psychology, University of New Orleans, New Orleans, LA, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jay Schulkin
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Ryan J Van Lieshout
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Saroj Saigal
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Louis A Schmidt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Schmitz-Koep B, Menegaux A, Gaser C, Brandes E, Schinz D, Thalhammer M, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:495-504. [PMID: 35276405 DOI: 10.1016/j.bpsc.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Departments of Psychiatry, University Hospital Jena, Jena, Germany; Departments of Neurology, University Hospital Jena, Jena, Germany
| | - Elin Brandes
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Berlin, Germany; UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Kelly CE, Shaul M, Thompson DK, Mainzer RM, Yang JY, Dhollander T, Cheong JL, Inder TE, Doyle LW, Anderson PJ. Long-lasting effects of very preterm birth on brain structure in adulthood: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 147:105082. [PMID: 36775083 DOI: 10.1016/j.neubiorev.2023.105082] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Early life experiences, such as very preterm (VP) birth, can affect brain and cognitive development. Several prior studies investigated brain structure in adults born VP; synthesising these studies may help to provide a clearer understanding of long-term effects of VP birth on the brain. We systematically searched Medline and Embase for articles that investigated brain structure using MRI in adulthood in individuals born VP (<32 weeks' gestation) or with very low birth weight (VLBW; <1500 g), and controls born at term or with normal birth weight. In total, 77 studies met the review inclusion criteria, of which 28 studies were eligible for meta-analyses, including data from up to 797 VP/VLBW participants and 518 controls, aged 18-33 years. VP/VLBW adults exhibited volumetric, morphologic and microstructural alterations in subcortical and temporal cortical regions compared with controls, with pooled standardised mean differences up to - 1.0 (95% confidence interval: -1.2, -0.8). This study suggests there is a persisting neurological impact of VP birth, which may provide developmental neurobiological insights for adult cognition in high-risk populations.
Collapse
Affiliation(s)
- Claire E Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Michelle Shaul
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Deakin University, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Rheanna M Mainzer
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Clinical Epidemiology and Biostatistics Unit, Population Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Joseph Ym Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatrics, Children's Hospital of Orange County, University of California Irvine, CA, USA
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
13
|
Adrian J, Sawyer C, Bakeman R, Haist F, Akshoomoff N. Longitudinal Structural and Diffusion-Weighted Neuroimaging of Young Children Born Preterm. Pediatr Neurol 2023; 141:34-41. [PMID: 36773405 DOI: 10.1016/j.pediatrneurol.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Children born preterm are at risk for diffuse injury to subcortical gray and white matter. METHODS We used a longitudinal cohort study to examine the development of subcortical gray matter and white matter volumes, and diffusivity measures of white matter tracts following preterm birth. Our participants were 47 children born preterm (24 to 32 weeks gestational age) and 28 children born at term. None of the children born preterm had significant neonatal brain injury. Children received structural and diffusion weighted magnetic resonance imaging scans at ages five, six, and seven years. We examined volumes of amygdala, hippocampus, caudate nucleus, putamen, thalamus, brainstem, cerebellar white matter, intracranial space, and ventricles, and volumes, fractional anisotropy, and mean diffusivity of anterior thalamic radiation, cingulum, corticospinal tract, corpus callosum, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, temporal and parietal superior longitudinal fasciculus, and uncinate fasciculus. RESULTS Children born preterm had smaller volumes of thalamus, brainstem, cerebellar white matter, cingulum, corticospinal tract, inferior frontal occipital fasciculus, uncinate fasciculus, and temporal superior longitudinal fasciculus, whereas their ventricles were larger compared with term-born controls. We found no significant effect of preterm birth on diffusivity measures. Despite developmental changes and growth, group differences were present and similarly strong at all three ages. CONCLUSION Even in the absence of significant neonatal brain injury, preterm birth has a persistent impact on early brain development. The lack of a significant term status by age interaction suggests a delayed developmental trajectory.
Collapse
Affiliation(s)
- Julia Adrian
- Department of Cognitive Science, University of California, San Diego, La Jolla, California; Center for Human Development, University of California, San Diego, La Jolla, California.
| | - Carolyn Sawyer
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Roger Bakeman
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Frank Haist
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Natacha Akshoomoff
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Mathewson KJ, Saigal S, Van Lieshout RJ, Schmidt LA. Intellectual functioning in survivors of extremely low birthweight: Cognitive outcomes in childhood and adolescence. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:186-204. [PMID: 36814136 DOI: 10.1111/jir.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/15/2021] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Infants born at extremely low birthweight (ELBW: ≤1000 g) are vulnerable to intellectual disabilities, but the factors that may distinguish between ELBW survivors with and without these impairments are not well understood. In this study, prospective associations between neonatal factors and functional outcomes in childhood and adolescence were compared in ELBW survivors with and without borderline intellectual functioning (BIF). METHODS Borderline intellectual functioning was defined by IQ < 85, assessed at 8 years. Among 146 ELBW survivors, 48 (33%) had IQ scores under 85, and 98 (67%) had scores equal to or over 85. Group differences in demographic and risk factors were assessed via t-test, chi-squared analysis or non-parametric tests. Neonatal factors that differed between ELBW groups were tested for association with adaptive behaviour assessed at age 5 years, and reading and arithmetic skills assessed at ages 8 and 15 years, using hierarchical regression models. RESULTS Extremely low birthweight survivors with BIF had significantly lower birthweights than ELBW survivors without BIF (790 vs. 855 g, P < 0.01) and were more likely to be born to mothers with lower socioeconomic status (SES) (78% vs. 48%, P < 0.01). These ELBW survivors also were more likely to be diagnosed with significant neurosensory impairment (NSI; 35% vs. 19%, P < 0.04), experienced more bronchopulmonary dysplasia (56% vs. 38%, P < 0.04), received more days of respiratory support (median 33 vs. 14 days, P < 0.01) and remained in hospital for longer periods (median 81 vs. 63 days, P < 0.03). Birthweight, familial SES, NSI and duration of respiratory support were significant predictors for one or more outcomes. Across groups, lower familial SES was associated with lower academic scores (Ps < 0.05), and NSI predicted lower adaptive functioning (Ps < 0.001). Other associations were moderated by group: among ELBW survivors with BIF, heavier birthweights predicted better arithmetic skills, the presence of NSI was associated with poorer arithmetic skills and more ventilation days predicted poorer reading skills. CONCLUSIONS At birth, ELBW survivors with BIF faced more physiological and social disadvantages and required more medical intervention than their ELBW peers without BIF. Smaller birth size, NSI burden and prolonged neonatal ventilatory support displayed gradients of risk for childhood and adolescent academic outcomes across groups. Whereas academic performance in ELBW survivors with BIF was sensitive to variation in birth size, NSI or ventilation days, ELBW survivors without BIF attained thresholds of intellectual ability that were sufficient to support higher levels of academic performance at both ages, regardless of their status on these factors. The findings are discussed in relation to Zigler's developmental theory of intellectual disability.
Collapse
Affiliation(s)
- K J Mathewson
- Child Emotion Lab, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - S Saigal
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - R J Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - L A Schmidt
- Child Emotion Lab, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Ryan MAJ, Mathieson SR, Livingstone V, O'Sullivan MP, Dempsey EM, Boylan GB. Sleep state organisation of moderate to late preterm infants in the neonatal unit. Pediatr Res 2023; 93:595-603. [PMID: 36474114 PMCID: PMC9988685 DOI: 10.1038/s41390-022-02319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sleep supports neurodevelopment and sleep architecture reflects brain maturation. This prospective observational study describes the nocturnal sleep architecture of healthy moderate to late preterm (MLP) infants in the neonatal unit at 36 weeks post menstrual age (PMA). METHODS MLP infants, in the neonatal unit of a tertiary hospital in Ireland from 2017 to 2018, had overnight continuous electroencephalography (cEEG) with video for a minimum 12 h at 36 weeks PMA. The total sleep time (TST) including periods of active sleep (AS), quiet sleep (QS), indeterminate sleep (IS), wakefulness and feeding were identified, annotated and quantified. RESULTS A total of 98 infants had cEEG with video monitoring suitable for analysis. The median (IQR) of TST in the 12 h period was 7.09 h (IQR 6.61-7.76 h), 4.58 h (3.69-5.09 h) in AS, 2.02 h (1.76-2.36 h) in QS and 0.65 h (0.48-0.89 h) in IS. The total duration of AS was significantly lower in infants born at lower GA (p = 0.007) whilst the duration of individual QS periods was significantly higher (p = 0.001). CONCLUSION Overnight cEEG with video at 36 weeks PMA showed that sleep state architecture is dependent on birth GA. Infants with a lower birth GA have less AS and more QS that may have implications for later neurodevelopment. IMPACT EEG provides objective information about the sleep organisation of the moderate to late preterm (MLP) infant. Quantitative changes in sleep states occur with each week of advancing gestational age (GA). Active sleep (AS) is the dominant sleep state that was significantly lower in infants born at lower GA. MLP infants who were exclusively fed orally had a shorter total sleep time and less AS compared to infants who were fed via nasogastric tube.
Collapse
Affiliation(s)
- Mary Anne J Ryan
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Wilton, Cork, Ireland
| | - Sean R Mathieson
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Vicki Livingstone
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Marc Paul O'Sullivan
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Wilton, Cork, Ireland
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
Neubauer A, Menegaux A, Wendt J, Li HB, Schmitz-Koep B, Ruzok T, Thalhammer M, Schinz D, Bartmann P, Wolke D, Priller J, Zimmer C, Rueckert D, Hedderich DM, Sorg C. Aberrant claustrum structure in preterm-born neonates: an MRI study. Neuroimage Clin 2023; 37:103286. [PMID: 36516730 PMCID: PMC9755238 DOI: 10.1016/j.nicl.2022.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The human claustrum is a gray matter structure in the white matter between insula and striatum. Previous analysis found altered claustrum microstructure in very preterm-born adults associated with lower cognitive performance. As the claustrum development is related to hypoxia-ischemia sensitive transient cell populations being at-risk in premature birth, we hypothesized that claustrum structure is already altered in preterm-born neonates. We studied anatomical and diffusion-weighted MRIs of 83 preterm- and 83 term-born neonates at term-equivalent age. Additionally, claustrum development was analyzed both in a spectrum of 377 term-born neonates and longitudinally in 53 preterm-born subjects. Data was provided by the developing Human Connectome Project. Claustrum development showed increasing volume, increasing fractional anisotropy (FA), and decreasing mean diffusivity (MD) around term both across term- and preterm-born neonates. Relative to term-born ones, preterm-born neonates had (i) increased absolute and relative claustrum volumes, both indicating increased cellular and/or extracellular matter and being in contrast to other subcortical gray matter regions of decreased volumes such as thalamus; (ii) lower claustrum FA and higher claustrum MD, pointing at increased extracellular matrix and impaired axonal integrity; and (iii) aberrant covariance between claustrum FA and MD, respectively, and that of distributed gray matter regions, hinting at relatively altered claustrum microstructure. Results together demonstrate specifically aberrant claustrum structure in preterm-born neonates, suggesting altered claustrum development in prematurity, potentially relevant for later cognitive performance.
Collapse
Affiliation(s)
- Antonia Neubauer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany.
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Jil Wendt
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Germany; Department of Quantitative Biomedicine, University of Zurich, Switzerland
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Tobias Ruzok
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Melissa Thalhammer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - David Schinz
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany; Neuropsychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Daniel Rueckert
- School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Informatics, Technical University of Munich, Germany; Department of Computing, Imperial College London, UK
| | - Dennis M Hedderich
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
17
|
Xie Y, Yang Y, Yuan T. Brain Damage in the Preterm Infant: Clinical Aspects and Recent Progress in the Prevention and Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:27-40. [PMID: 35209835 DOI: 10.2174/1871527321666220223092905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022]
Abstract
Although the prevalence of brain injury and related neurodevelopmental disabilities resulting from preterm birth are major public health concerns, there are no definite neuroprotective strategies to prevent or reduce brain injury. The pattern of brain injury seen in preterm infants has evolved into more subtle lesions that are still essential to diagnose regarding neurodevelopmental outcomes. There is no specific effective method for the treatment of premature infant brain injury, and the focus of clinical treatment is still on prevention. Prevention of this injury requires insight into the pathogenesis, but many gaps exist in our understanding of how neonatal treatment procedures and medications impact cerebral hemodynamics and preterm brain injury. Many studies provide evidence about the prevention of premature infant brain injury, which is related to some drugs (such as erythropoietin, melatonin, mesenchymal stem cells, etc.). However, there are still some controversies about the quality of research and the effectiveness of therapy. This review aims to recapitulate the results of preclinical studies and provide an update on the latest developments around etiological pathways, prevention, and treatment.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| | - Yue Yang
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| | - Tianming Yuan
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| |
Collapse
|
18
|
Schmitz-Koep B, Menegaux A, Zimmermann J, Thalhammer M, Neubauer A, Wendt J, Schinz D, Wachinger C, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Aberrant allometric scaling of cortical folding in preterm-born adults. Brain Commun 2022; 5:fcac341. [PMID: 36632185 PMCID: PMC9830984 DOI: 10.1093/braincomms/fcac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
A universal allometric scaling law has been proposed to describe cortical folding of the mammalian brain as a function of the product of cortical surface area and the square root of cortical thickness across different mammalian species, including humans. Since these cortical properties are vulnerable to developmental disturbances caused by preterm birth in humans and since these alterations are related to cognitive impairments, we tested (i) whether cortical folding in preterm-born adults follows this cortical scaling law and (ii) the functional relevance of potential scaling aberrances. We analysed the cortical scaling relationship in a large and prospectively collected cohort of 91 very premature-born adults (<32 weeks of gestation and/or birthweight <1500 g, very preterm and/or very low birth weight) and 105 full-term controls at 26 years of age based on the total surface area, exposed surface area and average cortical thickness measured with structural magnetic resonance imaging and surface-based morphometry. We found that the slope of the log-transformed cortical scaling relationship was significantly altered in adults (very preterm and/or very low birth weight: 1.24, full-term: 1.14, P = 0.018). More specifically, the slope was significantly altered in male adults (very preterm and/or very low birth weight: 1.24, full-term: 1.00, P = 0.031), while there was no significant difference in the slope of female adults (very preterm and/or very low birth weight: 1.27, full-term: 1.12, P = 0.225). Furthermore, offset was significantly lower compared with full-term controls in both male (very preterm and/or very low birth weight: -0.546, full-term: -0.538, P = 0.001) and female adults (very preterm and/or very low birth weight: -0.545, full-term: -0.538, P = 0.023), indicating a systematic shift of the regression line after preterm birth. Gestational age had a significant effect on the slope in very preterm and/or very low birth weight adults and more specifically in male very preterm and/or very low birth weight adults, indicating that the difference in slope is specifically related to preterm birth. The shape or tension term of the scaling law had no significant effect on cognitive performance, while the size of the cortex did. Results demonstrate altered scaling of cortical surface and cortical thickness in very premature-born adults. Data suggest altered mechanical forces acting on the cortex after preterm birth.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Correspondence to: Benita Schmitz-Koep, MD Department of Diagnostic and Interventional Neuroradiology Technical University of Munich, School of Medicine Klinikum rechts der Isar, Ismaninger Strasse 22 81675 Munich, Germany E-mail:
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Christian Wachinger
- Lab for Artificial Intelligence in Medical Imaging, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Josef Priller
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry CV4 7AL, UK
- Warwick Medical School, University of Warwick, University Road, Coventry CV4 7AL, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| |
Collapse
|
19
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
20
|
Grannis C, Hung A, French RC, Mattson WI, Fu X, Hoskinson KR, Gerry Taylor H, Nelson EE. Multimodal classification of extremely preterm and term adolescents using the fusiform gyrus: A machine learning approach. Neuroimage Clin 2022; 35:103078. [PMID: 35687994 PMCID: PMC9189188 DOI: 10.1016/j.nicl.2022.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Extremely preterm birth has been associated with atypical visual and neural processing of faces, as well as differences in gray matter structure in visual processing areas relative to full-term peers. In particular, the right fusiform gyrus, a core visual area involved in face processing, has been shown to have structural and functional differences between preterm and full-term individuals from childhood through early adulthood. The current study used multiple neuroimaging modalities to build a machine learning model based on the right fusiform gyrus to classify extremely preterm birth status. METHOD Extremely preterm adolescents (n = 20) and full-term peers (n = 24) underwent structural and functional magnetic resonance imaging. Group differences in gray matter density, measured via voxel-based morphometry (VBM), and blood-oxygen level-dependent (BOLD) response to face stimuli were explored within the right fusiform. Using group difference clusters as seed regions, analyses investigating outgoing white matter streamlines, regional homogeneity, and functional connectivity during a face processing task and at rest were conducted. A data driven approach was utilized to determine the most discriminative combination of these features within a linear support vector machine classifier. RESULTS Group differences in two partially overlapping clusters emerged: one from the VBM analysis showing less density in the extremely preterm cohort and one from BOLD response to faces showing greater activation in the extremely preterm relative to full-term youth. A classifier fit to the data from the cluster identified in the BOLD analysis achieved an accuracy score of 88.64% when BOLD, gray matter density, regional homogeneity, and functional connectivity during the task and at rest were included. A classifier fit to the data from the cluster identified in the VBM analysis achieved an accuracy score of 95.45% when only BOLD, gray matter density, and regional homogeneity were included. CONCLUSION Consistent with previous findings, we observed neural differences in extremely preterm youth in an area that plays an important role in face processing. Multimodal analyses revealed differences in structure, function, and connectivity that, when taken together, accurately distinguish extremely preterm from full-term born youth. Our findings suggest a compensatory role of the fusiform where less dense gray matter is countered by increased local BOLD signal. Importantly, sub-threshold differences in many modalities within the same region were informative when distinguishing between extremely preterm and full-term youth.
Collapse
Affiliation(s)
- Connor Grannis
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.
| | - Andy Hung
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Roberto C French
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Xiaoxue Fu
- College of Education, University of South Carolina, Columbia, SC, United States
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University Wexner College of Medicine, Columbus, OH, United States
| | - H Gerry Taylor
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University Wexner College of Medicine, Columbus, OH, United States
| | - Eric E Nelson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University Wexner College of Medicine, Columbus, OH, United States
| |
Collapse
|
21
|
Ni Y, Mendonça M, Baumann N, Eves R, Kajantie E, Hovi P, Tikanmäki M, Räikkönen K, Heinonen K, Indredavik MS, Evensen KAI, Johnson S, Marlow N, Wolke D. Social Functioning in Adults Born Very Preterm: Individual Participant Meta-analysis. Pediatrics 2021; 148:peds.2021-051986. [PMID: 34702720 DOI: 10.1542/peds.2021-051986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
CONTEXT There is a lack of research on individual perceptions of social experiences and social relationships among very preterm (VP) adults compared with term-born peers. OBJECTIVE To investigate self-perceived social functioning in adults born VP (<32 weeks' gestation) and/or with very low birth weight (VLBW) (<1500g) compared with term-born adults (≥37 weeks' gestation) using an individual participant data (IPD) meta-analysis. DATA SOURCES Two international consortia: Research on European Children and Adults born Preterm and Adults Born Preterm International Collaboration. STUDY SELECTION Cohorts with outcomes assessed by using the Adult Self-Report Adaptive Functioning scales (friends, spouse/partner, family, job, and education) in both groups. DATA EXTRACTION IPD from 5 eligible cohorts were collected. Raw-sum scores for each scale were standardized as z scores by using mean and SD of controls for each cohort. Pooled effect size was measured by difference (Δ) in means between groups. RESULTS One-stage analyses (1285 participants) revealed significantly lower scores for relationships with friends in VP/VLBW adults compared with controls (Δ -0.37, 95% confidence interval [CI]: -0.61 to -0.13). Differences were similar after adjusting for sex, age, and socioeconomic status (Δ -0.39, 95% CI: -0.63 to -0.15) and after excluding participants with neurosensory impairment (Δ -0.34, 95% CI: -0.61 to -0.07). No significant differences were found in other domains. LIMITATIONS Generalizability of research findings to VP survivors born in recent decades. CONCLUSIONS VP/VLBW adults scored their relationship with friends lower but perceived their family and partner relationships, as well as work and educational experiences, as comparable to those of controls.
Collapse
Affiliation(s)
- Yanyan Ni
- Department of Psychology, University of Warwick, Coventry, United Kingdom.,EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Marina Mendonça
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Robert Eves
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Eero Kajantie
- Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Helsinki, Finland.,Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Hospital, Helsinki University Hospital
| | - Petteri Hovi
- Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, Helsinki University Hospital
| | - Marjaana Tikanmäki
- Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Helsinki, Finland.,Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Programs in Psychology and Comparative Social Policy and Welfare, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Marit S Indredavik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kari-Anne I Evensen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Unit for Physiotherapy Services, Trondheim Municipality, Trondheim, Norway.,Department of Physiotherapy, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Samantha Johnson
- Department of Health Sciences, University of Leicester, George Davies Centre, Leicester, United Kingdom
| | - Neil Marlow
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Hedderich DM, Menegaux A, Li H, Schmitz-Koep B, Stämpfli P, Bäuml JG, Berndt MT, Bäuerlein FJB, Grothe MJ, Dyrba M, Avram M, Boecker H, Daamen M, Zimmer C, Bartmann P, Wolke D, Sorg C. Aberrant Claustrum Microstructure in Humans after Premature Birth. Cereb Cortex 2021; 31:5549-5559. [PMID: 34171095 DOI: 10.1093/cercor/bhab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hongwei Li
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Stämpfli
- MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, 8032 Zurich, Switzerland
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany
| | - Mihai Avram
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, 23538 Lübeck, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany.,Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, CV4 7AL, Coventry, UK.,Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
23
|
Schmitz-Koep B, Haller B, Coupé P, Menegaux A, Gaser C, Zimmer C, Wolke D, Bartmann P, Sorg C, Hedderich DM. Grey and White Matter Volume Changes after Preterm Birth: A Meta-Analytic Approach. J Pers Med 2021; 11:jpm11090868. [PMID: 34575645 PMCID: PMC8468941 DOI: 10.3390/jpm11090868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Cross-sectional studies have reported lower brain grey matter volumes (GMV) and white matter volumes (WMV) in preterm (PT) born individuals. While large MRI studies in the normative population have led to a better understanding of brain growth trajectories across the lifespan, such results remain elusive for PT born individuals since large, aggregated datasets of PT born individuals do not exist. To close this gap, we investigated GMV and WMV in PT born individuals as reported in the literature and contrasted it against individual volumetric data and trajectories from the general population. Systematic database search of PubMed and Web of Science in March 2021, and extraction of outcome measures were conducted by two independent reviewers. Individual data on full-term (FT) controls was extracted from freely available databases. Mean GMV, WMV, total intracranial volume (TIV), and mean age at scan were the main outcome measures. Of 532 identified records, nine studies were included with 538 PT born subjects between 1.1 and 28.5 years of age. Reference data was generated from 880 FT controls between 1 and 30 years of age. GMV was consistently lower in PT born individuals from infancy to early adulthood with no evidence for catch-up growth. While GMV changes followed a similar trajectory as FT controls, WMV was particularly low in adolescence after PT birth. Results demonstrate altered brain volumes after PT birth across the first half of lifespan. Future studies should address this issue in large aggregated datasets of PT born individuals.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (A.M.); (C.Z.); (C.S.); (D.M.H.)
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Correspondence:
| | - Bernhard Haller
- Institute of Medical Informatics, Statistics and Epidemiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique (LaBRI) UMR 5800, CNRS, Bordeaux INP, University of Bordeaux, F-33400 Talence, France;
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (A.M.); (C.Z.); (C.S.); (D.M.H.)
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Gaser
- Department of Psychiatry, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
- Department of Neurology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (A.M.); (C.Z.); (C.S.); (D.M.H.)
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry CV4 7AL, UK;
- Warwick Medical School, University of Warwick, University Road, Coventry CV4 7AL, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (A.M.); (C.Z.); (C.S.); (D.M.H.)
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (A.M.); (C.Z.); (C.S.); (D.M.H.)
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
24
|
Schmitz-Koep B, Zimmermann J, Menegaux A, Nuttall R, Bäuml JG, Schneider SC, Daamen M, Boecker H, Zimmer C, Wolke D, Bartmann P, Hedderich DM, Sorg C. Within amygdala: Basolateral parts are selectively impaired in premature-born adults. Neuroimage Clin 2021; 31:102780. [PMID: 34391140 PMCID: PMC8374486 DOI: 10.1016/j.nicl.2021.102780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
While it is known that whole amygdala volume is lastingly reduced after premature birth, it is unknown whether different amygdala nuclei are distinctively affected by prematurity. This question is motivated by two points: First, the observation that developmental trajectories of superficial, centromedial and basolateral amygdala nuclei are different. And second, the expectation that these different developmental pathways are distinctively affected by prematurity. Furthermore, we stated the question whether alterations in amygdala nuclei are associated with increased adults' anxiety traits after premature birth. We investigated 101 very premature-born adults (<32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls of a prospectively and longitudinally collected cohort at 26 years of age using automated amygdala nuclei segmentation based on structural MRI. We found selectively reduced volumes of bilateral accessory basal nuclei (pertaining to the basolateral amygdala of claustral developmental trajectory) adjusted for whole amygdala volume. Volumes of bilateral accessory basal nuclei were positively associated with gestational age and negatively associated with duration of ventilation. Furthermore, structural covariance within the basolateral amygdala was increased in premature-born adults. We did not find an association between reduced volumes of basolateral amygdala and increased social anxiety in the prematurity group. These results demonstrate specifically altered basolateral amygdala structure in premature-born adults. Data suggest that prematurity has distinct effects on amygdala nuclei.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Josef G Bäuml
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Sebastian C Schneider
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry CV4 7AL, United Kingdom; Warwick Medical School, University of Warwick, University Road, Coventry CV4 7AL, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
25
|
Menegaux A, Meng C, Bäuml JG, Berndt MT, Hedderich DM, Schmitz-Koep B, Schneider S, Nuttall R, Zimmermann J, Daamen M, Zimmer C, Boecker H, Bartmann P, Wolke D, Sorg C. Aberrant cortico-thalamic structural connectivity in premature-born adults. Cortex 2021; 141:347-362. [PMID: 34126289 DOI: 10.1016/j.cortex.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Premature birth is associated with alterations in brain structure, particularly in white matter. Among white matter, alterations in cortico-thalamic connections are present in premature-born infants, and they have been suggested both to last until adulthood and to contribute to impaired cognitive functions. To test these hypotheses, 70 very premature-born adults and 67 full-term controls underwent cognitive testing and diffusion-weighted imaging. Each cortical hemisphere was parcellated into six lobes, from which probabilistic tractography was performed to the thalamus. Connection probability was chosen as metric of structural connectivity. We found increased cortico-thalamic connection probability between left prefrontal cortices and left medio-dorsal thalamus and reduced connection probability between bilateral temporal cortices and bilateral anterior thalami in very premature-born adults. Aberrant prefronto- and temporo-thalamic connection probabilities were correlated with birth weight and days on ventilation, respectively, supporting the suggestion that these connectivity changes relate with the degree of prematurity. Moreover, an increase in left prefronto-thalamic connection probability also correlated with lower verbal comprehension index indicating its relevance for verbal cognition. Together, our results demonstrate that cortico-thalamic structural connectivity is aberrant in premature-born adults, with these changes being linked with impairments in verbal cognitive abilities. Due to corresponding findings in infants, data suggest aberrant development of cortico-thalamic connectivity after premature birth with lasting effects into adulthood.
Collapse
Affiliation(s)
- Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Chun Meng
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Schneider
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
26
|
Hedderich DM, Menegaux A, Schmitz-Koep B, Nuttall R, Zimmermann J, Schneider SC, Bäuml JG, Daamen M, Boecker H, Wilke M, Zimmer C, Wolke D, Bartmann P, Sorg C, Gaser C. Increased Brain Age Gap Estimate (BrainAGE) in Young Adults After Premature Birth. Front Aging Neurosci 2021; 13:653365. [PMID: 33867970 PMCID: PMC8047054 DOI: 10.3389/fnagi.2021.653365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Recent evidence suggests increased metabolic and physiologic aging rates in premature-born adults. While the lasting consequences of premature birth on human brain development are known, its impact on brain aging remains unclear. We addressed the question of whether premature birth impacts brain age gap estimates (BrainAGE) using an accurate and robust machine-learning framework based on structural MRI in a large cohort of young premature-born adults (n = 101) and full-term (FT) controls (n = 111). Study participants are part of a geographically defined population study of premature-born individuals, which have been followed longitudinally from birth until young adulthood. We investigated the association between BrainAGE scores and perinatal variables as well as with outcomes of physical (total intracranial volume, TIV) and cognitive development (full-scale IQ, FS-IQ). We found increased BrainAGE in premature-born adults [median (interquartile range) = 1.4 (-1.3-4.7 years)] compared to full-term controls (p = 0.002, Cohen's d = 0.443), which was associated with low Gestational age (GA), low birth weight (BW), and increased neonatal treatment intensity but not with TIV or FS-IQ. In conclusion, results demonstrate elevated BrainAGE in premature-born adults, suggesting an increased risk for accelerated brain aging in human prematurity.
Collapse
Affiliation(s)
- Dennis M. Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Anesthesiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian C. Schneider
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef G. Bäuml
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marko Wilke
- Department of Pediatric Neurology and Developmental Medicine and Experimental Pediatric Neuroimaging group, University of Tübingen, Tübingen, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus, Bonn, Germany
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Department of Psychiatry, University Hospital Jena, Jena, Germany
- Department of Neurology, University Hospital Jena, Jena, Germany
| |
Collapse
|
27
|
Lapidaire W, Clark C, Fewtrell MS, Lucas A, Leeson P, Lewandowski AJ. The Preterm Heart-Brain Axis in Young Adulthood: The Impact of Birth History and Modifiable Risk Factors. J Clin Med 2021; 10:jcm10061285. [PMID: 33808886 PMCID: PMC8003804 DOI: 10.3390/jcm10061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
People born preterm are at risk of developing both cardiac and brain abnormalities. We aimed to investigate whether cardiovascular physiology may directly affect brain structure in young adulthood and whether cardiac changes are associated with modifiable biomarkers. Forty-eight people born preterm, followed since birth, underwent cardiac MRI at age 25.1 ± 1.4 years and brain MRI at age 33.4 ± 1.0 years. Term born controls were recruited at both time points for comparison. Cardiac left and right ventricular stroke volume, left and right ventricular end diastolic volume and right ventricular ejection fraction were significantly different between preterm and term born controls and associated with subcortical brain volumes and fractional anisotropy in the corpus callosum in the preterm group. This suggests that cardiovascular abnormalities in young adults born preterm are associated with potentially adverse future brain health. Associations between left ventricular stroke volume indexed to body surface area and right putamen volumes, as well as left ventricular end diastolic length and left thalamus volumes, remained significant when adjusting for early life factors related to prematurity. Although no significant associations were found between modifiable biomarkers and cardiac physiology, this highlights that cardiovascular health interventions may also be important for brain health in preterm born adults.
Collapse
Affiliation(s)
- Winok Lapidaire
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chris Clark
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mary S Fewtrell
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alan Lucas
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Schmitz-Koep B, Zimmermann J, Menegaux A, Nuttall R, Bäuml JG, Schneider SC, Daamen M, Boecker H, Zimmer C, Wolke D, Bartmann P, Hedderich DM, Sorg C. Decreased amygdala volume in adults after premature birth. Sci Rep 2021; 11:5403. [PMID: 33686187 PMCID: PMC7970879 DOI: 10.1038/s41598-021-84906-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Premature-born infants have impaired amygdala structure, presumably due to increased stress levels of premature birth mediated by the amygdala. However, accounting for lifelong plasticity of amygdala, it is unclear whether such structural changes persist into adulthood. To address this problem, we stated the following questions: first, are whole amygdala volumes reduced in premature-born adults? And second, as adult anxiety traits are often increased after prematurity and linked with amygdala structure, are alterations in amygdala associated with adults' anxiety traits after premature birth? We addressed these questions by automated amygdala segmentation of MRI volumes in 101 very premature-born adults (< 32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls at 26 years of age of a prospectively and longitudinally collected cohort. We found significantly lower whole amygdala volumes in premature-born adults. While premature-born adults had significantly higher T score for avoidant personality reflecting increased social anxiety trait, this trait was not correlated with amygdala volume alterations. Results demonstrate reduced amygdala volumes in premature born adults. Data suggest lasting effects of prematurity on amygdala structure.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Josef G Bäuml
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian C Schneider
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
29
|
Galinsky R, van de Looij Y, Mitchell N, Dean JM, Dhillon SK, Yamaguchi K, Lear CA, Wassink G, Davidson JO, Nott F, Zahra VA, Kelly SB, King VJ, Sizonenko SV, Bennet L, Gunn AJ. Magnetic Resonance Imaging Correlates of White Matter Gliosis and Injury in Preterm Fetal Sheep Exposed to Progressive Systemic Inflammation. Int J Mol Sci 2020; 21:ijms21238891. [PMID: 33255257 PMCID: PMC7727662 DOI: 10.3390/ijms21238891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Progressive fetal infection/inflammation is strongly associated with neural injury after preterm birth. We aimed to test the hypotheses that progressively developing fetal inflammation leads to neuroinflammation and impaired white matter development and that the histopathological changes can be detected using high-field diffusion tensor magnetic resonance imaging (MRI). Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive intravenous saline (control; n = 6) or a progressive infusion of lipopolysaccharide (LPS, 200 ng intravenous over 24 h then doubled every 24 h for 5 days to induce fetal inflammation, n = 7). Sheep were killed 10 days after starting the infusions, for histology and high-field diffusion tensor MRI. Progressive LPS infusion was associated with increased circulating interleukin (IL)-6 concentrations and moderate increases in carotid artery perfusion and the frequency of electroencephalogram (EEG) activity (p < 0.05 vs. control). In the periventricular white matter, fractional anisotropy (FA) was increased, and orientation dispersion index (ODI) was reduced (p < 0.05 vs. control for both). Histologically, in the same brain region, LPS infusion increased microglial activation and astrocyte numbers and reduced the total number of oligodendrocytes with no change in myelination or numbers of immature/mature oligodendrocytes. Numbers of astrocytes in the periventricular white matter were correlated with increased FA and reduced ODI signal intensities. Astrocyte coherence was associated with increased FA. Moderate astrogliosis, but not loss of total oligodendrocytes, after progressive fetal inflammation can be detected with high-field diffusion tensor MRI.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria 3800, Australia
| | - Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, Gynaecology & Obstetrics, School of Medicine, University of Geneva, 1015 Geneva, Switzerland; (Y.v.d.L.); (S.V.S.)
| | - Natasha Mitchell
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Justin M. Dean
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Simerdeep K. Dhillon
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Kyohei Yamaguchi
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Christopher A. Lear
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Joanne O. Davidson
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Fraser Nott
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
| | - Valerie A. Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
| | - Sharmony B. Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria 3800, Australia
| | - Victoria J. King
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Stéphane V. Sizonenko
- Division of Child Development & Growth, Department of Pediatrics, Gynaecology & Obstetrics, School of Medicine, University of Geneva, 1015 Geneva, Switzerland; (Y.v.d.L.); (S.V.S.)
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Alistair J. Gunn
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
- Correspondence:
| |
Collapse
|
30
|
Menegaux A, Hedderich DM, Bäuml JG, Manoliu A, Daamen M, Berg RC, Preibisch C, Zimmer C, Boecker H, Bartmann P, Wolke D, Sorg C, Stämpfli P. Reduced apparent fiber density in the white matter of premature-born adults. Sci Rep 2020; 10:17214. [PMID: 33057208 PMCID: PMC7560721 DOI: 10.1038/s41598-020-73717-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Premature-born adults exhibit lasting white matter alterations as demonstrated by widespread reduction in fractional anisotropy (FA) based on diffusion-weighted imaging (DWI). FA reduction, however, is non-specific for microscopic underpinnings such as aberrant myelination or fiber density (FD). Using recent advances in DWI, we tested the hypothesis of reduced FD in premature-born adults and investigated its link with the degree of prematurity and cognition. 73 premature- and 89 mature-born adults aged 25-27 years underwent single-shell DWI, from which a FD measure was derived using convex optimization modeling for microstructure informed tractography (COMMIT). Premature-born adults exhibited lower FD in numerous tracts including the corpus callosum and corona radiata compared to mature-born adults. These FD alterations were associated with both the degree of prematurity, as assessed via gestational age and birth weight, as well as with reduced cognition as measured by full-scale IQ. Finally, lower FD overlapped with lower FA, suggesting lower FD underlie unspecific FA reductions. Results provide evidence that premature birth leads to lower FD in adulthood which links with lower full-scale IQ. Data suggest that lower FD partly underpins FA reductions of premature birth but that other processes such as hypomyelination might also take place.
Collapse
Affiliation(s)
- Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany. .,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef G Bäuml
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Centre for Computational Psychiatry and Ageing Research, Max Planck University College London, London, UK
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.,Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Ronja C Berg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,MR-Center of the Department of Psychiatry, Psychotherapy, and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric Hospital of the University of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Hedderich DM, Avram M, Menegaux A, Nuttall R, Zimmermann J, Schneider SC, Schmitz-Koep B, Daamen M, Scheef L, Boecker H, Zimmer C, Baumann N, Bartmann P, Wolke D, Bäuml JG, Sorg C. Hippocampal subfield volumes are nonspecifically reduced in premature-born adults. Hum Brain Mapp 2020; 41:5215-5227. [PMID: 32845045 PMCID: PMC7670635 DOI: 10.1002/hbm.25187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 01/06/2023] Open
Abstract
Reduced global hippocampus volumes have been demonstrated in premature‐born individuals, from newborns to adults; however, it is unknown whether hippocampus subfield (HCSF) volumes are differentially affected by premature birth and how relevant they are for cognitive performance. To address these questions, we investigated magnetic resonance imaging (MRI)‐derived HCSF volumes in very premature‐born adults, and related them with general cognitive performance in adulthood. We assessed 103 very premature‐born (gestational age [GA] <32 weeks and/or birth weight <1,500 g) and 109 term‐born individuals with cognitive testing and structural MRI at 26 years of age. HCSFs were automatically segmented based on three‐dimensional T1‐ and T2‐weighted sequences and studied both individually and grouped into three functional units, namely hippocampus proper (HP), subicular complex (SC), and dentate gyrus (DG). Cognitive performance was measured using the Wechsler‐Adult‐Intelligence‐Scale (full‐scale intelligence quotient [FS‐IQ]) at 26 years. We observed bilateral volume reductions for almost all HCSF volumes in premature‐born adults and associations with GA and neonatal treatment intensity but not birth weight. Left‐sided HP, SC, and DG volumes were associated with adult FS‐IQ. Furthermore, left DG volume was a mediator of the association between GA and adult FS‐IQ in premature‐born individuals. Results demonstrate nonspecifically reduced HCSF volumes in premature‐born adults; but specific associations with cognitive outcome highlight the importance of the left DG. Data suggest that specific interventions toward hippocampus function might be promising to lower adverse cognitive effects of prematurity.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Sebastian C Schneider
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.,Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Josef G Bäuml
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
32
|
Schmitz-Koep B, Bäuml JG, Menegaux A, Nuttall R, Zimmermann J, Schneider SC, Daamen M, Scheef L, Boecker H, Zimmer C, Gaser C, Wolke D, Bartmann P, Sorg C, Hedderich DM. Decreased cortical thickness mediates the relationship between premature birth and cognitive performance in adulthood. Hum Brain Mapp 2020; 41:4952-4963. [PMID: 32820839 PMCID: PMC7643384 DOI: 10.1002/hbm.25172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 01/05/2023] Open
Abstract
Cortical thickness (CTh) reflects cortical properties such as dendritic complexity and synaptic density, which are not only vulnerable to developmental disturbances caused by premature birth but also highly relevant for cognitive performance. We tested the hypotheses whether CTh in young adults is altered after premature birth and whether these aberrations are relevant for general cognitive abilities. We investigated CTh based on brain structural magnetic resonance imaging and surface-based morphometry in a large and prospectively collected cohort of 101 very premature-born adults (<32 weeks of gestation and/or birth weight [BW] below 1,500 g) and 111 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. CTh was reduced in frontal, parietal, and temporal associative cortices predominantly in the left hemisphere in premature-born adults compared to controls. We found a significant positive association of CTh with both gestational age and BW, particularly in the left hemisphere, and a significant negative association between CTh and intensity of neonatal treatment within limited regions bilaterally. Full-scale IQ and CTh in the left hemisphere were positively correlated. Furthermore, CTh in the left hemisphere acted as a mediator on the association between premature birth and full-scale IQ. Results provide evidence that premature born adults have widespread reduced CTh that is relevant for their general cognitive performance. Data suggest lasting reductions in cortical microstructure subserving CTh after premature birth.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian C Schneider
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.,Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Department of Psychiatry, University Hospital Jena, Jena, Germany.,Department of Neurology, University Hospital Jena, Jena, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
33
|
Hadaya L, Nosarti C. The neurobiological correlates of cognitive outcomes in adolescence and adulthood following very preterm birth. Semin Fetal Neonatal Med 2020; 25:101117. [PMID: 32451305 DOI: 10.1016/j.siny.2020.101117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Very preterm birth (<33 weeks of gestation) has been associated with alterations in structural and functional brain development in regions that are believed to underlie a variety of cognitive processes. While such alterations have been often studied in the context of cognitive vulnerability, early disruption to programmed developmental processes may also lead to neuroplastic and functional adaptations, which support cognitive performance. In this review, we will focus on executive function and intelligence as the main cognitive outcomes following very preterm birth in adolescence and adulthood in relation to their structural and functional neurobiological correlates. The neuroimaging modalities we review provide quantitative assessments of brain morphology, white matter macro and micro-structure, structural and functional connectivity and haemodynamic responses associated with specific cognitive operations. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth may guide the development and implementation of targeted neurobehaviourally-informed interventions for those at high risk.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Science and Medicine, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
34
|
Inhibition is associated with whole-brain structural brain connectivity on network level in school-aged children born very preterm and at term. Neuroimage 2020; 218:116937. [PMID: 32416228 DOI: 10.1016/j.neuroimage.2020.116937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain connectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition deficits in school-aged children born very preterm. In a group of 67 very preterm participants aged 8-13 years and 69 term-born peers, inhibition abilities were assessed with two tasks. In a subgroup of 50 very preterm and 62 term-born participants, diffusion tensor imaging (DTI) data were collected. Using network-based statistics (NBS), mean fractional anisotropy (FAmean) was compared between groups. Associations of FAmean and inhibition abilities were explored through linear regression. The composite score of inhibition abilities was lower in the very preterm group (M = -0.4, SD = 0.8) than in the term-born group (M = 0.0, SD = 0.8) but group differences were not significant when adjusting for age, sex and socio-economic status (β = -0.13, 95%-CI [-0.30, 0.04], p = 0.13). In the very preterm group, FAmean was significantly lower in a network comprising thalamo-frontal, thalamo-temporal, frontal, cerebellar and intra-hemispheric connections than in the term-born group (t = 5.21, lowest p-value = 0.001). Irrespective of birth status, a network comprising parietal, cerebellar and subcortical connections was positively associated with inhibition abilities (t = 4.23, lowest p-value = 0.02). Very preterm birth results in long-term alterations of SC at network-level. As networks underlying inhibition abilities do not overlap with those differing between the groups, FAmean may not be adequate to explain inhibition problems in very preterm children. Future studies should combine complementary measures of brain connectivity to address neural correlates of inhibition abilities.
Collapse
|
35
|
Hedderich DM, Boeckh-Behrens T, Bäuml JG, Menegaux A, Daamen M, Zimmer C, Bartmann P, Scheef L, Boecker H, Wolke D, Sorg C, Spiro JE. Sequelae of Premature Birth in Young Adults : Incidental Findings on Routine Brain MRI. Clin Neuroradiol 2020; 31:325-333. [PMID: 32291477 PMCID: PMC8211575 DOI: 10.1007/s00062-020-00901-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 01/14/2023]
Abstract
Background and Purpose Qualitative studies about the abnormalities appreciated on routine magnetic resonance imaging (MRI) sequences in prematurely born adults are lacking. This article aimed at filling this knowledge gap by (1) qualitatively describing routine imaging findings in prematurely born adults, (2) evaluating measures for routine image interpretation and (3) investigating the impact of perinatal variables related to premature birth. Methods In this study two board-certified radiologists assessed T1-weighted and FLAIR-weighted images of 100 prematurely born adults born very preterm (VP <32 weeks) and/or at very low birth weight (VLBW <1500 g) and 106 controls born at full term (FT) (mean age 26.8 ± 0.7 years). The number of white matter lesions (WML) was counted according to localization. Lateral ventricle volume (LVV) was evaluated subjectively and by measurements of Evans’ index (EI) and frontal-occipital-horn ratio (FOHR). Freesurfer-based volumetry served as reference standard. Miscellaneous incidental findings were noted as free text. Results The LVV was increased in 24.7% of VP/VLBW individuals and significantly larger than in FT controls. This was best identified by measurement of FOHR (AUC = 0.928). Ventricular enlargement was predicted by low gestational age (odds ratio: 0.71, 95% CI 0.51–0.98) and presence of neonatal intracranial hemorrhage (odds ratio: 0.26, 95% CI 0.07–0.92). The numbers of deep and periventricular WML were increased while subcortical WMLs were not. Conclusion Enlargement of the LVV and deep and periventricular WMLs are typical sequelae of premature birth that can be appreciated on routine brain MRI. To increase sensitivity of abnormal LVV detection, measurement of FOHR seems feasible in clinical practice. Electronic supplementary material The online version of this article (10.1007/s00062-020-00901-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dennis M Hedderich
- TUM-NIC Neuroimaging Center, Munich, Germany. .,Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Tobias Boeckh-Behrens
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Aurore Menegaux
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Judith E Spiro
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
36
|
Wehrle FM, Lustenberger C, Buchmann A, Latal B, Hagmann CF, O'Gorman RL, Huber R. Multimodal assessment shows misalignment of structural and functional thalamocortical connectivity in children and adolescents born very preterm. Neuroimage 2020; 215:116779. [PMID: 32276056 DOI: 10.1016/j.neuroimage.2020.116779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Thalamocortical connections are altered following very preterm birth but it is unknown whether structural and functional alterations are linked and how they contribute to neurodevelopmental deficits. We used a multimodal approach in 27 very preterm and 35 term-born children and adolescents aged 10-16 years: Structural thalamocortical connectivity was quantified with two measures derived from probabilistic tractography of diffusion tensor data, namely the volume of thalamic segments with cortical connections and mean fractional anisotropy (FA) within the respective segments. High-density sleep EEG was recorded and sleep spindles were identified at each electrode. Sleep spindle density and integrated spindle activity (ISA) were calculated to quantify functional thalamocortical connectivity. In term-born participants, the volume of the global thalamic segment with cortical connections was strongly related to sleep spindles across the entire head (mean r = .53 ± .10; range = 0.35 to 0.78). Regionally, the volume of the thalamic segment connecting to frontal brain regions correlated with sleep spindle density in two clusters of electrodes over fronto-temporal brain regions (.42 ± .06; 0.35 to 0.51 and 0.43 ± .08; 0.35 to 0.62) and the volume of the thalamic segment connecting to parietal brain regions correlated with sleep spindle density over parietal brain regions (mean r = .43 ± .07; 0.35 to 0.61). In very preterm participants, the volume of the thalamic segments was not associated with sleep spindles. In the very preterm group, mean FA within the global thalamic segment was negatively correlated with ISA over a cluster of frontal and temporo-occipital brain regions (mean r = -.53 ± .07; -.41 to -.72). No association between mean FA and ISA was found in the term-born group. With this multimodal study protocol, we identified a potential misalignment between structural and functional thalamocortical connectivity in children and adolescents born very preterm. Eventually, this may shed further light on the neuronal mechanisms underlying neurodevelopmental sequelae of preterm birth.
Collapse
Affiliation(s)
- Flavia M Wehrle
- University Children's Hospital Zurich, Child Development Center, Switzerland; University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Switzerland; University Children's Hospital Zurich, Children's Research Center, Switzerland
| | | | - Andreas Buchmann
- University Children's Hospital Zurich, Center for MR Research, Switzerland
| | - Beatrice Latal
- University Children's Hospital Zurich, Child Development Center, Switzerland; University Children's Hospital Zurich, Children's Research Center, Switzerland
| | - Cornelia F Hagmann
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Switzerland; University Children's Hospital Zurich, Children's Research Center, Switzerland
| | - Ruth L O'Gorman
- University Children's Hospital Zurich, Children's Research Center, Switzerland; University Children's Hospital Zurich, Center for MR Research, Switzerland
| | - Reto Huber
- University Children's Hospital Zurich, Child Development Center, Switzerland; University Children's Hospital Zurich, Children's Research Center, Switzerland; Psychiatric Hospital, University of Zurich, Department of Child and Adolescent Psychiatry and Psychotherapy, Switzerland.
| |
Collapse
|
37
|
Galinsky R, Dhillon SK, Dean JM, Davidson JO, Lear CA, Wassink G, Nott F, Kelly SB, Fraser M, Yuill C, Bennet L, Gunn AJ. Tumor necrosis factor inhibition attenuates white matter gliosis after systemic inflammation in preterm fetal sheep. J Neuroinflammation 2020; 17:92. [PMID: 32293473 PMCID: PMC7087378 DOI: 10.1186/s12974-020-01769-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Increased circulating levels of tumor necrosis factor (TNF) are associated with greater risk of impaired neurodevelopment after preterm birth. In this study, we tested the hypothesis that systemic TNF inhibition, using the soluble TNF receptor Etanercept, would attenuate neuroinflammation in preterm fetal sheep exposed to lipopolysaccharide (LPS). Methods Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive saline (control; n = 7), LPS infusion (100 ng/kg i.v. over 24 h then 250 ng/kg/24 h for 96 h plus 1 μg LPS boluses at 48, 72, and 96 h, to induce inflammation; n = 8) or LPS plus two i.v. infusions of Etanercept (2 doses, 5 mg/kg infused over 30 min, 48 h apart) started immediately before LPS-exposure (n = 8). Sheep were killed 10 days after starting infusions, for histology. Results LPS boluses were associated with increased circulating TNF, interleukin (IL)-6 and IL-10, electroencephalogram (EEG) suppression, hypotension, tachycardia, and increased carotid artery perfusion (P < 0.05 vs. control). In the periventricular and intragyral white matter, LPS exposure increased gliosis, TNF-positive cells, total oligodendrocytes, and cell proliferation (P < 0.05 vs control), but did not affect myelin expression or numbers of neurons in the cortex and subcortical regions. Etanercept delayed the rise in circulating IL-6, prolonged the increase in IL-10 (P < 0.05 vs. LPS), and attenuated EEG suppression, hypotension, and tachycardia after LPS boluses. Histologically, Etanercept normalized LPS-induced gliosis, and increase in TNF-positive cells, proliferation, and total oligodendrocytes. Conclusion TNF inhibition markedly attenuated white matter gliosis but did not affect mature oligodendrocytes after prolonged systemic inflammation in preterm fetal sheep. Further studies of long-term brain maturation are now needed.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Simerdeep K Dhillon
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Christopher A Lear
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Fraser Nott
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mhoyra Fraser
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Caroline Yuill
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand
| | - Alistair Jan Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|
38
|
Hedderich DM, Bäuml JG, Menegaux A, Avram M, Daamen M, Zimmer C, Bartmann P, Scheef L, Boecker H, Wolke D, Gaser C, Sorg C. An analysis of MRI derived cortical complexity in premature-born adults: Regional patterns, risk factors, and potential significance. Neuroimage 2020; 208:116438. [DOI: 10.1016/j.neuroimage.2019.116438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 01/20/2023] Open
|
39
|
Abstract
Around 15 million children are born preterm (<37 weeks of gestation) every year. Of these, 15% or 2.25 million are born very preterm (VP; <32 weeks of gestation). Here, the developmental outcomes of VP babies in diverse domains from motor, cognitive, and social function to mental health and well-being throughout childhood and adolescence are reviewed. Their life course adaptation in terms of romantic relationships, employment, and quality of life into adulthood is also considered. Some adverse effects reduce as individuals age, and others remain remarkably stable from childhood into adulthood. We argue that to advance understanding of developmental mechanisms and direct resources for intervention more effectively, social factors need to be assessed more comprehensively, and genetically sensitive designs should be considered with neuroimaging integrated to test alternative developmental models. As current evidence is based almost exclusively on studies from high-income countries, research from low- and middle-income countries is urgently needed.
Collapse
Affiliation(s)
- Dieter Wolke
- Department of Psychology, University of Warwick, Coventry CV4 7AL, United Kingdom;,
- Mental Health and Wellbeing, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Samantha Johnson
- Department of Health Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Marina Mendonça
- Department of Psychology, University of Warwick, Coventry CV4 7AL, United Kingdom;,
| |
Collapse
|
40
|
Linking the impact of aging on visual short-term memory capacity with changes in the structural connectivity of posterior thalamus to occipital cortices. Neuroimage 2019; 208:116440. [PMID: 31841682 DOI: 10.1016/j.neuroimage.2019.116440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Aging impacts both visual short-term memory (vSTM) capacity and thalamo-cortical connectivity. According to the Neural Theory of Visual Attention, vSTM depends on the structural connectivity between posterior thalamus and visual occipital cortices (PT-OC). We tested whether aging modifies the association between vSTM capacity and PT-OC structural connectivity. To do so, 66 individuals aged 20-77 years were assessed by diffusion-weighted imaging used for probabilistic tractography and performed a psychophysical whole-report task of briefly presented letter arrays, from which vSTM capacity estimates were derived. We found reduced vSTM capacity, and aberrant PT-OC connection probability in aging. Critically, age modified the relationship between vSTM capacity and PT-OC connection probability: in younger adults, vSTM capacity was negatively correlated with PT-OC connection probability while in older adults, this association was positive. Furthermore, age modified the microstructure of PT-OC tracts suggesting that the inversion of the association between PT-OC connection probability and vSTM capacity with aging might reflect age-related changes in white-matter properties. Accordingly, our results demonstrate that age-related differences in vSTM capacity links with the microstructure and connectivity of PT-OC tracts.
Collapse
|
41
|
Vandewouw MM, Young JM, Mossad SI, Sato J, Whyte HAE, Shroff MM, Taylor MJ. Mapping the neuroanatomical impact of very preterm birth across childhood. Hum Brain Mapp 2019; 41:892-905. [PMID: 31692204 PMCID: PMC7267987 DOI: 10.1002/hbm.24847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/16/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Those born very preterm (VPT; <32 weeks gestational age) have an increased risk in developing a wide range of cognitive deficits. In early-to-late childhood, brain structure has been shown to be altered in VPT compared to full-term (FT) children; however, the results are inconsistent. The current study examined subcortical volumes, cortical thickness, and surface area in a large cohort of VPT and FT children aged 4-12 years. Structural magnetic resonance imaging (MRI) was obtained on 120 VPT and 146 FT children who returned up to three times, resulting in 176 VPT and 173 FT unique data points. For each participant, Corticometric Iterative Vertex-based Estimation of Thickness was used to obtain global measurements of total brain, cortical grey and cortical white matter volumes, along with surface-based measurements of cortical thickness and surface area, and Multiple Automatically Generated Templates (MAGeT) brain segmentation tool was used to segment the subcortical structures. To examine group differences and group-age interactions, mixed-effects models were used (controlling for whole-brain volume). We found few differences between the two groups in subcortical volumes. The VPT children showed increased cortical thickness in frontal, occipital and fusiform gyri and inferior pre-post-central areas, while thinning occurred in the midcingulate. Cortical thickness in occipital regions showed more rapid decreases with age in the VPT compared to the FT children. VPT children also showed both regional increases, particularly in the temporal lobe, and decreases in surface area. Our results indicate a delayed maturational trajectory in those born VPT.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia M Young
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Sarah I Mossad
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Julie Sato
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Hilary A E Whyte
- Division of Neonatology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Manohar M Shroff
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Menegaux A, Napiorkowski N, Neitzel J, Ruiz-Rizzo AL, Petersen A, Müller HJ, Sorg C, Finke K. Theory of visual attention thalamic model for visual short-term memory capacity and top-down control: Evidence from a thalamo-cortical structural connectivity analysis. Neuroimage 2019; 195:67-77. [DOI: 10.1016/j.neuroimage.2019.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/15/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022] Open
|
43
|
Shang J, Fisher P, Bäuml JG, Daamen M, Baumann N, Zimmer C, Bartmann P, Boecker H, Wolke D, Sorg C, Koutsouleris N, Dwyer DB. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum Brain Mapp 2019; 40:4239-4252. [PMID: 31228329 DOI: 10.1002/hbm.24698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Imaging studies have characterized functional and structural brain abnormalities in adults after premature birth, but these investigations have mostly used univariate methods that do not account for hypothesized interdependencies between brain regions or quantify accuracy in identifying individuals. To overcome these limitations, we used multivariate machine learning to identify gray matter volume (GMV) and amplitude of low frequency fluctuations (ALFF) brain patterns that best classify young adults born very preterm/very low birth weight (VP/VLBW; n = 94) from those born full-term (FT; n = 92). We then compared the spatial maps of the structural and functional brain signatures and validated them by assessing associations with clinical birth history and basic cognitive variables. Premature birth could be predicted with a balanced accuracy of 80.7% using GMV and 77.4% using ALFF. GMV predictions were mediated by a pattern of subcortical and middle temporal reductions and volumetric increases of the lateral prefrontal, medial prefrontal, and superior temporal gyrus regions. ALFF predictions were characterized by a pattern including increases in the thalamus, pre- and post-central gyri, and parietal lobes, in addition to decreases in the superior temporal gyri bilaterally. Decision scores from each classification, assessing the degree to which an individual was classified as a VP/VLBW case, were predicted by the number of days in neonatal hospitalization and birth weight. ALFF decision scores also contributed to the prediction of general IQ, which highlighted their potential clinical significance. Combined, the results clarified previous research and suggested that primary subcortical and temporal damage may be accompanied by disrupted neurodevelopment of the cortex.
Collapse
Affiliation(s)
- Jing Shang
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,TUM-NIC Neuroimaging Center, Technische Universität München
| | - Paul Fisher
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Marcel Daamen
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.,Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
44
|
Berndt M, Bäuml JG, Menegaux A, Meng C, Daamen M, Baumann N, Zimmer C, Boecker H, Bartmann P, Wolke D, Sorg C. Impaired structural connectivity between dorsal attention network and pulvinar mediates the impact of premature birth on adult visual-spatial abilities. Hum Brain Mapp 2019; 40:4058-4071. [PMID: 31179600 DOI: 10.1002/hbm.24685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The dorsal attention network (DAN), including frontal eye fields and posterior parietal cortices, and its link with the posterior thalamus, contribute to visual-spatial abilities. Very premature birth impairs both visual-spatial abilities and cortico-thalamic structural connectivity. We hypothesized that impaired structural DAN-pulvinar connectivity mediates the effect of very premature birth on adult visual-spatial abilities. Seventy very premature (median age 26.6 years) and 57 mature born adults (median age 26.6 years) were assessed with cognitive tests and diffusion tensor imaging. Perceptual organization (PO) index of the Wechsler Adult Intelligence Scale-III was used as a proxy for visual-spatial abilities, and connection probability maps in the thalamus, derived from probabilistic tractography from the DAN, were used as a proxy for DAN-thalamic connectivity. Premature born adults showed decreases in both PO-index and connection probability from DAN into the pulvinar, with both changes being positively correlated. Moreover, path analysis revealed that DAN-pulvinar connectivity mediates the relationship between very premature birth and PO-index. Results provide evidence for long-term effects of very premature birth on structural DAN-pulvinar connectivity, mediating the effect of prematurity on adult visual-spatial impairments. Data suggest DAN-pulvinar connectivity as a specific target of prognostic and diagnostic procedures for visual-spatial abilities after premature birth.
Collapse
Affiliation(s)
- Maria Berndt
- Department of Neuroradiology, Technische Universität München, School of Medicine, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, School of Medicine, Munich, Germany
| | - Josef G Bäuml
- Department of Neuroradiology, Technische Universität München, School of Medicine, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, School of Medicine, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, Technische Universität München, School of Medicine, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, School of Medicine, Munich, Germany.,Department of Psychology, General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chun Meng
- TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, School of Medicine, Munich, Germany.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.,Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, UK
| | - Claus Zimmer
- Department of Neuroradiology, Technische Universität München, School of Medicine, Munich, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, Technische Universität München, School of Medicine, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, School of Medicine, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München
| |
Collapse
|
45
|
Groeschel S, Holmström L, Northam G, Tournier JD, Baldeweg T, Latal B, Caflisch J, Vollmer B. Motor Abilities in Adolescents Born Preterm Are Associated With Microstructure of the Corpus Callosum. Front Neurol 2019; 10:367. [PMID: 31040815 PMCID: PMC6476930 DOI: 10.3389/fneur.2019.00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/25/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm birth is associated with increased risk of neuromotor impairment. Rates of major neuromotor impairment (cerebral palsy) have decreased; however, in a large proportion of those who do not develop cerebral palsy impaired neuromotor function is observed and this often has implications for everyday life. The aim of this study was to investigate motor performance in preterm born adolescents without cerebral palsy, and to examine associations with alterations of motor system pathway structure. Design/Methods: Thirty-two adolescents (12 males) without cerebral palsy, born before 33 weeks of gestation (mean 27.4 weeks, SD 2.4; birth weight mean 1,084.5 g; SD 387.2), treated at a single tertiary unit, were assessed (median age 16 years; min 14, max 18). Timed performance and quality of movements were assessed with the Zürich Neuromotor Assessment. Neuroimaging included Diffusion Magnetic Resonance Imaging for tractography of the major motor tracts and measurement of fractional anisotropy as a measure of microstructure of the tracts along the major motor pathways. Separate analyses were conducted for areas with predominantly single and predominantly crossing fiber regions. Results: Motor performance in both tasks assessing timed performance and quality of movements, was poorer than expected in the preterm group in relation to norm population. The strongest significant correlations were seen between performance in tasks assessing movement quality and fractional anisotropy in corpus callosum fibers connecting primary motor, primary somatosensory and premotor areas. In addition, timed motor performance was significantly related to fractional anisotropy in the cortico-spinal and thalamo-cortical to premotor area fibers, and the corpus callosum. Conclusions: Impairments in motor abilities are present in preterm born adolescents without major neuromotor impairment and in the absence of focal brain injury. Altered microstructure of the corpus callosum microstructure appears a crucial factor, in particular for movement quality.
Collapse
Affiliation(s)
- Samuel Groeschel
- Department of Child Neurology, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Linda Holmström
- Neuropaediatric Research Unit, Department of Women's and Children's Health, Karolinska Institutet Stockholm, Stockholm, Sweden
| | - Gemma Northam
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - J-Donald Tournier
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - Beatrice Latal
- Child Development Center and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Jon Caflisch
- Child Development Center and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Brigitte Vollmer
- Neuropaediatric Research Unit, Department of Women's and Children's Health, Karolinska Institutet Stockholm, Stockholm, Sweden.,Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
46
|
Hedderich DM, Bäuml JG, Berndt MT, Menegaux A, Scheef L, Daamen M, Zimmer C, Bartmann P, Boecker H, Wolke D, Gaser C, Sorg C. Aberrant gyrification contributes to the link between gestational age and adult IQ after premature birth. Brain 2019; 142:1255-1269. [DOI: 10.1093/brain/awz071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Dennis M Hedderich
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maria T Berndt
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Aurore Menegaux
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Gaser
- Department of Psychiatry and Neurology, University Hospital Jena, Jena, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
47
|
Jurcoane A, Daamen M, Keil VC, Scheef L, Bäuml JG, Meng C, Wohlschläger AM, Sorg C, Busch B, Baumann N, Wolke D, Bartmann P, Boecker H, Lüchters G, Marinova M, Hattingen E. Automated quantitative evaluation of brain MRI may be more accurate for discriminating preterm born adults. Eur Radiol 2019; 29:3533-3542. [PMID: 30903339 DOI: 10.1007/s00330-019-06099-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the structural brain abnormalities and their diagnostic accuracy through qualitative and quantitative analysis in term born and very preterm birth or with very low birth weight (VP/VLBW) adults. METHODS We analyzed 3-T MRIs acquired in 2011-2013 from 67 adults (27 term born controls, mean age 26.4 years, 8 females; 40 VP/VLBWs, mean age 26.6 years, 16 females). We compared automatic segmentations of the white matter, deep gray matter and cortical gray matter, manual corpus callosum measurements and visual ratings of the ventricles and white matter with t tests, logistic regression, and receiver operator characteristic (ROC) curves. RESULTS Automatic segmentation correctly classified 84% of cases; visual ratings correctly classified 63%. Quantitative volumetry based on automatic segmentation revealed higher ventricular volume, lower posterior corpus callosum, and deep gray matter volumes in VP/VLBW subjects compared to controls (p < 0.01). Visual rating and manual measurement revealed a thinner corpus callosum in VP/VLBW adults (p = 0.04) and deformed lateral ventricles (p = 0.03) and tendency towards more "dirty" white matter (p = 0.06). Automatic/manual measures combined with visual ratings correctly classified 87% of cases. Stepwise logistic regression identified three independent features that correctly classify 81% of cases: ventricular volume, deep gray matter volume, and white matter aspect. CONCLUSION Enlarged and deformed lateral ventricles, thinner corpus callosum, and "dirty" white matter are prevalent in preterm born adults. Their visual evaluation has low diagnostic accuracy. Automatic volume quantification is more accurate but time consuming. It may be useful to ask for prematurity before initiating further diagnostics in subjects with these alterations. KEY POINTS • Our study confirms prior reports showing that structural brain abnormalities related to preterm birth persist into adulthood. • In the clinical practice, if large and deformed lateral ventricles, small and thin corpus callosum, and "dirty" white matter are visible on MRI, ask for prematurity before considering other diagnoses. • Although prevalent, visual findings have low accuracy; adding automatic segmentation of lateral ventricles and deep gray matter nuclei improves the diagnostic accuracy.
Collapse
Affiliation(s)
- Alina Jurcoane
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.
- Institute for Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Vera C Keil
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Josef G Bäuml
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Chun Meng
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Afra M Wohlschläger
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Psychiatry, Klinikum rechts der Isar, Munich, Germany
| | - Barbara Busch
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, UK
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Guido Lüchters
- Center for Development Research, University of Bonn, Bonn, Germany
| | - Milka Marinova
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Elke Hattingen
- Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
- Institute for Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
48
|
Jaekel J, Baumann N, Bartmann P, Wolke D. General cognitive but not mathematic abilities predict very preterm and healthy term born adults' wealth. PLoS One 2019; 14:e0212789. [PMID: 30865719 PMCID: PMC6415831 DOI: 10.1371/journal.pone.0212789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/09/2019] [Indexed: 11/27/2022] Open
Abstract
Objective Very preterm (<32 weeks gestation; VP) and/or very low birth weight (<1500g; VLBW) children often have cognitive and mathematic difficulties. It is unknown whether VP/VLBW children’s frequent mathematic problems significantly add to the burden of negative life-course consequences over and above effects of more general cognitive deficits. Our aim was to determine whether negative consequences of VP/VLBW versus healthy term birth on adult wealth are mediated by mathematic abilities in childhood, or rather explained by more general cognitive abilities. Methods 193 VP/VLBW and 217 healthy term comparison participants were studied prospectively from birth to adulthood as part of a geographically defined study in Bavaria (South Germany). Mathematic and general cognitive abilities were assessed at 8 years with standardized tests; wealth information was assessed at 26 years with a structured interview and summarized into a comprehensive index score. All scores were z-standardized. Results At 8 years, VP/VLBW (n = 193, 52.3% male) had lower mathematic and general cognitive abilities than healthy term comparison children (n = 217, 47.0% male). At 26 years, VP/VLBW had accumulated significantly lower overall wealth than term born comparison adults (-0.57 (1.08) versus -0.01 (1.00), mean difference 0.56 [0.36–0.77], p < .001). Structural equation modeling confirmed that VP/VLBW birth (β = -.13, p = .022) and childhood IQ (β = .24, p < .001) both directly predicted adult wealth, but math did not (β = .05, p = .413). Analyses were controlled for small-for-gestational-age (SGA) birth, child sex, and family socioeconomic status. Conclusion This longitudinal study from birth to adulthood shows that VP/VLBW survivors’ general cognitive rather than specific mathematic problems explain their diminished life-course success. These findings are important in order to design effective interventions at school age that reduce the burden of prematurity for those individuals who were born at highest neonatal risk.
Collapse
Affiliation(s)
- Julia Jaekel
- Department of Child and Family Studies, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Psychology, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | | | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom
- Division of Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
49
|
Abstract
OBJECTIVES The aim of this study was to investigate the effects of infant and toddler head growth on intelligence scores from early childhood to adulthood in very preterm (<32 weeks gestational age; VP) and/or very low birth weight (<1500 g; VLBW) and term born individuals. METHODS 203 VP/VLBW and 198 term comparisons were studied from birth to adulthood as part of the prospective geographically defined Bavarian Longitudinal Study (BLS). Head circumference was assessed at birth; 5, 20 months; and 4 years of age. Intelligence was assessed with standardized tests in childhood (6 and 8 years: K-ABC) and at 26 years (Wechsler Adult Intelligence Scale, WAIS). Structural equation modeling (SEM) was used to model the effect of head growth on IQ. RESULTS On average, VP/VLBW had lower head circumference at birth (27.61 cm vs. 35.11 cm, mean difference 7.49, 95% confidence interval [7.09-7.90]) and lower adult intelligence scores (88.98 vs. 102.54, mean difference 13.56 [10.59-16.53]) than term born comparison individuals. Head circumference at birth (e.g., total effect β=.48; p<.001 for adult IQ) and head growth in childhood predicted intelligence development from age 6 to 26 years in both VP/VLBW and term born individuals (70% of variance in adult IQ explained by full model). Effects of gestation and birth weight on intelligence were fully mediated by head circumference and growth. CONCLUSIONS This longitudinal investigation from birth to adulthood indicates head growth as a proxy of brain development and intelligence. Repeated early head circumference assessment adds valuable information when screening for long-term neurocognitive risk. (JINS, 2019, 25, 48#x2013;56).
Collapse
|
50
|
Altered transcallosal inhibition evidenced by transcranial magnetic stimulation highlights neurophysiological consequences of premature birth in early adulthood. J Neurol Sci 2018; 393:18-23. [PMID: 30098499 DOI: 10.1016/j.jns.2018.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE A very preterm birth can induce deleterious neurophysiological consequences beyond childhood; alterations of the corpus callosum (CC) are reported in adolescents born very preterm along with cognitive impairments. The question remains whether neurophysiological alterations are still detectable in adulthood such as an alteration in CC inhibitory function. The aim of the present study was thus to examine transcallosal inhibition in young adults born very preterm compared to counterparts born at term. STUDY PARTICIPANTS & METHODS Transcallosal inhibition was probed by measuring the ipsilateral silent period (iSP) using transcranial magnetic stimulation (TMS) in 13 young adults born at 33w of gestation or less (20 ± 3. 2y) and 12 young adults born at term (22 ± 1. 75y). Single high-intensity TMS were delivered to the primary motor cortex (M1) ipsilateral to the preactivated first dorsal interosseous (FDI) muscle. Occurrence, latency, and duration of iSP were measured in the FDI EMG activity, for both hemispheres alternatively (10-12 trials each) along with their resting motor threshold (RMT). RESULTS In individuals born very preterm as compared to individuals born at term, ISP occurred less frequently (p < .0001), its latency was longer (p = .004), especially in the non-dominant hemisphere, its duration shorter (p < .0001), and RMT was higher in the non-dominant M1 than in the dominant. CONCLUSIONS Impairment of transcallosal inhibition along with asymmetry of M1 excitability in young adults born very preterm as compared to those born at term underline that neurophysiological consequences of a preterm birth can still be detected in early adulthood.
Collapse
|