1
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Göcz B, Takács S, Skrapits K, Rumpler É, Solymosi N, Póliska S, Colledge WH, Hrabovszky E, Sárvári M. Estrogen differentially regulates transcriptional landscapes of preoptic and arcuate kisspeptin neuron populations. Front Endocrinol (Lausanne) 2022; 13:960769. [PMID: 36093104 PMCID: PMC9454256 DOI: 10.3389/fendo.2022.960769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Kisspeptin neurons residing in the rostral periventricular area of the third ventricle (KPRP3V) and the arcuate nucleus (KPARC) mediate positive and negative estrogen feedback, respectively. Here, we aim to compare transcriptional responses of KPRP3V and KPARC neurons to estrogen. Transgenic mice were ovariectomized and supplemented with either 17β-estradiol (E2) or vehicle. Fluorescently tagged KPRP3V neurons collected by laser-capture microdissection were subjected to RNA-seq. Bioinformatics identified 222 E2-dependent genes. Four genes encoding neuropeptide precursors (Nmb, Kiss1, Nts, Penk) were robustly, and Cartpt was subsignificantly upregulated, suggesting putative contribution of multiple neuropeptides to estrogen feedback mechanisms. Using overrepresentation analysis, the most affected KEGG pathways were neuroactive ligand-receptor interaction and dopaminergic synapse. Next, we re-analyzed our previously obtained KPARC neuron RNA-seq data from the same animals using identical bioinformatic criteria. The identified 1583 E2-induced changes included suppression of many neuropeptide precursors, granins, protein processing enzymes, and other genes related to the secretory pathway. In addition to distinct regulatory responses, KPRP3V and KPARC neurons exhibited sixty-two common changes in genes encoding three hormone receptors (Ghsr, Pgr, Npr2), GAD-65 (Gad2), calmodulin and its regulator (Calm1, Pcp4), among others. Thirty-four oppositely regulated genes (Kiss1, Vgf, Chrna7, Tmem35a) were also identified. The strikingly different transcriptional responses in the two neuron populations prompted us to explore the transcriptional mechanism further. We identified ten E2-dependent transcription factors in KPRP3V and seventy in KPARC neurons. While none of the ten transcription factors interacted with estrogen receptor-α, eight of the seventy did. We propose that an intricate, multi-layered transcriptional mechanism exists in KPARC neurons and a less complex one in KPRP3V neurons. These results shed new light on the complexity of estrogen-dependent regulatory mechanisms acting in the two functionally distinct kisspeptin neuron populations and implicate additional neuropeptides and mechanisms in estrogen feedback.
Collapse
Affiliation(s)
- Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - William H. Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| | - Miklós Sárvári
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| |
Collapse
|
3
|
Skrapits K, Sárvári M, Farkas I, Göcz B, Takács S, Rumpler É, Váczi V, Vastagh C, Rácz G, Matolcsy A, Solymosi N, Póliska S, Tóth B, Erdélyi F, Szabó G, Culler MD, Allet C, Cotellessa L, Prévot V, Giacobini P, Hrabovszky E. The cryptic gonadotropin-releasing hormone neuronal system of human basal ganglia. eLife 2021; 10:67714. [PMID: 34128468 PMCID: PMC8245125 DOI: 10.7554/elife.67714] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 01/20/2023] Open
Abstract
Human reproduction is controlled by ~2000 hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Here, we report the discovery and characterization of additional ~150,000–200,000 GnRH-synthesizing cells in the human basal ganglia and basal forebrain. Nearly all extrahypothalamic GnRH neurons expressed the cholinergic marker enzyme choline acetyltransferase. Similarly, hypothalamic GnRH neurons were also cholinergic both in embryonic and adult human brains. Whole-transcriptome analysis of cholinergic interneurons and medium spiny projection neurons laser-microdissected from the human putamen showed selective expression of GNRH1 and GNRHR1 autoreceptors in the cholinergic cell population and uncovered the detailed transcriptome profile and molecular connectome of these two cell types. Higher-order non-reproductive functions regulated by GnRH under physiological conditions in the human basal ganglia and basal forebrain require clarification. The role and changes of GnRH/GnRHR1 signaling in neurodegenerative disorders affecting cholinergic neurocircuitries, including Parkinson’s and Alzheimer’s diseases, need to be explored.
Collapse
Affiliation(s)
- Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Miklós Sárvári
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Viktória Váczi
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Erdélyi
- Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Cecile Allet
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Lille, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Hrabovszky E, Takács S, Göcz B, Skrapits K. New Perspectives for Anatomical and Molecular Studies of Kisspeptin Neurons in the Aging Human Brain. Neuroendocrinology 2019; 109:230-241. [PMID: 30612127 DOI: 10.1159/000496566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/04/2019] [Indexed: 11/19/2022]
Abstract
The human infundibular nucleus (corresponding to the rodent arcuate nucleus) serves as an important integration center for neuronal signals and hormones released by peripheral endocrine organs. Kisspeptin (KP)-producing neurons of this anatomical site, many of which also synthesize neurokinin B (NKB), are critically involved in sex hormone signaling to gonadotropin-releasing hormone (GnRH) neurons. In recent years, the basic topography, morphology, neuropeptide content, and connectivity of human KP neurons have been investigated with in situ hybridization and immunohistochemistry on postmortem tissues. These studies revealed that human KP neurons differ neurochemically from their rodent counterparts and show robust aging-related plasticity. Earlier immunohistochemical experiments also provided evidence for temporal changes in the hypothalamus of aging men whose NKB and KP neurons undergo hypertrophy, increase in number, exhibit increased neuropeptide mRNA expression and immunoreactivity and give rise to higher numbers of immunoreactive fibers and afferent contacts onto GnRH neurons. Increasing percentages of KP-expressing NKB perikarya, NKB axons, and NKB inputs to GnRH neurons raise the intriguing possibility that a significant subset of NKB neurons begins to cosynthesize KP as aging advances. Although use of postmortem tissues is technically challenging, recently available single-cell anatomical and molecular approaches discussed in this review provide promising new tools to investigate the aging-related anatomical and functional plasticity of the human KP neuronal system.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary,
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|