1
|
Aberizk K, Sefik E, Yuan Q, Cao H, Addington JM, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Woods SW, Walker EF, Ku BS. Relations of temporoparietal connectivity with neighborhood social fragmentation in youth at clinical high-risk for psychosis. Schizophr Res 2025; 277:151-158. [PMID: 40068446 PMCID: PMC11970632 DOI: 10.1016/j.schres.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 04/01/2025]
Abstract
Temporoparietal brain areas comprise a candidate set of regions for interrogating the brain functional correlates of socioenvironmental factors in people at clinical high-risk for psychosis (CHR-P). Temporal lobe abnormalities have been shown to be common among people with schizophrenia spectrum conditions. Further, temporoparietal brain regions are implicated in tasks relevant to psychosocial outcomes, including coherent autobiographical memory recall and multimodal integration. This report examined relations of hippocampal-temporoparietal functional connectivity with neighborhood-level social fragmentation, a composite of area-level characteristics that measures social cohesion, among youth at CHR-P and healthy comparisons in the second wave of the North American Prodrome Longitudinal Study (n = 146, age = 19.9 ± 3.9, 47 % female). This study also examined whether those relations were moderated by individual-level social engagement in desirable activities. Significant positive relations of neighborhood-level social fragmentation and hippocampal functional connectivity with the superior temporal pole were observed among participants at CHR-P. Moderation analyses demonstrated that those relations were significant only at low and mean levels of individual-level social engagement in participants at CHR-P. Findings contribute to the literature indicating that adverse environmental factors are associated with deviant patterns of brain connectivity. This exploratory research also contributes to future theorizing about neurobiological mechanisms underlying therapeutic interventions involving social engagement that have demonstrated improved functional outcomes for people with psychotic disorders.
Collapse
Affiliation(s)
- Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Esra Sefik
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Qingyue Yuan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hengyi Cao
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Jean M Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, CA, USA
| | | | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA
| | | | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William S Stone
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - Scott W Woods
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Kaiser M, Wang Y, Ten Oever S, Duecker F, Sack AT, van de Ven V. Simultaneous tACS-fMRI reveals state- and frequency-specific modulation of hippocampal-cortical functional connectivity. COMMUNICATIONS PSYCHOLOGY 2025; 3:19. [PMID: 39900978 PMCID: PMC11791075 DOI: 10.1038/s44271-025-00202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Non-invasive indirect hippocampal-targeted stimulation is of broad scientific and clinical interest. Transcranial alternating current stimulation (tACS) is appealing because it allows oscillatory stimulation to study hippocampal theta (3-8 Hz) activity. We found that tACS administered during functional magnetic resonance imaging yielded a frequency-, mental state- and topologically-specific effect of theta stimulation (but not other frequencies) enhancing right (but not left) hippocampal-cortical connectivity during resting blocks but not during task blocks. Control analyses showed that this effect was not due to possible stimulation-induced changes in signal quality or head movement. Our findings are promising for targeted network modulations of deep brain structures for research and clinical intervention.
Collapse
Affiliation(s)
- Max Kaiser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Yuejuan Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Sanne Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands.
| |
Collapse
|
3
|
Krammer W, Missimer JH, Vallesi V, Pastore-Wapp M, Kägi G, Wiest R, Weder BJ. Exploring imitation of within hand prehensile object manipulation using fMRI and graph theory analysis. Sci Rep 2025; 15:3641. [PMID: 39881129 PMCID: PMC11779809 DOI: 10.1038/s41598-025-86157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns. Inferred from four 60 ROI weighted graphs, the functional connectivities are consistent with a motor plan for observation and manipulation in the left hemisphere and with a network in the right hemisphere involving the inferior frontal gyrus, the site of intentional control of imitation. The networks exhibit (1) rich clubs which include sensori-motor hand, dorsal attention and cingulo-opercular communities for observation and motor execution in both hemispheres and (2) diversity clubs, significant only for manipulation and observation of the left hand, which include the dorsal visual association cortex, suggesting enhanced visual perception required for guiding the movement-limited left fingers. Short pathway analyses are consistent with these findings, confirming preferential involvement of ventral premotor cortices in the mirror network.
Collapse
Affiliation(s)
- Werner Krammer
- Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| | - John H Missimer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Vanessa Vallesi
- Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Advanced Imaging Research (AIR) Group, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Manuela Pastore-Wapp
- Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Gerontechnology & Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Georg Kägi
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Neurology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bruno J Weder
- Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Lu F, Ma Q, Shi C, Yue W. Changes in the Parietal Lobe Subregion Volume at Various Stages of Alzheimer's Disease and the Role in Cognitively Normal and Mild Cognitive Impairment Conversion. J Integr Neurosci 2025; 24:25991. [PMID: 39862009 DOI: 10.31083/jin25991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion. METHODS We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants. We measured the volume of the parietal subregion based on the Human Brainnetome Atlas (BNA-246) using voxel-based morphometry among individuals at various stages of AD and the progressive and stable individuals in CN and MCI. We then calculated the area under the curve (AUC) of the receiver operating characteristic (ROC) curve to test the ability of parietal subregions to discriminate between different cognitive groups. The Cox proportional hazard model was constructed to determine which specific parietal subregions, alone or in combination, could be used to predict progression from MCI to AD and CN to MCI. Finally, we examined the relationship between the cognitive scores and parietal subregion volume in the diagnostic groups. RESULTS The left inferior parietal lobule (IPL)_6_5 (rostroventral area 39) showed the best ability to discriminate between patients with AD and those with CN (AUC = 0.688). The model consisting of the left IPL_6_4 (caudal area 40) and bilateral IPL_6_5 showed the best combination for predicting the CN progression to MCI. The left IPL_6_1 (caudal area 39) showed the best predictive power in predicting the progression of MCI to AD. Certain subregions of the volume correlated with cognitive scales. CONCLUSION Subregions of the angular gyrus are essential in the early onset and subsequent development of AD, and early detection of the volume of these regions may be useful in identifying the tendency to develop the disease and its treatment.
Collapse
Affiliation(s)
- Fang Lu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Qing Ma
- Department of Neurology, North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Cailing Shi
- Department of Radiology, Qionglai Medical Centre Hospital, 611530 Chengdu, Sichuan, China
| | - Wenjun Yue
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
5
|
Terstege DJ, Galea LAM, Epp JR. Retrosplenial hypometabolism precedes the conversion from mild cognitive impairment to Alzheimer's disease. Alzheimers Dement 2024; 20:8979-8986. [PMID: 39470016 DOI: 10.1002/alz.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Not all individuals who experience mild cognitive impairment (MCI) transition through progressive stages of cognitive decline at the same rate, if at all. Previous observational studies have identified the retrosplenial cortex (RSC) as an early site of hypometabolism in MCI which seems to be predictive of later transition to Alzheimer's disease (AD). METHODS We examined N = 399 MCI subjects with baseline 18F-fluorodeoxyglucose positron emission tomography. Subjects were classified based on whether their diagnosis converted from MCI to AD. RESULTS Whole-brain metabolism was decreased in converters (MCI-AD). This effect was more prominent at the RSC, where MCI-AD subjects showed even greater hypometabolism. Observations of RSC hypometabolism and its utility in predicting transition from MCI-AD withstood statistical analyses in a large retrospective study. DISCUSSION These results point to the utility of incorporating RSC hypometabolism into predictive models of AD progression risk and call for further examination of mechanisms underlying this relationship. HIGHLIGHTS Not all individuals who develop MCI will progress to AD. Individuals with MCI who progress to AD show early whole-brain hypometabolism. Early hypometabolism is particularly prominent at the RSC.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Walker EF, Aberizk K, Yuan E, Bilgrami Z, Ku BS, Guest RM. Developmental perspectives on the origins of psychotic disorders: The need for a transdiagnostic approach. Dev Psychopathol 2024; 36:2559-2569. [PMID: 38406831 PMCID: PMC11345878 DOI: 10.1017/s0954579424000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Research on serious mental disorders, particularly psychosis, has revealed highly variable symptom profiles and developmental trajectories prior to illness-onset. As Dante Cicchetti pointed out decades before the term "transdiagnostic" was widely used, the pathways to psychopathology emerge in a system involving equifinality and multifinality. Like most other psychological disorders, psychosis is associated with multiple domains of risk factors, both genetic and environmental, and there are many transdiagnostic developmental pathways that can lead to psychotic syndromes. In this article, we discuss our current understanding of heterogeneity in the etiology of psychosis and its implications for approaches to conceptualizing etiology and research. We highlight the need for examining risk factors at multiple levels and to increase the emphasis on transdiagnostic developmental trajectories as a key variable associated with etiologic subtypes. This will be increasingly feasible now that large, longitudinal datasets are becoming available and researchers have access to more sophisticated analytic tools, such as machine learning, which can identify more homogenous subtypes with the ultimate goal of enhancing options for treatment and preventive intervention.
Collapse
Affiliation(s)
- Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Emerald Yuan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Zarina Bilgrami
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan M Guest
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Yoshikawa A, Obata Y, Kakiuchi C, Nakanishi A, Kimura S, Aoki S, Kato T. Case series of patients with early psychosis presenting hypoperfusion in angular gyrus and self-disturbance: Implication for the sense of agency and schizophrenia. Neuropsychopharmacol Rep 2024; 44:706-715. [PMID: 39212170 PMCID: PMC11609757 DOI: 10.1002/npr2.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Self-disturbance has been considered as a core symptomatology of schizophrenia and its emergence from the prodromal phase makes it a crucial target for early detection and intervention in schizophrenia. Currently, the clinical assessment of self-disturbance relies on the self-report of patients, and clinicians have no diagnostic tools in clinical practice. Identifying the neural substrate of self-disturbance would be of great clinical value by shedding light on the core dimension of schizophrenia. CASE PRESENTATION We first introduce an adolescent patient who initially presented self-disturbance, and clinically detectable hypoperfusion in angular gyrus (AG) was observed when early psychosis was suspected. Interestingly, the hypoperfusion in AG may correspond to improvement and exacerbation of self-disturbance. This clinical observation led us to pursue the relationship between the decreased blood flow in the AG and self-disturbance. Among 15 cases with suspected early psychosis in which single photon emission computed tomography was performed to exclude organic factors, we found additional 5 cases, including one prodromal patient, showing hypoperfusion in the AG and self-disturbance with significant correlation (r = 0.79, p = 0.00025). DISCUSSION The self-disturbance has been interpreted as a reflection of disturbance of the "Sense of Agency", the ability to attribute their action and/or thoughts to themselves. AG has been shown to play a pivotal role in the sense of agency. These cases suggest that the hypoperfusion in AG associated with the disruption in the sense of agency would be an early clinical sign of schizophrenia. Further longitudinal studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Department of PsychiatryJuntendo University School of MedicineBunkyōJapan
| | - Youhei Obata
- Department of PsychiatryJuntendo University School of MedicineBunkyōJapan
| | - Chihiro Kakiuchi
- Department of PsychiatryJuntendo University School of MedicineBunkyōJapan
| | - Atsushi Nakanishi
- Department of RadiologyJuntendo University School of MedicineBunkyōJapan
| | - Satoshi Kimura
- Department of Radiological TechnologyJuntendo University HospitalBunkyōJapan
| | - Shigeki Aoki
- Department of RadiologyJuntendo University School of MedicineBunkyōJapan
| | - Tadafumi Kato
- Department of PsychiatryJuntendo University School of MedicineBunkyōJapan
| |
Collapse
|
8
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
9
|
Seghier ML. Symptomatology after damage to the angular gyrus through the lenses of modern lesion-symptom mapping. Cortex 2024; 179:77-90. [PMID: 39153389 DOI: 10.1016/j.cortex.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Brain-behavior relationships are complex. For instance, one might know a brain region's function(s) but still be unable to accurately predict deficit type or severity after damage to that region. Here, I discuss the case of damage to the angular gyrus (AG) that can cause left-right confusion, finger agnosia, attention deficit, and lexical agraphia, as well as impairment in sentence processing, episodic memory, number processing, and gesture imitation. Some of these symptoms are grouped under AG syndrome or Gerstmann's syndrome, though its exact underlying neuronal systems remain elusive. This review applies recent frameworks of brain-behavior modes and principles from modern lesion-symptom mapping to explain symptomatology after AG damage. It highlights four major issues for future studies: (1) functionally heterogeneous symptoms after AG damage need to be considered in terms of the degree of damage to (i) different subdivisions of the AG, (ii) different AG connectivity profiles that disconnect AG from distant regions, and (iii) lesion extent into neighboring regions damaged by the same infarct. (2) To explain why similar symptoms can also be observed after damage to other regions, AG damage needs to be studied in terms of the networks of regions that AG functions with, and other independent networks that might subsume the same functions. (3) To explain inter-patient variability on AG symptomatology, the degree of recovery-related brain reorganisation needs to account for time post-stroke, demographics, therapy input, and pre-stroke differences in functional anatomy. (4) A better integration of the results from lesion and functional neuroimaging investigations of AG function is required, with only the latter so far considering AG function in terms of a hub within the default mode network. Overall, this review discusses why it is so difficult to fully characterize the AG syndrome from lesion data, and how this might be addressed with modern lesion-symptom mapping.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Wang F, Lu X, Chen X, Wang Q, Li Q, Li H. Connectivity Reveals the Relationships between Human Brain Areas Associated with High-Level Linguistic Processing and Macaque Brain Areas. Tomography 2024; 10:1089-1098. [PMID: 39058054 PMCID: PMC11280774 DOI: 10.3390/tomography10070082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cross-species research has advanced human understanding of brain regions, with cross-species comparisons using magnetic resonance imaging technology becoming increasingly common. Currently, cross-species research on human language regions has primarily focused on traditional brain areas such as the Broca region. While some studies have indicated that human language function also involves other language regions, the corresponding relationships between these brain regions in humans and macaques remain unclear. This study calculated the strength of the connections between the high-level language processing regions in human and macaque brains, identified homologous target areas based on the structural connections of white-matter fiber bundles, and compared the connectivity profiles of both species. The results of the experiment demonstrated that macaques possess brain regions which exhibit connectivity patterns resembling those found in human high-level language processing regions. This discovery suggests that while the function of a human brain region is specialized, it still maintains a structural connectivity similar to that seen in macaques.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Computer Information Engineering, Shanxi Technology and Business University, Taiyuan 030024, China; (F.W.); (X.L.)
| | - Xiaohua Lu
- School of Computer Information Engineering, Shanxi Technology and Business University, Taiyuan 030024, China; (F.W.); (X.L.)
| | - Xiaofeng Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.C.); (Q.W.); (Q.L.)
| | - Qianshan Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.C.); (Q.W.); (Q.L.)
| | - Qi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.C.); (Q.W.); (Q.L.)
| | - Haifang Li
- School of Computer Information Engineering, Shanxi Technology and Business University, Taiyuan 030024, China; (F.W.); (X.L.)
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.C.); (Q.W.); (Q.L.)
| |
Collapse
|
11
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
12
|
Das A, Menon V. Hippocampal-parietal cortex causal directed connectivity during human episodic memory formation: Replication across three experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566056. [PMID: 37986855 PMCID: PMC10659286 DOI: 10.1101/2023.11.07.566056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial EEG from 96 participants (51 females) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine Stanford, CA 94305
| |
Collapse
|
13
|
Schroën JAM, Gunter TC, Numssen O, Kroczek LOH, Hartwigsen G, Friederici AD. Causal evidence for a coordinated temporal interplay within the language network. Proc Natl Acad Sci U S A 2023; 120:e2306279120. [PMID: 37963247 PMCID: PMC10666120 DOI: 10.1073/pnas.2306279120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent neurobiological models on language suggest that auditory sentence comprehension is supported by a coordinated temporal interplay within a left-dominant brain network, including the posterior inferior frontal gyrus (pIFG), posterior superior temporal gyrus and sulcus (pSTG/STS), and angular gyrus (AG). Here, we probed the timing and causal relevance of the interplay between these regions by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). Our TMS-EEG experiments reveal region- and time-specific causal evidence for a bidirectional information flow from left pSTG/STS to left pIFG and back during auditory sentence processing. Adapting a condition-and-perturb approach, our findings further suggest that the left pSTG/STS can be supported by the left AG in a state-dependent manner.
Collapse
Affiliation(s)
- Joëlle A. M. Schroën
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Thomas C. Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Ole Numssen
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Leon O. H. Kroczek
- Department of Psychology, Clinical Psychology and Psychotherapy, Universität Regensburg, Regensburg93053, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig04109, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
14
|
Deen B, Schwiedrzik CM, Sliwa J, Freiwald WA. Specialized Networks for Social Cognition in the Primate Brain. Annu Rev Neurosci 2023; 46:381-401. [PMID: 37428602 PMCID: PMC11115357 DOI: 10.1146/annurev-neuro-102522-121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Primates have evolved diverse cognitive capabilities to navigate their complex social world. To understand how the brain implements critical social cognitive abilities, we describe functional specialization in the domains of face processing, social interaction understanding, and mental state attribution. Systems for face processing are specialized from the level of single cells to populations of neurons within brain regions to hierarchically organized networks that extract and represent abstract social information. Such functional specialization is not confined to the sensorimotor periphery but appears to be a pervasive theme of primate brain organization all the way to the apex regions of cortical hierarchies. Circuits processing social information are juxtaposed with parallel systems involved in processing nonsocial information, suggesting common computations applied to different domains. The emerging picture of the neural basis of social cognition is a set of distinct but interacting subnetworks involved in component processes such as face perception and social reasoning, traversing large parts of the primate brain.
Collapse
Affiliation(s)
- Ben Deen
- Psychology Department & Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research; and Leibniz-Science Campus Primate Cognition, Göttingen, Germany
| | - Julia Sliwa
- Sorbonne Université, Institut du Cerveau, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Winrich A Freiwald
- Laboratory of Neural Systems and The Price Family Center for the Social Brain, The Rockefeller University, New York, NY, USA;
- The Center for Brains, Minds and Machines, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Rockland KS, Graves WW. The angular gyrus: a special issue on its complex anatomy and function. Brain Struct Funct 2023; 228:1-5. [PMID: 36369274 DOI: 10.1007/s00429-022-02596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
16
|
The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography. Brain Struct Funct 2023; 228:103-120. [PMID: 35995880 DOI: 10.1007/s00429-022-02551-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior "angular stone" of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG's highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.
Collapse
|