1
|
Silva J, Omar N, Sittaramane V, Cowell JK. Identification of small molecules that suppress cell invasion and metastasis promoted by WASF3 activation. Heliyon 2023; 9:e20662. [PMID: 37867831 PMCID: PMC10585217 DOI: 10.1016/j.heliyon.2023.e20662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
The WASF3 gene promotes cancer cell invasion and metastasis, and genetic inactivation leads to suppression of metastasis. To identify small molecules that might interfere with WASF3 function, we performed an in silico docking study to the regulatory pocket of WASF3 using the National Cancer Institute (NCI) diversity set VI small molecule library. Compounds that showed the maximum likelihood of interaction with WASF3 were screened for their effect on cell movement in breast and prostate cancer cells, a well-established predictor of invasion and metastasis. Three hit compounds were identified that affected cell movement, and the same compounds also suppressed cell migration and invasion in vitro in both MDA-MB-231 breast cancer cells and Du145 prostate cancer cells. Using a zebrafish metastasis assay, one of these compounds, NSC670283, showed significant suppression of metastasis in vivo while not affecting cell proliferation. NSC670283 showed a consistent effect on suppression of invasion and metastasis, and cellular temperature shift assays provided support for physical interaction with WASF3. In addition, suppression of cell movement and invasion was accompanied by a decrease in actin filament polymerization. The data in this study suggest that these small molecules inhibit cancer cell invasion and metastasis, and to our knowledge, it is the first identification of a small molecule that can potentially inhibit WASF3-directed metastasis, laying the foundation for medicinal chemistry approaches to enhance the potency of the identified compounds.
Collapse
Affiliation(s)
- Jeane Silva
- The Georgia Cancer Center, 1410 Laney Walker Blvd., Augusta, GA 30912, Georgia
- Department of Interdisciplinary Health Sciences, College of Allied Sciences, Augusta University, GA, 30912, Georgia
| | - Nivin Omar
- Department of Pathology, Medical College of Georgia, Augusta University, GA, 30912, Georgia
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, Georgia
| | - John K. Cowell
- The Georgia Cancer Center, 1410 Laney Walker Blvd., Augusta, GA 30912, Georgia
| |
Collapse
|
2
|
Rattay S, Hufbauer M, Hagen C, Putschli B, Coch C, Akgül B, Hartmann G. Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-like Receptor MDA5. Viruses 2022; 14:v14071361. [PMID: 35891343 PMCID: PMC9317666 DOI: 10.3390/v14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022] Open
Abstract
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike with HPV16, a high-risk α-HPV, the impact of β-HPV early genes on the innate immune sensing of viral nucleic acids has not been studied. Here, we used primary skin keratinocytes and U2OS cells expressing HPV8 or distinct HPV8 early genes and well-defined ligands of the nucleic-acid-sensing receptors RIG-I, MDA5, TLR3, and STING to analyze a potential functional interaction. We found that primary skin keratinocytes and U2OS cells expressed RIG-I, MDA5, TLR3, and STING, but not TLR7, TLR8, or TLR9. While HPV16-E6 downregulated the expression of RIG-I, MDA5, TLR3, and STING and, in conjunction with HPV16-E7, effectively suppressed type I IFN in response to MDA5 activation, the presence of HPV8 early genes showed little effect on the expression of these immune receptors, except for HPV8-E2, which was associated with an elevated expression of TLR3. Nevertheless, whole HPV8 genome expression, as well as the selective expression of HPV8-E1 or HPV8-E2, was found to suppress MDA5-induced type I IFN and the proinflammatory cytokine IL-6. Furthermore, RNA isolated from HPV8-E2 expressing primary human keratinocytes, but not control cells, stimulated a type I IFN response in peripheral blood mononuclear cells, indicating that the expression of HPV8-E2 in keratinocytes leads to the formation of stimulatory RNA ligands that require the active suppression of immune recognition. These results identify HPV8-E1 and HPV8-E2 as viral proteins that are responsible for the immune escape of β-HPV from the innate recognition of viral nucleic acids, a mechanism that may be necessary for establishing persistent β-HPV infections.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
- Correspondence: ; Tel.: +49-221-478-85821; Fax: +49-221-478-85802
| | - Martin Hufbauer
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| |
Collapse
|
3
|
Akgül B, Kirschberg M, Storey A, Hufbauer M. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1. Int J Cancer 2019; 145:797-806. [PMID: 30786016 DOI: 10.1002/ijc.32223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Human papillomavirus 8 (HPV8) is associated with the development of squamous cell carcinoma (SCC) of the skin. HPV-infected keratinocytes are able to override normal checkpoint control mechanisms and sustain cell cycle activity, allowing for synthesis of cellular proteins necessary for viral genome amplification. To study how HPV8 may disrupt cell cycle control, we analyzed the impact of HPV8 early gene expression on one of the key regulators of cell cycle and DNA damage response, checkpoint kinase-1 (CHK1). We found that expression of E1, E1̂E4, E2, E6 or E7 individually did not affect CHK1; however, keratinocytes expressing the complete early genome region (CER) of HPV8 showed a profound loss of CHK1 protein levels, that proved to be mediated by E6E7 co-expression. Neither CHK1 promoter regulation nor the ubiquitin-proteasome pathway are involved in HPV8-mediated CHK1 repression. However, CHK1 protein repression in organotypic skin cultures was paralleled by downregulation of the autophagy marker LC3B. Treatment of HPV8-CER expressing cells with the autophagy inhibitor Bafilomycin A1 rescued CHK1 expression and led to LC3B accumulation. Taken together, our data implicate that CHK1 autophagic degradation is enhanced by HPV8, which may contribute to the oncogenic potential of the virus.
Collapse
Affiliation(s)
- Baki Akgül
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Matthias Kirschberg
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Hufbauer M, Maltseva M, Meinrath J, Lechner A, Beutner D, Huebbers CU, Akgül B. HPV16 increases the number of migratory cancer stem cells and modulates their miRNA expression profile in oropharyngeal cancer. Int J Cancer 2018; 143:1426-1439. [PMID: 29663357 DOI: 10.1002/ijc.31538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Human papillomavirus type 16 (HPV16) is a major risk for development of oropharyngeal squamous-cell-carcinoma (OPSCC). Although HPV+ OPSCC metastasize faster than HPV- tumors, they have a better prognosis. The molecular and cellular alterations underlying this pathobiology of HPV+ OPSCC remain elusive. In this study, we examined whether expression of HPV16-E6E7 targets the number of migratory and stationary cancer stem cells (CSC). Furthermore, we wanted to elucidate if aberrantly expressed miRNAs in migratory CSC may be responsible for progression of OPSCCs and whether they may serve as potential novel biomarkers for increased potential of metastasis. Our studies revealed that HPV16-E6E7 expression leads to an increase in the number of stationary (CD44high /EpCAMhigh ) stem cells in primary keratinocyte cultures. Most importantly, expression of E6E7 in the cell line H357 increased the migratory (CD44high /EpCAMlow ) CSC pool. This increase in migratory CSCs could also be confirmed in HPV+ OPSCC. Differentially expressed miRNAs from HPV16-E6E7 positive CD44high /EpCAMlow CSCs were validated by RT-qPCR and in situ hybridization on HPV16+ OPSCCs. These experiments led to the identification of miR-3194-5p, which is upregulated in primary HPV16+ OPSCC and matched metastasis. MiR-1281 was also found to be highly expressed in HPV+ and HPV- metastasis. As inhibition of this miRNA led to a markedly reduction of CD44high /EpCAMlow cells, it may prove to be a promising drug target. Taken together, our findings highlight the capability of HPV16 to modify the phenotype of infected stem cells and that miR-1281 and miR3194-5p may represent promising targets to block metastatic spread of OPSCC.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Margaret Maltseva
- Institute of Virology, University of Cologne, Cologne, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | | | - Axel Lechner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany.,Cologne Interventional Immunology, Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Christian U Huebbers
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Haukioja A, Tervahartiala T, Sorsa T, Syrjänen S. Persistent Oral Human Papillomavirus (HPV) Infection is Associated with Low Salivary Levels of Matrix Metalloproteinase 8 (MMP-8). J Clin Virol 2017; 97:4-9. [DOI: 10.1016/j.jcv.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 02/02/2023]
|
6
|
Iftner T, Haedicke-Jarboui J, Wu SY, Chiang CM. Involvement of Brd4 in different steps of the papillomavirus life cycle. Virus Res 2016; 231:76-82. [PMID: 27965149 DOI: 10.1016/j.virusres.2016.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022]
Abstract
Bromodomain-containing protein 4 (Brd4) is a cellular chromatin-binding factor and transcriptional regulator that recruits sequence-specific transcription factors and chromatin modulators to control target gene transcription. Papillomaviruses (PVs) have evolved to hijack Brd4's activity in order to create a facilitating environment for the viral life cycle. Brd4, in association with the major viral regulatory protein E2, is involved in multiple steps of the PV life cycle including replication initiation, viral gene transcription, and viral genome segregation and maintenance. Phosphorylation of Brd4, regulated by casein kinase II (CK2) and protein phosphatase 2A (PP2A), is critical for viral gene transcription as well as E1- and E2-dependent origin replication. Thus, pharmacological agents regulating Brd4 phosphorylation and inhibitors blocking phospho-Brd4 functions are promising candidates for therapeutic intervention in treating human papillomavirus (HPV) infections as well as associated disease.
Collapse
Affiliation(s)
- Thomas Iftner
- Division of Experimental Virology, Institute for Medical Virology, University Hospital Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany.
| | - Juliane Haedicke-Jarboui
- Division of Experimental Virology, Institute for Medical Virology, University Hospital Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Wu SY, Nin DS, Lee AY, Simanski S, Kodadek T, Chiang CM. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression. Cell Rep 2016; 16:1733-1748. [PMID: 27477287 DOI: 10.1016/j.celrep.2016.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/18/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023] Open
Abstract
Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4), a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV) to viral early gene and cellular matrix metalloproteinase-9 (MMP-9) promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Dawn Sijin Nin
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - A-Young Lee
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Scott Simanski
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Heuser S, Hufbauer M, Marx B, Tok A, Majewski S, Pfister H, Akgül B. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8. J Gen Virol 2016; 97:463-472. [DOI: 10.1099/jgv.0.000363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sandra Heuser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Benjamin Marx
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Ali Tok
- Department of Urology, University Hospital Cologne, Cologne, Germany
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University in Warsaw, Warsaw, Poland
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Prabhavathy D, Vijayalakshmi R, Kanchana MP, Karunagaran D. HPV16 E2 enhances the expression of NF-κB and STAT3 target genes and potentiates NF-κB activation by inflammatory mediators. Cell Immunol 2015; 292:70-7. [PMID: 25460081 DOI: 10.1016/j.cellimm.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/07/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
Abstract
HPV-transformed cells exhibit activation of NF-κB and STAT3 (mediators of inflammation), but very little is known about their regulation under inflammatory conditions before HPV integration. This study reports that cervical tissues with stromal inflammation and intact HPV16 E2 gene show increased expression of target genes of NF-κB and/or STAT3 which can regulate cell survival (cyclin D1, c-Myc, survivin and Bcl2) and inflammatory responses (TNF-α, IL-1β, IL-6, IL-8 and CCR2). Increased expression of RelA, p-IκBα, STAT3, p-STAT3 (Ser727), Pin1 (peptidyl-prolyl cis/trans isomerase) and MCM2 in the squamous epithelia of cervices with stromal inflammation supports early activation of NF-κB-STAT3. Furthermore, HPV16 E2 potentiated NF-κB activation induced by inflammatory mediators, IL-1β and SDF-1α, in HEK293 cells. These results reveal a novel role for E2 in regulating the activities of NF-κB and STAT3 that may have implications in carcinogenic progression of HPV16-infected cells under conditions of stromal inflammation.
Collapse
|
10
|
HPV16 E2-mediated potentiation of NF-κB activation induced by TNF-α involves parallel activation of STAT3 with a reduction in E2-induced apoptosis. Mol Cell Biochem 2014; 394:77-90. [PMID: 24833467 DOI: 10.1007/s11010-014-2083-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/03/2014] [Indexed: 02/08/2023]
Abstract
Human papilloma virus is associated with cervical and other tumors, and several cellular conditions also play an important role in carcinogenesis. Human papilloma virus (HPV)-infected cells exhibit activation of NF-κB and STAT3 (mediators of inflammation), but little is known about their regulation by HPV. This study attempts to understand the role of HPV16 E2, an important early protein of HPV16, in the regulation of NF-κB and STAT3 by reporter assays, quantitative reverse transcriptase-polymerase chain reaction, and immunoblotting. We demonstrate that E2 enhances NF-κB activation induced by TNF-α, a proinflammatory cytokine, in both non-tumor- and tumor-derived epithelial cell lines besides potentiating STAT3 transcriptional activity induced by TNF-α in HEK293 cells. E2 increases the expression of RelA and its transcriptional activation, and retention of E2 was observed in the nucleus with significant interaction with RelA (immunoprecipitation) upon TNF-α treatment. Transfection with shRNA-RelA or pretreatment with a STAT3 inhibitor had a negative effect on the ability of E2 to enhance TNF-α-induced NF-κB activation. Experiments with co-expression of a mutant of STAT3 with E2 also suggested that the activation of STAT3 is indispensible for TNF-α-induced NF-κB activation. Inhibition of STAT3 activation enhanced E2-induced apoptosis, whereas parallel activation of NF-κB and STAT3 by the combined action of E2 and TNF-α increased the expression of their common targets, cyclin-D1, c-Myc, survivin, and Bcl-2, leading to a decrease in E2-induced apoptosis (viability and cell cycle). Our results reveal novel mechanisms by which E2 may regulate NF-κB and STAT3 activation in the presence of TNF-α with implications on the survival of HPV-infected cells.
Collapse
|
11
|
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 2014; 6:240-96. [PMID: 24473089 PMCID: PMC3980597 DOI: 10.3390/cancers6010240] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the "angiogenic switch", the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| |
Collapse
|
12
|
Marcuzzi GP, Awerkiew S, Hufbauer M, Schädlich L, Gissmann L, Eming S, Pfister H. Tumor prevention in HPV8 transgenic mice by HPV8-E6 DNA vaccination. Med Microbiol Immunol 2014; 203:155-63. [PMID: 24446083 DOI: 10.1007/s00430-014-0327-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
The genus beta human papillomavirus 8 (HPV8) is involved in the development of cutaneous squamous cell carcinomas (SCCs) in individuals with epidermodysplasia verruciformis. Immunosuppressed transplant recipients are prone to harbor particularly high betapapillomavirus DNA loads, which may contribute to their highly increased risk of SCC. Tumor induction in HPV8 transgenic mice correlates with increased expression of viral oncogenes E6 and E2. In an attempt to prevent skin tumor development, we evaluated an HPV8-E6-DNA vaccine, which was able to stimulate a detectable HPV8-E6-specific cell-mediated immune response in 8/15 immunized mice. When skin of HPV8 transgenic mice was grafted onto non-transgenic littermates, the grafted HPV8 transgenic tissue was not rejected and papillomas started to grow within 14 days all over the transplant of 9/9 non-vaccinated and 7/15 not successfully vaccinated mice. In contrast, no papillomas developed in 6/8 successfully vaccinated mice. In the other two of these eight mice, a large ulcerative lesion developed within the initial papilloma growth or papilloma development was highly delayed. As the vaccine completely or partially prevented papilloma development without rejecting the transplanted HPV8 positive skin, the immune system appears to attack only keratinocytes with increased levels of E6 protein, which would give rise to papillomas.
Collapse
Affiliation(s)
- Gian Paolo Marcuzzi
- Institute of Virology, University of Cologne, Fuerst-Pueckler-Str. 56, 50935, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
14
|
Cardeal LBDS, Boccardo E, Termini L, Rabachini T, Andreoli MA, di Loreto C, Filho AL, Villa LL, Maria-Engler SS. HPV16 oncoproteins induce MMPs/RECK-TIMP-2 imbalance in primary keratinocytes: possible implications in cervical carcinogenesis. PLoS One 2012; 7:e33585. [PMID: 22438955 PMCID: PMC3306414 DOI: 10.1371/journal.pone.0033585] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/16/2012] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is the third most common cancer in women worldwide. Persistent infection with high-risk HPV types, principally HPV16 and 18 is the main risk factor for the development of this malignancy. However, the onset of invasive tumor occurs many years after initial exposure in a minority of infected women. This suggests that other factors beyond viral infection are necessary for tumor establishment and progression. Tumor progression is characterized by an increase in secretion and activation of matrix metalloproteinases (MMPs) produced by either the tumor cells themselves or tumor-associated fibroblasts or macrophages. Increased MMPs expression, including MMP-2, MMP-9 and MT1-MMP, has been observed during cervical carcinoma progression. These proteins have been associated with degradation of ECM components, tumor invasion, metastasis and recurrence. However, few studies have evaluated the interplay between HPV infection and the expression and activity of MMPs and their regulators in cervical cancer. We analyzed the effect of HPV16 oncoproteins on the expression and activity of MMP-2, MMP-9, MT1-MMP, and their inhibitors TIMP-2 and RECK in cultures of human keratinocytes. We observed that E7 expression is associated with increased pro-MMP-9 activity in the epithelial component of organotypic cultures, while E6 and E7 oncoproteins co-expression down-regulates RECK and TIMP-2 levels in organotypic and monolayers cultures. Finally, a study conducted in human cervical tissues showed a decrease in RECK expression levels in precancer and cancer lesions. Our results indicate that HPV oncoproteins promote MMPs/RECK-TIMP-2 imbalance which may be involved in HPV-associated lesions outcome.
Collapse
Affiliation(s)
- Laura Beatriz da Silva Cardeal
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Enrique Boccardo
- Ludwig Institute for Cancer Research, Virology Group, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lara Termini
- Ludwig Institute for Cancer Research, Virology Group, São Paulo, Brazil
- HPV Institute – INCT-HPV, Santa Casa de Misericórdia, São Paulo, Brazil
| | - Tatiana Rabachini
- Ludwig Institute for Cancer Research, Virology Group, São Paulo, Brazil
| | | | - Celso di Loreto
- Nucleo de Patologia do Instituto Adolfo Lutz, São Paulo, Brazil
| | - Adhemar Longatto Filho
- Laboratory of Medical Investigation (LIM) 14, School of Medicine, University of São Paulo, São Paulo, Brazil
- PIO XII Foundation, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luisa Lina Villa
- Ludwig Institute for Cancer Research, Virology Group, São Paulo, Brazil
- HPV Institute – INCT-HPV, Santa Casa de Misericórdia, São Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Identification and analysis of papillomavirus E2 protein binding sites in the human genome. J Virol 2011; 86:348-57. [PMID: 22031941 DOI: 10.1128/jvi.05606-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Papillomavirus E2 protein is required for the replication and maintenance of viral genomes and transcriptional regulation of viral genes. E2 functions through sequence-specific binding to 12-bp DNA motifs-E2 binding sites (E2BS)-in the virus genome. Papillomaviruses are able to establish persistent infection in their host and have developed a long-term relationship with the host cell in order to guarantee the propagation of the virus. In this study, we have analyzed the occurrence and functionality of E2BSs in the human genome. Our computational analysis indicates that most E2BSs in the human genome are found in repetitive DNA regions and have G/C-rich spacer sequences. Using a chromatin immunoprecipitation approach, we show that human papillomavirus type 11 (HPV11) E2 interacts with a subset of cellular E2BSs located in active chromatin regions. Two E2 activities, sequence-specific DNA binding and interaction with cellular Brd4 protein, are important for E2 binding to consensus sites. E2 binding to cellular E2BSs has a moderate or no effect on cellular transcription. We suggest that the preference of HPV E2 proteins for E2BSs with A/T-rich spacers, which are present in the viral genomes and underrepresented in the human genome, ensures E2 binding to specific binding sites in the virus genome and may help to prevent extensive and possibly detrimental changes in cellular transcription in response to the viral protein.
Collapse
|