1
|
Duwe SC, Milde J, Heider A, Wedde M, Schweiger B, Dürrwald R. Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses 2024; 16:1109. [PMID: 39066271 PMCID: PMC11281601 DOI: 10.3390/v16071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The unexpected emergence of oseltamivir-resistant A(H1N1) viruses in 2008 was facilitated in part by the establishment of permissive secondary neuraminidase (NA) substitutions that compensated for the fitness loss due to the NA-H275Y resistance substitution. These viruses were replaced in 2009 by oseltamivir-susceptible A(H1N1)pdm09 influenza viruses. Genetic analysis and screening of A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2024 were conducted to identify any potentially synergistic or resistance-associated NA substitutions. Selected viruses were then subjected to further characterization in vitro. In the NA gene of circulating A(H1N1)pdm09 viruses, two secondary substitutions, NA-V241I and NA-N369K, were identified. These substitutions demonstrated a stable lineage in phylogenetic analysis since the 2010-2011 influenza season. The data indicate a slight increase in viral NA bearing two additional potentially synergistic substitutions, NA-I223V and NA-S247N, in the 2023-2024 season, which both result in a slight reduction in susceptibility to NA inhibitors. The accumulation of secondary synergistic substitutions in the NA of A(H1N1)pdm09 viruses increases the probability of the emergence of antiviral-resistant viruses. Therefore, it is crucial to closely monitor the evolution of circulating influenza viruses and to develop additional antiviral drugs against different target proteins.
Collapse
Affiliation(s)
- Susanne C. Duwe
- Unit 17 Influenza and Other Respiratory Viruses, Department 1 Infectious Diseases, Robert Koch-Institute, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Langeder J, Grienke U, Chen Y, Kirchmair J, Schmidtke M, Rollinger JM. Natural products against acute respiratory infections: Strategies and lessons learned. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112298. [PMID: 31610260 DOI: 10.1016/j.jep.2019.112298] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A wide variety of traditional herbal remedies have been used throughout history for the treatment of symptoms related to acute respiratory infections (ARIs). AIM OF THE REVIEW The present work provides a timely overview of natural products affecting the most common pathogens involved in ARIs, in particular influenza viruses and rhinoviruses as well as bacteria involved in co-infections, their molecular targets, their role in drug discovery, and the current portfolio of available naturally derived anti-ARI drugs. MATERIALS AND METHODS Literature of the last ten years was evaluated for natural products active against influenza viruses and rhinoviruses. The collected bioactive agents were further investigated for reported activities against ARI-relevant bacteria, and analysed for the chemical space they cover in relation to currently known natural products and approved drugs. RESULTS An overview of (i) natural compounds active in target-based and/or phenotypic assays relevant to ARIs, (ii) extracts, and (iii) in vivo data are provided, offering not only a starting point for further in-depth phytochemical and antimicrobial studies, but also revealing insights into the most relevant anti-ARI scaffolds and compound classes. Investigations of the chemical space of bioactive natural products based on principal component analysis show that many of these compounds are drug-like. However, some bioactive natural products are substantially larger and have more polar groups than most approved drugs. A workflow with various strategies for the discovery of novel antiviral agents is suggested, thereby evaluating the merit of in silico techniques, the use of complementary assays, and the relevance of ethnopharmacological knowledge on the exploration of the therapeutic potential of natural products. CONCLUSIONS The longstanding ethnopharmacological tradition of natural remedies against ARIs highlights their therapeutic impact and remains a highly valuable selection criterion for natural materials to be investigated in the search for novel anti-ARI acting concepts. We observe a tendency towards assaying for broad-spectrum antivirals and antibacterials mainly discovered in interdisciplinary academic settings, and ascertain a clear demand for more translational studies to strengthen efforts for the development of effective and safe therapeutic agents for patients suffering from ARIs.
Collapse
Affiliation(s)
- Julia Langeder
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Ya Chen
- University of Hamburg, Center for Bioinformatics (ZBH), Bundesstraße 43, 22763, Hamburg, Germany
| | - Johannes Kirchmair
- Department of Chemistry, University of Bergen, N-5020, Bergen, Norway; Computational Biology Unit (CBU), University of Bergen, N-5020, Bergen, Norway
| | - Michaela Schmidtke
- Section of Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, Jena, 07745, Germany
| | - Judith M Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
3
|
Hoffmann A, Richter M, von Grafenstein S, Walther E, Xu Z, Schumann L, Grienke U, Mair CE, Kramer C, Rollinger JM, Liedl KR, Schmidtke M, Kirchmair J. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Front Microbiol 2017; 8:205. [PMID: 28261167 PMCID: PMC5309245 DOI: 10.3389/fmicb.2017.00205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Viral neuraminidases are an established drug target to combat influenza. Severe complications observed in influenza patients are primarily caused by secondary infections with e.g., Streptococcus pneumoniae. These bacteria engage in a lethal synergism with influenza A viruses (IAVs) and also express neuraminidases. Therefore, inhibitors with dual activity on viral and bacterial neuraminidases are expected to be advantageous for the treatment of influenza infections. Here we report on the discovery and characterization of diazenylaryl sulfonic acids as dual inhibitors of viral and Streptococcus pneumoniae neuraminidase. The initial hit came from a virtual screening campaign for inhibitors of viral neuraminidases. For the most active compound, 7-[2-[4-[2-[4-[2-(2-hydroxy-3,6-disulfo-1-naphthalenyl)diazenyl]-2-methylphenyl]diazenyl]-2-methylphenyl]diazenyl]-1,3-naphthalenedisulfonic acid (NSC65847; 1), the Ki-values measured in a fluorescence-based assay were lower than 1.5 μM for both viral and pneumococcal neuraminidases. The compound also inhibited N1 virus variants containing neuraminidase inhibitor resistance-conferring substitutions. Via enzyme kinetics and nonlinear regression modeling, 1 was suggested to impair the viral neuraminidases and pneumococcal neuraminidase with a mixed-type inhibition mode. Given its antiviral and antipneumococcal activity, 1 was identified as a starting point for the development of novel, dual-acting anti-infectives.
Collapse
Affiliation(s)
- Anja Hoffmann
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Martina Richter
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Susanne von Grafenstein
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Elisabeth Walther
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Zhongli Xu
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Lilia Schumann
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christina E. Mair
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christian Kramer
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Klaus R. Liedl
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Johannes Kirchmair
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
- Center for Bioinformatics, University of HamburgHamburg, Germany
| |
Collapse
|
4
|
Palmer J, Dobrovolny HM, Beauchemin CAA. The in vivo efficacy of neuraminidase inhibitors cannot be determined from the decay rates of influenza viral titers observed in treated patients. Sci Rep 2017; 7:40210. [PMID: 28067324 PMCID: PMC5220315 DOI: 10.1038/srep40210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023] Open
Abstract
Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone.
Collapse
Affiliation(s)
- John Palmer
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Hana M Dobrovolny
- Department of Physics &Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Catherine A A Beauchemin
- Department of Physics, Ryerson University, Toronto, ON, Canada.,Interdisciplinary Theoretical Science (iTHES) Research Group at RIKEN, Wako, Japan
| |
Collapse
|
5
|
Hoffmann A, Schade D, Kirchmair J, Clement B, Sauerbrei A, Schmidtke M. Platform for determining the inhibition profile of neuraminidase inhibitors in an influenza virus N1 background. J Virol Methods 2016; 237:192-199. [PMID: 27659246 DOI: 10.1016/j.jviromet.2016.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
Efforts to develop novel neuraminidase inhibitors (NAIs) for the treatment of influenza are ongoing. Novel NAIs should in particular be also effective against seasonal and/or pandemic N1 that carry a H274Y or N294S substitution (N2 numbering), which are most commonly linked to oseltamivir resistance. Here we report a platform for profiling the efficacy of novel NAIs in the N1 genetic background of influenza A virus. Employing reverse genetics, a set of influenza virus variants containing an amino acid substitution associated with oseltamivir resistance in N1 isolates (H274Y, N294S, Y155H or Q136L) was generated. In parallel, so far unreported mutations of I427 (I427Q and I427M) were investigated. These possibly interfere with the side chain orientation of R371 and alter the binding affinity of most relevant NAIs. The profiling platform was validated with both oseltamivir and zanamivir and exemplarily applied to three analogs with differing decorations at positions 4 and 5. Besides confirming the inhibition profile of zanamivir and oseltamivir, the distinct effect of I427Q/M on the activity of both NAIs was shown. For 5-amidino and 5-guanidino analogs of oseltamivir a significantly stronger inhibition of virus variants carrying a NA-H274Y was confirmed, and additionally shown for NA-N294S and NA-Y155H substitutions as compared to the parent compound. Hence, the herein presented profiling platform is a valid tool for defining the inhibition profile of novel NAIs in the N1 background.
Collapse
Affiliation(s)
- Anja Hoffmann
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dennis Schade
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Johannes Kirchmair
- Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Bernd Clement
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
6
|
Walther E, Xu Z, Richter M, Kirchmair J, Grienke U, Rollinger JM, Krumbholz A, Saluz HP, Pfister W, Sauerbrei A, Schmidtke M. Dual Acting Neuraminidase Inhibitors Open New Opportunities to Disrupt the Lethal Synergism between Streptococcus pneumoniae and Influenza Virus. Front Microbiol 2016; 7:357. [PMID: 27047471 PMCID: PMC4800182 DOI: 10.3389/fmicb.2016.00357] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023] Open
Abstract
Secondary infections with Streptococcus pneumoniae cause severe pneumonia and enhance lethality during influenza epidemics and pandemics. Structural and functional similarities with viral neuraminidase (NA) suggest that the highly prevalent pneumococcal NAs, NanA and NanB, might contribute to this lethal synergism by supporting viral replication and that dual acting NA inhibitors (NAIs) will disrupt it. To verify this hypothesis, NanA and NanB were expressed in E. coli. After confirming their activity in enzyme assays, in vitro models with influenza virus A/Jena/8178/09 (Jena/8178) and the recombinant NanA or NanB (rNanA and rNanB) were established in A549 and MDCK cells to mimic the role of these pneumococcal NAs during co-infection. Studies on the influence of both NAs on viral receptor expression, spread, and yield revealed a distinct effect of NanA and NanB on viral replication in these in vitro models. Both enzymes were able to support Jena/8178 replication at certain concentrations. This synergism was disrupted by the NAIs oseltamivir, DANA, katsumadain A, and artocarpin exerting an inhibitory effect on viral NA and NanA. Interestingly, katsumadain A and artocarpin inhibited rNanA and rNanB similarly. Zanamivir did not show activity. These results demonstrate a key role of pneumococcal NAs in the lethal synergism with influenza viruses and reveal opportunities for its effective disruption.
Collapse
Affiliation(s)
- Elisabeth Walther
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Zhongli Xu
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Martina Richter
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | | | - Ulrike Grienke
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | | | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel–University Medical Center Schleswig-Holstein, Campus KielKiel, Germany
| | - Hans P. Saluz
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll InstituteJena, Germany
| | - Wolfgang Pfister
- Department of Medical Microbiology, Jena University HospitalJena, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| |
Collapse
|
7
|
Spanakis N, Pitiriga V, Gennimata V, Tsakris A. A review of neuraminidase inhibitor susceptibility in influenza strains. Expert Rev Anti Infect Ther 2015; 12:1325-36. [PMID: 25301229 DOI: 10.1586/14787210.2014.966083] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza human infections are considered as a persistent global public health issue. Whereas vaccination is important for prevention, given its limitations, antiviral therapy is at the forefront of treatment, while it also plays a significant role in prevention. Currently, two classes of drugs, adamantanes (M2 blockers) and neuraminidase inhibitors (NAIs), are available for treatment and chemoprophylaxis of influenza infections. Given the resistance patterns of circulating influenza strains, adamantanes are not currently recommended. The current review mainly focuses on the development of resistance to NAIs among A and B subtypes of influenza virus strains over the last 5 years. 'Permissive' drift mutations and reassortment of viral gene segments have resulted in NAI oseltamivir-resistant A/(H1N1) variants that rapidly became predominant worldwide in the period 2007-2009. However, the prevalence of antiviral resistance to NAI zanamivir remains relatively low. In addition, the recently developed NAIs, peramivir and laninamivir, while licensed in certain countries, are still under evaluation and only a few reports have described resistance to peramivir. Although in 2014, the majority of circulating human influenza viruses remains susceptible to all NAIs, the emergence of oseltamivir-resistant influenza variants that could retain viral transmissibility, highlights the necessity for enhanced epidemiological and microbiological surveillance and clinical assessment of antiviral resistance.
Collapse
Affiliation(s)
- Nick Spanakis
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece
| | | | | | | |
Collapse
|
8
|
Baranovich T, Bahl J, Marathe BM, Culhane M, Stigger-Rosser E, Darnell D, Kaplan BS, Lowe JF, Webby RJ, Govorkova EA. Influenza A viruses of swine circulating in the United States during 2009-2014 are susceptible to neuraminidase inhibitors but show lineage-dependent resistance to adamantanes. Antiviral Res 2015; 117:10-9. [PMID: 25701593 DOI: 10.1016/j.antiviral.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/30/2022]
Abstract
Antiviral drug susceptibility is one of the evaluation criteria of pandemic potential posed by an influenza virus. Influenza A viruses of swine (IAV-S) can play an important role in generating novel variants, yet limited information is available on the drug resistance profiles of IAV-S circulating in the U.S. Phenotypic analysis of the IAV-S isolated in the U.S. (2009-2011) (n=105) revealed normal inhibition by the neuraminidase (NA) inhibitors (NAIs) oseltamivir, zanamivir, and peramivir. Screening NA sequences from IAV-S collected in the U.S. (1930-2014) showed 0.03% (1/3396) sequences with clinically relevant H274Y-NA substitution. Phenotypic analysis of IAV-S isolated in the U.S. (2009-2011) confirmed amantadine resistance caused by the S31N-M2 and revealed an intermediate level of resistance caused by the I27T-M2. The majority (96.7%, 589/609) of IAV-S with the I27T-M2 in the influenza database were isolated from pigs in the U.S. The frequency of amantadine-resistant markers among IAV-S in the U.S. was high (71%), and their distribution was M-lineage dependent. All IAV-S of the Eurasian avian M lineage were amantadine-resistant and possessed either a single S31N-M2 substitution (78%, 585/747) or its combination with the V27A-M2 (22%, 162/747). The I27T-M2 substitution accounted for 43% (429/993) of amantadine resistance in classic swine M lineage. Phylogenetic analysis showed that both S31N-M2 and I27T-M2 emerged stochastically but appeared to be fixed in the U.S. IAV-S population. This study defines a drug-susceptibility profile, identifies the frequency of drug-resistant markers, and establishes a phylogenetic approach for continued antiviral-susceptibility monitoring of IAV-S in the U.S.
Collapse
Affiliation(s)
- Tatiana Baranovich
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Justin Bahl
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, TX 77030, USA; Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marie Culhane
- Veterinary Diagnostic Labs, University of Minnesota, Saint Paul, MN 55108, USA
| | - Evelyn Stigger-Rosser
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel Darnell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bryan S Kaplan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James F Lowe
- Integrated Food Animal Systems, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
9
|
Richter M, Schumann L, Walther E, Hoffmann A, Braun H, Grienke U, Rollinger JM, von Grafenstein S, Liedl KR, Kirchmair J, Wutzler P, Sauerbrei A, Schmidtke M. Complementary assays helping to overcome challenges for identifying neuraminidase inhibitors. Future Virol 2015. [DOI: 10.2217/fvl.14.97] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Aims: In this study, we analyze the challenges involved in detecting novel neuraminidase inhibitors (NAIs) and offer strategies to overcome them with complementary bioassays. Materials & Methods: We investigated the inhibitory activities of NAIs (oseltamivir, zanamivir, DANA, katsumadain A and remazol) as well as non-NAIs (amantadine, nucleozin and rifampicin) on influenzaviral and bacterial (Streptococcus pneumoniae, Clostridium perfringens and Vibrio cholerae) neuraminidases (NAs) with chemiluminescence (CL)- and fluorescence (FL)-based assays. Furthermore, hemagglutination-based NA inhibition assays were established. Results: Our study shows three types of signal interference affecting the readout of biochemical assays: self-FL (katsumadain A and remazol), FL quenching (rifampicin) and CL quenching (rifampicin, remazol, nucleozin and katsumadain A). These challenges were overcome by hemagglutination-based assays. Conclusion: The latter allow a robust performance in discriminating NAIs and non-NAIs.
Collapse
Affiliation(s)
- Martina Richter
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| | - Lilia Schumann
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| | - Elisabeth Walther
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| | - Anja Hoffmann
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| | - Heike Braun
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| | - Ulrike Grienke
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, Innsbruck, Austria
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna, Austria
| | - Judith M Rollinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna, Austria
| | - Susanne von Grafenstein
- Institute of General, Inorganic & Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic & Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, Innsbruck, Austria
| | - Johannes Kirchmair
- Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, Hamburg, Germany
| | - Peter Wutzler
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| | - Andreas Sauerbrei
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| | - Michaela Schmidtke
- Department of Virology & Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, Jena, Germany
| |
Collapse
|
10
|
Doerr HW, Berger A. Vaccination against infectious diseases: what is promising? Med Microbiol Immunol 2014; 203:365-71. [PMID: 25064610 DOI: 10.1007/s00430-014-0346-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 12/17/2022]
Abstract
Vaccination has proven to be one of the best weapons protecting the mankind against infectious diseases. Along with the huge progress in microbiology, numerous highly efficacious and safe vaccines have been produced by conventional technology (cultivation), by the use of molecular biology (genetic modification), or by synthetic chemistry. Sterilising prevention is achieved by the stimulation of antibody production, while the stimulation of cell-mediated immune responses may prevent the outbreak of disease in consequence of an acute or reactivated infection. From several examples, two rules are deduced to evaluate the perspectives of future vaccine developments: They are promising, if (1) the natural infectious disease induces immunity or (2) passive immunisation (transfer of antibodies, adoptive transfer of lymphocytes) is successful in preventing infection.
Collapse
Affiliation(s)
- Hans Wilhelm Doerr
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Paul-Ehrlich-Str. 40, 60596, Frankfurt/M., Germany,
| | | |
Collapse
|
11
|
Seidel N, Sauerbrei A, Wutzler P, Schmidtke M. Hemagglutinin 222D/G polymorphism facilitates fast intra-host evolution of pandemic (H1N1) 2009 influenza A viruses. PLoS One 2014; 9:e104233. [PMID: 25162520 PMCID: PMC4146462 DOI: 10.1371/journal.pone.0104233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
The amino acid substitution of aspartic acid to glycine in hemagglutinin (HA) in position 222 (HA-D222G) as well as HA-222D/G polymorphism of pandemic (H1N1) 2009 influenza viruses (A(H1N1)pdm09) were frequently reported in severe influenza in humans and mice. Their impact on viral pathogenicity and the course of influenza has been discussed controversially and the underlying mechanism remained unclarified. In the present study, BALB/c mice, infected with the once mouse lung- and cell-passaged A(H1N1)pdm09 isolate A/Jena/5258/09 (mpJena/5258), developed severe pneumonia. From day 2 to 3 or 4 post infection (p.i.) symptoms (body weight loss and clinical score) continuously worsened. After a short disease stagnation or even recovery phase in most mice, severity of disease further increased on days 6 and 7 p.i. Thereafter, surviving mice recovered. A 45 times higher virus titer maximum in the lung than in the trachea on day 2 p.i. and significantly higher tracheal virus titers compared to lung on day 6 p.i. indicated changes in the organ tropism during infection. Sequence analysis revealed an HA-222D/G polymorphism. HA-D222 and HA-G222 variants co-circulated in lung and trachea. Whereas, HA-D222 variant predominated in the lung, HA-G222 became the major variant in the trachea after day 4 p.i. This was accompanied by lower neutralizing antibody titers and broader receptor recognition including terminal sialic acid α-2,3-linked galactose, which is abundant on mouse trachea epithelial cells. Plaque-purified HA-G222-mpJena/5258 virus induced severe influenza with maximum symptom on day 6 p.i. These results demonstrated for the first time that HA-222D/G quasispecies of A(H1N1)pdm09 caused severe biphasic influenza because of fast viral intra-host evolution, which enabled partial antibody escape and minor changes in receptor binding.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Base Sequence
- Evolution, Molecular
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host Specificity
- Humans
- Immune Evasion
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- Polymorphism, Genetic
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Sialic Acids/chemistry
- Sialic Acids/immunology
- Trachea/immunology
- Trachea/pathology
- Trachea/virology
- Viral Tropism
Collapse
Affiliation(s)
- Nora Seidel
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Peter Wutzler
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
- * E-mail:
| |
Collapse
|
12
|
Manchanda H, Seidel N, Krumbholz A, Sauerbrei A, Schmidtke M, Guthke R. Within-host influenza dynamics: a small-scale mathematical modeling approach. Biosystems 2014; 118:51-9. [PMID: 24614233 DOI: 10.1016/j.biosystems.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 01/28/2023]
Abstract
The emergence of new influenza viruses like the pandemic H1N1 influenza A virus in 2009 (A(H1N1)pdm09) with unpredictable difficulties in vaccine coverage and established antiviral treatment protocols emphasizes the need of new murine models to prove the activity of novel antiviral compounds in vivo. The aim of the present study was to develop a small-scale mathematical model based on easily attainable experimental data to explain differences in influenza kinetics induced by different virus strains in mice. To develop a three-dimensional ordinary differential equation model of influenza dynamics, the following variables were included: (i) viral pathogenicity (P), (ii) antiviral immune defense (D), and (iii) inflammation due to pro-inflammatory response (I). Influenza virus-induced symptoms (clinical score S) in mice provided the basis for calculations of P and I. Both, mono- and biphasic course of mild to severe influenza induced by three clinical A(H1N1)pdm09 strains and one European swine H1N2 virus were comparatively and quantitatively studied by fitting the mathematical model to the experimental data. The model hypothesizes reasons for mild and severe influenza with mono- as well as biphasic course of disease. According to modeling results, the second peak of the biphasic course of infection is caused by inflammation. The parameters (i) maximum primary pathogenicity, (ii) viral infection rate, and (iii) rate of activation of the immune system represent most important parameters that quantitatively characterize the different pattern of virus-specific influenza kinetics.
Collapse
Affiliation(s)
- Himanshu Manchanda
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany; Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Nora Seidel
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Andi Krumbholz
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany; Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
| |
Collapse
|
13
|
Meng F, Punyadarsaniya D, Uhlenbruck S, Hennig-Pauka I, Schwegmann-Wessels C, Ren X, Dürrwald R, Herrler G. Replication characteristics of swine influenza viruses in precision-cut lung slices reflect the virulence properties of the viruses. Vet Res 2013; 44:110. [PMID: 24225030 PMCID: PMC3840634 DOI: 10.1186/1297-9716-44-110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/29/2013] [Indexed: 12/30/2022] Open
Abstract
Precision-cut lung slices of pigs were infected with five swine influenza A viruses of different subtypes (A/sw/Potsdam/15/1981 H1N1, A/sw/Bad Griesbach/IDT5604/2006 H1N1, A/sw/Bakum/1832/2000 H1N2, A/sw/Damme/IDT5673/2006 H3N2, A/sw/Herford/IDT5932/2007 H3N2). The viruses were able to infect ciliated and mucus-producing cells. The infection of well-differentiated respiratory epithelial cells by swine influenza A viruses was analyzed with respect to the kinetics of virus release into the supernatant. The highest titres were determined for H3N2/2006 and H3N2/2007 viruses. H1N1/1981 and H1N2/2000 viruses replicated somewhat slower than the H3N2 viruses whereas a H1N1 strain from 2006 multiplied at significantly lower titres than the other strains. Regarding their ability to induce a ciliostatic effect, the two H3N2 strains were found to be most virulent. H1N1/1981 and H1N2/2000 were somewhat less virulent with respect to their effect on ciliary activity. The lowest ciliostatic effect was observed with H1N1/2006. In order to investigate whether this finding is associated with a corresponding virulence in the host, pigs were infected experimentally with H3N2/2006, H1N2/2000, H1N1/1981 and H1N1/2006 viruses. The H1N1/2006 virus was significantly less virulent than the other viruses in pigs which was in agreement with the results obtained by the in vitro-studies. These findings offer the possibility to develop an ex vivo-system that is able to assess virulence of swine influenza A viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georg Herrler
- Institute of Virology University of Veterinary Medicine, Hannover, Germany.
| |
Collapse
|
14
|
Duerrwald R, Schlegel M, Bauer K, Vissiennon T, Wutzler P, Schmidtke M. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs. PLoS One 2013; 8:e61597. [PMID: 23630601 PMCID: PMC3632577 DOI: 10.1371/journal.pone.0061597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.
Collapse
Affiliation(s)
| | | | - Katja Bauer
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | | | - Peter Wutzler
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
- * E-mail:
| |
Collapse
|
15
|
Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM. Influenza neuraminidase: A druggable target for natural products. Nat Prod Rep 2012; 29:11-36. [DOI: 10.1039/c1np00053e] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|