1
|
Maldonado A, Muñoz R, Cabrera J, de Arruda JAA, de Andrade BAB, Villarroel-Dorrego M, do Valle IB. Heterotopic gastrointestinal cyst of the oral cavity: A rare clinical report and literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102406. [PMID: 40350078 DOI: 10.1016/j.jormas.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/31/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
This study reports a case of oral heterotopic gastrointestinal cyst (HGIC) and provides a comprehensive analysis of its demographic distribution, clinicopathological features, and treatment outcomes based on a literature review. The case involved a 6-year-old boy with a sublingual HGIC, with detailed documentation of the clinical presentation, imaging findings, surgical management, and histopathological features. Searches were conducted in PubMed, Scopus, Web of Science, Embase, and LILACS, supplemented by manual searches/gray literature. The patient exhibited a well-defined sublingual tumor, which was successfully treated by surgical excision. Histopathological analysis revealed both intestinal and gastric epithelium lining the cyst. The searches identified 111 cases of oral HGIC. The mean patient age was 5.4 years, with a slight male predominance. The tongue was the most frequently affected site, followed by the floor of the mouth. Larger cysts were associated with airway obstruction, feeding difficulties, or speech impairment. Microscopically, the predominant epithelial components were gastric, intestinal, and squamous. Surgical excision was the primary treatment and demonstrated low recurrence rates. Although rare, oral HGIC requires a high index of clinical suspicion due to its potential to mimic common oral lesions. Recognition of the diverse epithelium components is crucial for improving diagnostic accuracy.
Collapse
Affiliation(s)
- Andrea Maldonado
- Postgrado de Cirugía Bucomaxilofacial, Universidad de Carabobo, Valencia, Venezuela
| | - Rubén Muñoz
- Postgrado de Cirugía Bucomaxilofacial, Universidad de Carabobo, Valencia, Venezuela
| | - Jesús Cabrera
- Postgrado de Cirugía Bucomaxilofacial, Universidad de Carabobo, Valencia, Venezuela
| | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
2
|
Wu Y, Zhang K, Zheng Y, Jin H. A review of potential mechanisms and treatments of gastric intestinal metaplasia. Eur J Gastroenterol Hepatol 2025; 37:383-394. [PMID: 39975991 DOI: 10.1097/meg.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gastric intestinal metaplasia (GIM) is a pathological process where gastric mucosal epithelial cells are replaced by intestinal-type cells, serving as a precursor lesion for gastric cancer. This transformation involves various genetic and environmental factors, affecting key genes and signaling pathways. Recent research has revealed complex mechanisms, including changes in gene expression, abnormal signaling pathway activation, and altered cell behavior. This review summarizes the latest research on GIM, discussing its pathogenesis, current treatment strategies, and potential efficacy of emerging approaches like gene editing, microbiome interventions, and integrative medicine. By exploring these strategies, we aim to provide more effective treatments for GIM and reduce gastric cancer incidence. The review also highlights the importance of interdisciplinary studies in understanding GIM mechanisms and improving treatment strategies.
Collapse
Affiliation(s)
- Yueyao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | |
Collapse
|
3
|
Lei X, Cui ZY, Huang XJ. Exploration of gastric carcinogenesis from the relationship between bile acids and intestinal metaplasia and intragastric microorganisms (H. pylori and non-H. pylori). J Cancer Res Clin Oncol 2023; 149:16947-16956. [PMID: 37707577 DOI: 10.1007/s00432-023-05407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Gastric cancer (GC) is a prevalent form of cancer, with Helicobacter pylori (H. pylori) infection being the most common risk factor. Recent studies have highlighted the role of long-term irritation of the gastric mucosa caused by bile reflux in the development of cancer. Bile acids (BAs), which are a significant component in bile reflux, have the potential to promote gastric carcinogenesis through various mechanisms. These mechanisms include the induction of intestinal metaplasia (IM), inhibition of H. pylori activity, modification of H. pylori colonization, and alteration of the abundance and composition of microorganisms in the stomach. Defining the mechanism of bile acid-induced gastric carcinogenesis could potentially be an effective approach to prevent GC. Hence, this paper aims to review the mechanism of bile acid-induced IM, the association between BAs and H. pylori infection as well as microorganisms in the stomach, and the correlation between BAs and gastric carcinogenesis. The ultimate goal is to elucidate the role of BAs in the development of GC.
Collapse
Affiliation(s)
- X Lei
- Department of Gastroenterology, The Lanzhou University Second Hospital, No. 82 of Linxia Street, Chengguan District, Lanzhou, 730030, China
| | - Z Y Cui
- Department of Gastroenterology, The Lanzhou University Second Hospital, No. 82 of Linxia Street, Chengguan District, Lanzhou, 730030, China
| | - X J Huang
- Department of Gastroenterology, The Lanzhou University Second Hospital, No. 82 of Linxia Street, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Wood S, Ishida K, Hagerty JR, Karahodza A, Dennis JN, Jolly ER. Characterization of Schistosome Sox Genes and Identification of a Flatworm Class of Sox Regulators. Pathogens 2023; 12:690. [PMID: 37242360 PMCID: PMC10222431 DOI: 10.3390/pathogens12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Schistosome helminths infect over 200 million people across 78 countries and are responsible for nearly 300,000 deaths annually. However, our understanding of basic genetic pathways crucial for schistosome development is limited. The sex determining region Y-box 2 (Sox2) protein is a Sox B type transcriptional activator that is expressed prior to blastulation in mammals and is necessary for embryogenesis. Sox expression is associated with pluripotency and stem cells, neuronal differentiation, gut development, and cancer. Schistosomes express a Sox-like gene expressed in the schistosomula after infecting a mammalian host when schistosomes have about 900 cells. Here, we characterized and named this Sox-like gene SmSOXS1. SmSoxS1 protein is a developmentally regulated activator that localizes to the anterior and posterior ends of the schistosomula and binds to Sox-specific DNA elements. In addition to SmSoxS1, we have also identified an additional six Sox genes in schistosomes, two Sox B, one SoxC, and three Sox genes that may establish a flatworm-specific class of Sox genes with planarians. These data identify novel Sox genes in schistosomes to expand the potential functional roles for Sox2 and may provide interesting insights into early multicellular development of flatworms.
Collapse
Affiliation(s)
- Stephanie Wood
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; (S.W.); (K.I.); (J.R.H.)
| | - Kenji Ishida
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; (S.W.); (K.I.); (J.R.H.)
| | - James R. Hagerty
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; (S.W.); (K.I.); (J.R.H.)
| | - Anida Karahodza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; (S.W.); (K.I.); (J.R.H.)
| | - Janay N. Dennis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; (S.W.); (K.I.); (J.R.H.)
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; (S.W.); (K.I.); (J.R.H.)
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Abstract
ABSTRACT Gastric intestinal metaplasia (GIM) is a precancerous lesion of gastric cancer (GC) and is considered an irreversible point of progression for GC. Helicobacter pylori infection can cause GIM, but its eradication still does not reverse the process. Bile reflux is also a pathogenic factor in GIM and can continuously irritate the gastric mucosa, and bile acids in refluxed fluid have been widely reported to be associated with GIM. This paper reviews in detail the relationship between bile reflux and GIM and the mechanisms by which bile acids induce GIM.
Collapse
|
6
|
He Q, Liu L, Wei J, Jiang J, Rong Z, Chen X, Zhao J, Jiang K. Roles and action mechanisms of bile acid-induced gastric intestinal metaplasia: a review. Cell Death Dis 2022; 8:158. [PMID: 35379788 PMCID: PMC8979943 DOI: 10.1038/s41420-022-00962-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Gastric intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development. Therefore, the mechanism of IM has been the focus of basic and clinical research. Helicobacter pylori (H. pylori) infection has been recognized as the main pathogenesis of gastric IM. However, more and more studies have shown that chronic inflammation of gastric mucosa caused by bile reflux is the key pathogenic factor of gastric IM. Bile reflux activates the expression of IM biomarkers via the bile acid receptor. In addition, microRNAs, exosomes, and epigenetics are also involved in the occurrence and development of bile acid-induced gastric IM. Currently, the relevant research is still very few. The molecular mechanism of the phenotypic transformation of gastrointestinal epithelial cells induced by bile acids has not been fully understood. This article mainly reviews the physiology and pathology of bile acid, mechanism of gastric IM induced by bile acid, bile acid receptors, and so on, in order to provide reference for further research.
Collapse
Affiliation(s)
- Qijin He
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Jiaying Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Zheng Rong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
7
|
Zhu Z, Lin S, Wu X, Xu J, Li L, Ye W, Li J, Huang Z. Decitabine and Cisplatin are Synergistic to Exert Anti-Tumor Effect on Gastric Cancer via Inducing Sox2 DNA Demethylation. Onco Targets Ther 2021; 14:623-636. [PMID: 33519210 PMCID: PMC7837578 DOI: 10.2147/ott.s276168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Background Cisplatin is a vital chemotherapy regimen for gastric cancer (GC), while partial response is observed (approximately 40%) because of drug resistance. Thus, it is urgent to improve drug sensitivity to improve the therapeutic effect of cisplatin on GC. Purpose The study was performed to explore the synergistic effect of decitabine and cisplatin in GC. Materials and Methods Cancer and matched adjacent tissues from patients with GC were obtained and quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry were performed to evaluate Sox2 expression level. Methylation-specific PCR (MSP) was performed to assess the effect of 5-aza-2ʹ-deoxycytidine (5-Aza-CdR) on Sox2 promoter. Cell proliferation assay, scratch-wound migration assay and Transwell invasion ability were performed to assess the effect of 5-Aza-CdR on proliferation, migration and invasion ability. Meantime, the effect of 5-Aza-CdR was also investigated in gastric cell lines BGC-823 and nude mouse xenograft tumor model. Finally, the anti-cancer effect of decitabine, cisplatin and their combination treatment were investigated in a BGC-823 and nude mouse xenograft tumor model, Sox2 methylation level, Sox2 expression of BGC-823 and xenograft tumors were analyzed by MSP, qRT-PCR and Western blot. Results Sox2 expression was significantly associated with different differentiated degrees, depth of invasion (0.0011), lymph node metastasis (0.0013), and TNM stage (0.0002). Next, methylation inhibitor 5-Aza-CdR restored Sox2 expression to promote proliferation, migration and invasion in vitro and in vivo. Finally, cisplatin and decitabine was found to be synergistic to inhibit proliferation of xenograft tumors. Likewise, cisplatin and decitabine were also synergistic to induce Sox2 DNA demethylation to promote Sox2 mRNA and protein expression in BGC-823 and xenograft tumors. Conclusion Cisplatin and decitabine could be synergistic to induce Sox2 DNA demethylation to promote expression of the Sox2 gene, which exerted an anti-tumor effect on GC. It may suggest an insight for innovative therapeutics of GC.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Sihao Lin
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Xiaofang Wu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| | - Jiuhua Xu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| | - Lulu Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Weipeng Ye
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| | - Jiayi Li
- Department of Medical Oncology, Xiamen Cancer center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China.,Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| |
Collapse
|
8
|
Xiao S, Zhou L. Gastric Stem Cells: Physiological and Pathological Perspectives. Front Cell Dev Biol 2020; 8:571536. [PMID: 33043003 PMCID: PMC7527738 DOI: 10.3389/fcell.2020.571536] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric epithelium operates in a hazardous environment that curtails the lifespan of the constituent cells, imposing a requirement for continuous epithelial renewal. Stem cells that reside in the stomach are thus essential for regulating physiological tissue renewal and injury repair because of their self-renewal, high proliferation capacity and multiple differentiation potentials. Recent investigations using lineage tracing models have identified diverse populations of gastric stem cells and even fully differentiated cells that can regain stem cell capacity, so enriching our understanding on the identity and plasticity of gastric stem cells. These cell populations include the Villin promotor, Lgr5+, CCKR2+, Axin2+ and AQP5+ stem cells in the antrum, TFF2 mRNA, Mist1+ cells and Troy+ mature chief cells in the corpus, as well as Sox2, eR1, Lrig1, Bmi1-marked cell in both the antrum and the corpus. Establishment of gastric organoids derived from primary gastric tissues and pluripotent stem cells or embryonic stem cells characterizes niche factors required by the gastric stem cell populations, and further provides new insights into stomach development, host-Helicobacter pylori interactions and malignant transformation. Furthermore, focus on the gastric stem cells and their niches uncovers the initiation of stomach precancerous lesions and origin of gastric cancer, providing options for cancer prevention and intervention. In summary, with the development of stem cell research, gastric stem cells give us more opportunities to prevent and treat stomach diseases.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Lopes N, Bergsland CH, Bjørnslett M, Pellinen T, Svindland A, Nesbakken A, Almeida R, Lothe RA, David L, Bruun J. Digital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic value of CDX2 and its negative correlation with SOX2. J Transl Med 2020; 100:120-134. [PMID: 31641225 PMCID: PMC6917572 DOI: 10.1038/s41374-019-0336-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 01/10/2023] Open
Abstract
Flourescence-based multiplex immunohistochemistry (mIHC) combined with multispectral imaging and digital image analysis (DIA) is a quantitative high-resolution method for determination of protein expression in tissue. We applied this method for five biomarkers (CDX2, SOX2, SOX9, E-cadherin, and β-catenin) using tissue microarrays of a Norwegian unselected series of primary colorectal cancer. The data were compared with previously obtained chromogenic IHC data of the same tissue cores, visually assessed by the Allred method. We found comparable results between the methods, although confirmed that DIA offered improved resolution to differentiate cases with high and low protein expression. However, we experienced inherent challenges with digital image analysis of membrane staining, which was better assessed visually. DIA and mIHC enabled quantitative analysis of biomarker coexpression on the same tissue section at the single-cell level, revealing a strong negative correlation between the differentiation markers CDX2 and SOX2. Both methods confirmed known prognostic associations for CDX2, but DIA improved data visualization and detection of clinicopathological and biological associations. In summary, mIHC combined with DIA is an efficient and reliable method to evaluate protein expression in tissue, here shown to recapitulate and improve detection of known clinicopathological and survival associations for the emerging biomarker CDX2, and is therefore a candidate approach to standardize CDX2 detection in pathology laboratories.
Collapse
Affiliation(s)
- Nair Lopes
- 0000 0004 0389 8485grid.55325.34Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway ,0000 0001 1503 7226grid.5808.5i3S—Institute for Research and Innovation in Health, University of Porto, Porto, Portugal ,0000 0001 1503 7226grid.5808.5IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal ,0000 0004 0389 8485grid.55325.34K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Christian Holst Bergsland
- 0000 0004 0389 8485grid.55325.34Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway ,0000 0004 0389 8485grid.55325.34K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Merete Bjørnslett
- 0000 0004 0389 8485grid.55325.34Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway ,0000 0004 0389 8485grid.55325.34K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Teijo Pellinen
- 0000 0004 0389 8485grid.55325.34K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway ,0000 0004 0410 2071grid.7737.4Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Aud Svindland
- 0000 0004 0389 8485grid.55325.34K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild Nesbakken
- 0000 0004 0389 8485grid.55325.34K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Raquel Almeida
- 0000 0001 1503 7226grid.5808.5i3S—Institute for Research and Innovation in Health, University of Porto, Porto, Portugal ,0000 0001 1503 7226grid.5808.5Faculty of Medicine, University of Porto, Porto, Portugal ,0000 0001 1503 7226grid.5808.5Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ragnhild A. Lothe
- 0000 0004 0389 8485grid.55325.34Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway ,0000 0004 0389 8485grid.55325.34K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Leonor David
- 0000 0001 1503 7226grid.5808.5i3S—Institute for Research and Innovation in Health, University of Porto, Porto, Portugal ,0000 0001 1503 7226grid.5808.5IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal ,0000 0001 1503 7226grid.5808.5Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,K.G. Jebsen Colorectal Cancer Research Centre, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
10
|
Chaudhary S, Islam Z, Mishra V, Rawat S, Ashraf GM, Kolatkar PR. Sox2: A Regulatory Factor in Tumorigenesis and Metastasis. Curr Protein Pept Sci 2019; 20:495-504. [PMID: 30907312 DOI: 10.2174/1389203720666190325102255] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023]
Abstract
The transcription factor Sox2 plays an important role in various phases of embryonic development, including cell fate and differentiation. These key regulatory functions are facilitated by binding to specific DNA sequences in combination with partner proteins to exert their effects. Recently, overexpression and gene amplification of Sox2 has been associated with tumor aggression and metastasis in various cancer types, including breast, prostate, lung, ovarian and colon cancer. All the different roles for Sox2 involve complicated regulatory networks consisting of protein-protein and protein-nucleic acid interactions. Their involvement in the EMT modulation is possibly enabled by Wnt/ β-catenin and other signaling pathways. There are number of in vivo models which show Sox2 association with increased cancer aggressiveness, resistance to chemo-radiation therapy and decreased survival rate suggesting Sox2 as a therapeutic target. This review will focus on the different roles for Sox2 in metastasis and tumorigenesis. We will also review the mechanism of action underlying the cooperative Sox2- DNA/partner factors binding where Sox2 can be potentially explored for a therapeutic opportunity to treat cancers.
Collapse
Affiliation(s)
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Vijaya Mishra
- RASA Life science Informatics, Pune, Maharashtra, India
| | - Sakshi Rawat
- RASA Life science Informatics, Pune, Maharashtra, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prasanna R Kolatkar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| |
Collapse
|
11
|
Yuan T, Ni Z, Han C, Min Y, Sun N, Liu C, Shi M, Lu W, Wang N, Du F, Wu Q, Xie N, Shi Y. SOX2 interferes with the function of CDX2 in bile acid-induced gastric intestinal metaplasia. Cancer Cell Int 2019; 19:24. [PMID: 30733645 PMCID: PMC6357452 DOI: 10.1186/s12935-019-0739-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Intestinal metaplasia (IM) is a premalignant lesion associated with gastric cancer. Both animal and clinical studies have revealed that bile acid reflux and subsequent chronic inflammation are key causal factors of IM. Previous studies indicated that SOX2, the key transcription factor in gastric differentiation, was downregulated during IM development while CDX2, the pivotal intestine-specific transcription factor was upregulated significantly. However, it remains unclear whether the downregulation of SOX2 promotes gastric IM emergence or is merely a concomitant phenomenon. In addition, the underlying mechanisms of SOX2 downregulation during IM development are unclear. Methods Gastric cell lines were treated with deoxycholic acid (DCA) in a dose-dependent manner. The expression of CDX2 and miR-21 in gastric tissue microarray were detected by immunohistochemistry and in situ hybridization. Coimmunoprecipitation and immunofluorescence were performed to ascertain the interaction of SOX2 and CDX2. Luciferase reporter assays were used to detect the transcriptional activity of CDX2, and confirm miR-21 binding to SOX2 3′-UTR. The protein level of SOX2, CDX2 and downstream IM-specific genes were investigated using western blotting. mRNA level of miR-21, SOX2, CDX2 and downstream IM-specific genes were detected by qRT-PCR. Results Bile acid treatment could suppress SOX2 expression and simultaneously induce expression of CDX2 in gastric cell lines. Furthermore, we demonstrated that SOX2 overexpression could significantly inhibit bile acid- and exogenous CDX2-induced IM-specific gene expression, including KLF4, cadherin 17 and HNF4α expression. In contrast, SOX2 knockdown had the opposite effect. A dual-luciferase reporter assay demonstrated that SOX2 overexpression could significantly suppress CDX2 transcriptional activity in HEK293T cells. CDX2 and SOX2 could form protein complexes in the nucleus. In addition, bile acid induced the expression of miR-21. The inhibition of SOX2 in bile acid-treated gastric cell lines was rescued by miR-21 knockdown. Conclusions These findings suggested that SOX2 can interfere with the transcriptional activity of CDX2 in bile acid-induced IM and that miR-21 might play a key role in this process, which shed new lights in the prevention of gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12935-019-0739-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Yuan
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China.,The 150 Hospital of the People's Liberation Army, Luoyang, 471000 China
| | - Zhen Ni
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China.,Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Chuan Han
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China.,Rocket Army Emei Sanatorium, Emei, 614200 China
| | - Yali Min
- 5Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710032 China
| | - Nina Sun
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China.,6College of Postgraduates, Xi'an Medical University, Xi'an, 710032 China
| | - Caifang Liu
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China.,6College of Postgraduates, Xi'an Medical University, Xi'an, 710032 China
| | - Miao Shi
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China.,6College of Postgraduates, Xi'an Medical University, Xi'an, 710032 China
| | - Wenquan Lu
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China.,7Department of Gastroenterology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 China
| | - Na Wang
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China
| | - Feng Du
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China
| | - Qiong Wu
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China
| | - Ning Xie
- 8Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710032 China
| | - Yongquan Shi
- 1State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032 China
| |
Collapse
|
12
|
Sáenz JB, Mills JC. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:257-273. [PMID: 29463907 PMCID: PMC6016373 DOI: 10.1038/nrgastro.2018.5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subjected to countless daily injuries, the stomach still functions as a remarkably efficient digestive organ and microbial filter. In this Review, we follow the lead of the earliest gastroenterologists who were fascinated by the antiseptic and digestive powers of gastric secretions. We propose that it is easiest to understand how the stomach responds to injury by stressing the central role of the most important gastric secretion, acid. The stomach follows two basic patterns of adaptation. The superficial response is a pattern whereby the surface epithelial cells migrate and rapidly proliferate to repair erosions induced by acid or other irritants. The stomach can also adapt through a glandular response when the source of acid is lost or compromised (that is, the process of oxyntic atrophy). We primarily review the mechanisms governing the glandular response, which is characterized by a metaplastic change in cellular differentiation known as spasmolytic polypeptide-expressing metaplasia (SPEM). We propose that the stomach, like other organs, exhibits marked cellular plasticity: the glandular response involves reprogramming mature cells to serve as auxiliary stem cells that replace lost cells. Unfortunately, such plasticity might mean that the gastric epithelium undergoes cycles of differentiation and de-differentiation that increase the risk of accumulating cancer-predisposing mutations.
Collapse
Affiliation(s)
- José B. Sáenz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
| | - Jason C. Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| |
Collapse
|
13
|
Hayakawa M, Nishikura K, Ajioka Y, Aoyagi Y, Terai S. Re-evaluation of Phenotypic Expression in Differentiated-type Early Adenocarcinoma of the Stomach. Pathol Int 2017; 67:131-140. [PMID: 28088838 DOI: 10.1111/pin.12506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
Abstract
A total of 313 cases of differentiated-type early gastric adenocarcinomas, including 113 cases of small-sized carcinoma (5< × ≤10 mm) and 121 cases of microcarcinoma (0< × ≤5 mm), were examined immunohistochemically to clarify the phenotypic expressions. They were classified into four categories (gastric phenotype (G-type), intestinal phenotype, gastrointestinal phenotype, and null phenotype) by a two-step process: the phenotype based on an immunoprofile of mucin core proteins (MUCs) with CDX2 (w/.CDX2-assessment); and the phenotype of MUCs only (w/o.CDX2-assessment). CDX2 expression was observed in 89.1% (279/313); it was highly expressed in 87.6% (106/121) of microcarcinomas. MUC2 expression increased as tumor size increased (P < 0.05). Compared with w/o.CDX2-assessment, w/.CDX2-assessment showed significantly fewer G-type carcinomas (P < 0.05). Each phenotype marker was less expressed in the submucosal part than in the mucosal part. In conclusion, CDX2 was a sensitive marker for assessing intestinal phenotype. A large portion of the early differentiated-type adenocarcinomas expressed CDX2 from the very early stage of carcinogenesis, and the proportion of G-type was unexpectedly low. Lower expression of each phenotype marker was considered the cause of phenotype alteration during submucosal invasion.
Collapse
Affiliation(s)
- Masato Hayakawa
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Gastroenterology, Niigata Medical Center, Niigata, Japan
| | - Ken Nishikura
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Diagnostic Pathology, Saiseikai Niigata Daini Hospital, Niigata, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Gastroenterology, Niigata Medical Center, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
14
|
Niu H, Jia Y, Li T, Su B. SOX2 Inhibition Promotes Promoter Demethylation of CDX2 to Facilitate Gastric Intestinal Metaplasia. Dig Dis Sci 2017; 62:124-132. [PMID: 27913994 DOI: 10.1007/s10620-016-4361-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gastric intestinal metaplasia (IM) is regarded as a premalignant lesion, conferring risks for gastric cancer development. An intestinal transcription factor, CDX2, plays a vital role in establishing and maintaining IM. SOX2, an HMG-box transcription factor, is expressed in normal gastric mucosa and downregulated in IM. Therefore, it is important to elucidate the mutual interaction of SOX2 and CDX2 in gastric IM. AIMS This study aims to evaluate the negative correlation between SOX2 and CDX2 in mRNA expression and promoter methylation and to illuminate the effect of SOX2 on the promoter methylation of CDX2. METHODS Immunohistochemistry, real-time PCR and methylation-specific polymerase chain reaction assays were performed to evaluate the expression and promoter methylation of SOX2 and CDX2 in IM tissues from patients. SOX2 knockdown and CDX2 overexpression were performed in GES-1 cells to further clarify the relationship between SOX2 and CDX2. RESULTS A negative correlation between SOX2 and CDX2 was found in 120 gastric IM specimens. Additionally, significant DNA demethylation of CDX2 promoter in clinical IM specimens was observed concomitantly with partial methylation of the SOX2 promoter. Furthermore, SOX2 knockdown in GES-1 cells triggered promoter demethylation of CDX2. Finally, the phenotype shift of gastric intestinal metaplasia in GES-1 cells, marked by MUC2 expression, was effectively induced by the combination of SOX2 RNAi and CDX2 overexpression. CONCLUSIONS Aberrant DNA methylation of SOX2 and CDX2 genes contributes to the development of IM. Notably, SOX2 may play a role in establishing and maintaining the methylation status of the CDX2 gene in gastric tissues and cells.
Collapse
Affiliation(s)
- Haijing Niu
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Yuchen Jia
- School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China.,Research Center of Molecular Biology, Inner Mongolia Medical University, Hohhot, 010058, China
| | - Tao Li
- College of Medicine, Hunan Normal University, Changsha, 410081, China.,Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Bingzhong Su
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
15
|
Katano T, Mizoshita T, Tsukamoto H, Nishie H, Inagaki Y, Hayashi N, Nomura S, Ozeki K, Okamoto Y, Shimura T, Mori Y, Kubota E, Tanida S, Kataoka H, Kuno T, Takahashi S, Joh T. Ectopic Gastric and Intestinal Phenotypes, Neuroendocrine Cell Differentiation, and SOX2 Expression Correlated With Early Tumor Progression in Colorectal Laterally Spreading Tumors. Clin Colorectal Cancer 2016; 16:141-146. [PMID: 27816419 DOI: 10.1016/j.clcc.2016.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The significance of the ectopic gastric phenotype remains unclear in patients with colorectal laterally spreading tumors (LSTs). We investigated clinicopathologic differences among LST subtypes, aiming to identify factors indicative of malignant transformation and invasion that are linked to ectopic gastric phenotype and tumor progression. MATERIALS AND METHODS We analyzed the morphologic characteristics of 105 colorectal LSTs resected by endoscopic submucosal dissection. LSTs were classified into 2 subtypes: granular (G-LST) and nongranular (NG-LST). Resected LSTs were analyzed histologically and were immunohistochemically stained for MUC5AC, MUC6, chromogranin A, CD10, and SOX2. RESULTS The 105 LSTs included 60 G-LSTs and 45 NG-LSTs. By histology, G-LSTs comprised 5 adenomas with low-grade dysplasia (LAs), 45 adenomas with high-grade dysplasia (HAs), and 10 adenocarcinomas invading the submucosa (SMs). NG-LSTs comprised 8 LAs, 25 HAs, and 12 SMs. MUC5AC positivity was significantly higher in G-LSTs compared to NG-LSTs (P = .002), and MUC5AC positivity in HA lesions was significantly higher than in LA lesions (P = .01). MUC6 and SOX2 positivity in SM G-LSTs, and chromogranin A positivity in SM NG-LSTs were significantly higher than in HAs (P = .01, .01, and .03, respectively). CD10 positivity in SM NG-LSTs was significantly higher than in HAs and LAs (P = .02 and .01, respectively). CONCLUSION Ectopic gastric and intestinal phenotypes, neuroendocrine cell differentiation, and SOX2 expression differ according to tumor grade in colorectal LSTs, and these markers are correlated with early tumor progression in each LST subtype.
Collapse
Affiliation(s)
- Takahito Katano
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Tsutomu Mizoshita
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hironobu Tsukamoto
- Department of Gastroenterology, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Inagaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Nomura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuyuki Okamoto
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshinori Mori
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Tanida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiya Kuno
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
16
|
Asanuma K, Huo X, Agoston A, Zhang X, Yu C, Cheng E, Zhang Q, Dunbar KB, Pham TH, Wang DH, Iijima K, Shimosegawa T, Odze RD, Spechler SJ, Souza RF. In oesophageal squamous cells, nitric oxide causes S-nitrosylation of Akt and blocks SOX2 (sex determining region Y-box 2) expression. Gut 2016; 65:1416-26. [PMID: 25986942 PMCID: PMC4651671 DOI: 10.1136/gutjnl-2015-309272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Barrett's metaplasia might develop if GORD causes oesophageal squamous cells to convert into columnar cells. Acid and bile exposures upregulate columnar differentiation genes like CDX2 in oesophageal squamous cells, but it is not known if such exposures downregulate squamous differentiation genes like SOX2. In addition to acid and bile, patients with GORD also have high oesophageal concentrations of nitric oxide (NO). This study aims to determine how acid, bile salts and NO affect genes that influence oesophageal cell phenotype. DESIGN Oesophageal squamous cells from patients with Barrett's oesophagus were exposed to acidic bile salts or NOC-9 (an NO donor). SOX2, p63 (squamous transcription factor) and CDX2 mRNAs were measured by quantitative RT-PCR. SOX2 and its regulatory Akt pathway proteins were evaluated by western blotting. S-nitrosylation by NO was blocked by dithiothreitol. Immunohistochemistry for SOX2 was performed on the oesophagus of rats with surgically induced GORD which were fed diets with and without nitrite supplementation. RESULTS In oesophageal squamous cells, NO profoundly decreased SOX2 protein and caused a significantly greater decrease in SOX2 mRNA than did acidic bile salts. NO also decreased p63 and increased CDX2 expression. NO caused S-nitrosylation of Akt, blocking its phosphorylation. Akt pathway inhibition by LY294002 or Akt siRNA reduced SOX2 mRNA. Rats fed with nitrite-supplemented diets exhibited weaker SOX2 oesophageal staining than rats fed with normal diets. CONCLUSIONS In oesophageal squamous cells, NO blocks SOX2 expression through Akt S-nitrosylation. NO also increases CDX2 and decreases p63 expression. By triggering molecular events preventing squamous differentiation while promoting intestinal differentiation, NO might contribute to Barrett's pathogenesis.
Collapse
Affiliation(s)
- Kiyotaka Asanuma
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaofang Huo
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Agoston Agoston
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Xi Zhang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Chunhua Yu
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Edaire Cheng
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Pediatrics, Children’s Medical Center and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Qiuyang Zhang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerry B. Dunbar
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Thai H. Pham
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Surgery, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - David H. Wang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Katsunori Iijima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Robert D. Odze
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Stuart J. Spechler
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rhonda F. Souza
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
17
|
Sarkar A, Huebner AJ, Sulahian R, Anselmo A, Xu X, Flattery K, Desai N, Sebastian C, Yram MA, Arnold K, Rivera M, Mostoslavsky R, Bronson R, Bass AJ, Sadreyev R, Shivdasani RA, Hochedlinger K. Sox2 Suppresses Gastric Tumorigenesis in Mice. Cell Rep 2016; 16:1929-41. [PMID: 27498859 DOI: 10.1016/j.celrep.2016.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 03/22/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023] Open
Abstract
Sox2 expression marks gastric stem and progenitor cells, raising important questions regarding the genes regulated by Sox2 and the role of Sox2 itself during stomach homeostasis and disease. By using ChIP-seq analysis, we have found that the majority of Sox2 targets in gastric epithelial cells are tissue specific and related to functions such as endoderm development, Wnt signaling, and gastric cancer. Unexpectedly, we found that Sox2 itself is dispensable for gastric stem cell and epithelial self-renewal, yet Sox2(+) cells are highly susceptible to tumorigenesis in an Apc/Wnt-driven mouse model. Moreover, Sox2 loss enhances, rather than impairs, tumor formation in Apc-deficient gastric cells in vivo and in vitro by inducing Tcf/Lef-dependent transcription and upregulating intestinal metaplasia-associated genes, providing a mechanistic basis for the observed phenotype. Together, these data identify Sox2 as a context-dependent tumor suppressor protein that is dispensable for normal tissue regeneration but restrains stomach adenoma formation through modulation of Wnt-responsive and intestinal genes.
Collapse
Affiliation(s)
- Abby Sarkar
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | - Aaron J Huebner
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | - Rita Sulahian
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xinsen Xu
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kyle Flattery
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | - Niyati Desai
- Division of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carlos Sebastian
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary Anna Yram
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | - Katrin Arnold
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | - Miguel Rivera
- Division of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roderick Bronson
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Adam J Bass
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ramesh A Shivdasani
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Konrad Hochedlinger
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Chen Y, Huang Y, Zhu L, Chen M, Huang Y, Zhang J, He S, Li A, Chen R, Zhou J. SOX2 inhibits metastasis in gastric cancer. J Cancer Res Clin Oncol 2016; 142:1221-30. [PMID: 26960758 DOI: 10.1007/s00432-016-2125-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the potential role of SOX2 in gastric cancer (GC) metastasis. METHODS The SOX2 expression was detected using immunohistochemistry on a GC tissue microarray. The correlations of SOX2 expression with clinicopathological factors and 5-year survival were evaluated. To test the role of SOX2 in inhibiting GC metastasis, the cell transwell assay was performed. Real-time PCR and Western blot were used to explore the possible mechanism that SOX2 inhibits GC metastasis. RESULTS In the present study, SOX2 expression was downregulated in GC tissues when compared to matching normal tissues. Moreover, patients with high SOX2 expression in cancerous tissues had less lymph node metastasis and better treatment outcome. At the subcellular level, SOX2 inhibited the GC cell migration and invasion by upregulating p21 expression. Moreover, SOX2 was determined to associate with the nuclear p21 expression. GC patients with high SOX2 and nuclear p21 expression had synergistically less lymph node metastasis and the better overall survival. CONCLUSION Our results suggest that SOX2 is a promising and favorable metastatic biomarker for GC.
Collapse
Affiliation(s)
- Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
- School of Public Health, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, 221002, People's Republic of China
| | - Yefei Huang
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
- School of Public Health, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, 221002, People's Republic of China
| | - Liwen Zhu
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Minjuan Chen
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Yulin Huang
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Jianbing Zhang
- Department of Pathology, Nantong Cancer Hospital, 30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu Province, People's Republic of China
| | - Song He
- Department of Pathology, Nantong Cancer Hospital, 30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu Province, People's Republic of China
| | - Aiping Li
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
19
|
Li S, Zhu X, Liu B, Wang G, Ao P. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer. Oncotarget 2016; 6:13607-27. [PMID: 25962957 PMCID: PMC4537037 DOI: 10.18632/oncotarget.3633] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/10/2015] [Indexed: 12/20/2022] Open
Abstract
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.
Collapse
Affiliation(s)
- Site Li
- Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Bingya Liu
- Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gaowei Wang
- Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Ao
- Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.,Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Inagaki-Ohara K, Okamoto S, Takagi K, Saito K, Arita S, Tang L, Hori T, Kataoka H, Matsumoto S, Minokoshi Y. Leptin receptor signaling is required for high-fat diet-induced atrophic gastritis in mice. Nutr Metab (Lond) 2016; 13:7. [PMID: 26839577 PMCID: PMC4736478 DOI: 10.1186/s12986-016-0066-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/26/2016] [Indexed: 12/25/2022] Open
Abstract
Background Obesity increases the risk for malignancies in various tissues including the stomach. Atrophic gastritis with precancerous lesions is an obesity-associated disease; however, the mechanisms that underlie the development of obesity-associated atrophic gastritis are unknown. Leptin is a hormone derived from stomach as well as adipose tissue and gastric leptin is involved in the development of gastric cancer. The aim of the current study is to investigate the involvement of leptin receptor signaling in the development of atrophic gastritis during diet-induced obesity. Methods Male C57BL/6, ob/ob and db/db mice were fed a high-fat diet (HFD) or a control diet (CD) from 1 week to 5 months. Pathological changes of the gastric mucosa and the expression of molecules associated with atrophic gastritis were evaluated in these mice. Results HFD feeding induced gastric mucosal hyperplasia with increased gastric leptin expression. Mucosal hyperplasia was accompanied by a higher frequency of Ki67-positive proliferating cells and atrophy of the gastric glands in the presence of inflammation, which increased following HFD feeding. Activation of ObR signaling-associated molecules such as ObR, STAT3, Akt, and ERK was detected in the gastric mucosa of mice fed the HFD for 1 week. The morphological alterations associated with gastric mucosal atrophy and the expression of Muc2 and Cdx2 resemble those associated with human intestinal metaplasia. In contrast to wild-type mice, leptin-deficient ob/ob mice and leptin receptor-mutated db/db mice did not show increased Cdx2 expression in response to HFD feeding. Conclusion Together, these results suggest that activation of the leptin signaling pathway in the stomach is required to develop obesity-associated atrophic gastritis. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0066-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1, Toyama Shinjuku, Tokyo, 162-0052 Japan ; Division of Endocrinology and Metabolism, Department of Developmental Physiology, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585 Japan ; Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima 727-0023 Japan
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism, Department of Developmental Physiology, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585 Japan
| | - Kazuyo Takagi
- Division of Endocrinology and Metabolism, Department of Developmental Physiology, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585 Japan
| | - Kumiko Saito
- Division of Endocrinology and Metabolism, Department of Developmental Physiology, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585 Japan
| | - Seiya Arita
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima 727-0023 Japan
| | - Lijun Tang
- Division of Endocrinology and Metabolism, Department of Developmental Physiology, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585 Japan
| | - Tetsuji Hori
- Yakult Central Institute for Microbiological Research, 5-11 Izumi, Kunitachi, Tokyo, 186-8650 Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692 Japan
| | - Satoshi Matsumoto
- Yakult Central Institute for Microbiological Research, 5-11 Izumi, Kunitachi, Tokyo, 186-8650 Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Developmental Physiology, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585 Japan
| |
Collapse
|
21
|
Yoon JH, Choi SS, Kim O, Choi WS, Park YK, Nam SW, Lee JY, Park WS. Inactivation of NKX6.3 in the stomach leads to abnormal expression of CDX2 and SOX2 required for gastric-to-intestinal transdifferentiation. Mod Pathol 2016; 29:194-208. [PMID: 26743476 DOI: 10.1038/modpathol.2015.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Intestinal metaplasia in gastric mucosa is considered a preneoplastic lesion that progresses to gastric cancer. However, the molecular networks underlying this lesion formation are largely unknown. NKX6.3 is known to be an important regulator in gastric mucosal epithelial differentiation. In this study, we characterized the effects of NKX6.3 that may contribute to gastric intestinal metaplasia. NKX6.3 expression was significantly reduced in gastric mucosae with intestinal metaplasia. The mRNA expression levels of both NKX6.3 and CDX2 predicted the intestinal metaplasia risk, with an area under the receiver operating characteristic curve value of 0.9414 and 0.9971, respectively. Notably, the NKX6.3 expression level was positively and inversely correlated with SOX2 and CDX2, respectively. In stable AGS(NKX6.3) and MKN1(NKX6.3) cells, NKX6.3 regulated the expression of CDX2 and SOX2 by directly binding to the promoter regions of both genes. Nuclear NKX6.3 expression was detected only in gastric epithelial cells without intestinal metaplasia. Furthermore, NKX6.3-induced TWSG1 bound to BMP4 and inhibited BMP4-binding activity to BMPR-II. These data suggest that NKX6.3 might function as a master regulator of gastric differentiation by affecting SOX2 and CDX2 expression and the NKX6.3 inactivation may result in intestinal metaplasia in gastric epithelial cells.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Area Under Curve
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- CDX2 Transcription Factor
- Cell Line, Tumor
- Cell Transdifferentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Female
- Gastric Mucosa/metabolism
- Gastric Mucosa/microbiology
- Gastric Mucosa/pathology
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genetic Predisposition to Disease
- Helicobacter Infections/genetics
- Helicobacter Infections/metabolism
- Helicobacter Infections/pathology
- Helicobacter pylori/genetics
- Helicobacter pylori/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Metaplasia
- Mice, Inbred C57BL
- Phenotype
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/microbiology
- Precancerous Conditions/pathology
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- ROC Curve
- Risk Assessment
- Risk Factors
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Jung H Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung S Choi
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Won S Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong K Park
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Suk W Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Y Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Won S Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
22
|
Jung DH, Kim JH, Lee YC, Lee SK, Shin SK, Park JC, Chung HS, Kim H, Kim H, Kim YH, Park JJ, Youn YH, Park H. Helicobacter pylori Eradication Reduces the Metachronous Recurrence of Gastric Neoplasms by Attenuating the Precancerous Process. J Gastric Cancer 2015; 15:246-55. [PMID: 26819804 PMCID: PMC4722992 DOI: 10.5230/jgc.2015.15.4.246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The importance of Helicobacter pylori eradication after endoscopic resection (ER) of gastric neoplasms remains controversial. In this study, we clarified the importance of H. pylori eradication for metachronous lesions after ER. MATERIALS AND METHODS This study included 3,882 patients with gastric neoplasms who underwent ER. We included patients infected with H. pylori who received eradication therapy. Among them, 34 patients with metachronous lesions after ER and 102 age- and sex-matched patients (nonmetachronous group) were enrolled. Background mucosal pathologies such as atrophy and intestinal metaplasia (IM) were evaluated endoscopically. The expression levels of CDX1, CDX2, Sonic hedgehog (SHH), and SOX2 were evaluated based on H. pylori eradication and the development of metachronous lesions. RESULTS The eradication failure rate was higher in the metachronous group than in the nonmetachronous group (P=0.036). Open-type atrophy (P=0.003) and moderate-to-severe IM (P=0.001) occurred more frequently in the metachronous group. In patients with an initial diagnosis of dysplasia, the eradication failure rate was higher in the metachronous group than in the nonmetachronous group (P=0.002). In addition, open-type atrophy was more frequent in the metachronous group (P=0.047). In patients with an initial diagnosis of carcinoma, moderate-to-severe IM occurred more frequently in the metachronous group (P=0.003); however, the eradication failure rate was not significantly different between the two groups. SHH and SOX2 expression was increased, and CDX2 expression was decreased in the nonmetachronous group after eradication (P<0.05). CONCLUSIONS Open-type atrophy, moderate-to-severe IM, and H. pylori eradication failure were significantly associated with metachronous lesions. However, eradication failure was significantly associated with dysplasia, but not carcinoma, in the metachronous group. Thus, H. pylori eradication may play an important role in preventing metachronous lesions after ER for precancerous lesions before carcinomatous transformation.
Collapse
Affiliation(s)
- Da Hyun Jung
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jie-Hyun Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Chan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Kil Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Kwan Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Chul Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Soo Chung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Hoon Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Jun Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hoon Youn
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
van Olphen S, Biermann K, Spaander MCW, Kastelein F, Steyerberg EW, Stoop HA, Bruno MJ, Looijenga LHJ. SOX2 as a novel marker to predict neoplastic progression in Barrett's esophagus. Am J Gastroenterol 2015; 110:1420-8. [PMID: 26323187 DOI: 10.1038/ajg.2015.260] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The value of Barrett's esophagus (BE) surveillance based on the histological diagnosis of low-grade dysplasia (LGD) remains debated given the lack of adequate risk stratification. The aim of this study was to evaluate the predictive value (PV) of SOX2 expression for neoplastic progression in BE patients. METHODS We conducted a case-control study within a prospective cohort of 720 BE patients. Patients with neoplastic progression, defined as the development of high-grade dysplasia (HGD) or esophageal adenocarcinoma (EAC), were classified as cases and patients without neoplastic progression were classified as controls. SOX2 expression was determined by immunohistochemistry in more than 12,000 biopsies from 635 patients; these results were combined with our previous p53 immunohistochemical data. RESULTS Nondysplastic BE showed homogeneous nuclear staining for SOX2, whereas SOX2 was progressively lost in dysplastic BE. Loss of SOX2 was seen in only 2% of biopsy series without dysplasia, in contrast to 28% in LGD and 67% in HGD/EAC. Loss of SOX2 expression was associated with an increased risk of neoplastic progression in BE patients after adjusting for gender, age, BE length, and esophagitis (adjusted relative risk 4.8; 95% CI 3.2-7.0). The positive PV for neoplastic progression increased from 16% with LGD alone to 56% with concurrent loss of SOX2 and aberrant p53 expression. CONCLUSIONS SOX2 expression is lost during transition from nondysplastic BE to HGD/EAC, and it is associated with an increased risk of neoplastic progression. The highest PV is achieved by concurrent loss of SOX2 and aberrant p53 expression in BE patients with LGD. The use of these markers has the potential to significantly improve risk stratification of Barrett surveillance.
Collapse
Affiliation(s)
- Sophie van Olphen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Florine Kastelein
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout W Steyerberg
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hans A Stoop
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Helicobacter pylori-Induced Signaling Pathways Contribute to Intestinal Metaplasia and Gastric Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:737621. [PMID: 26064948 PMCID: PMC4441984 DOI: 10.1155/2015/737621] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/20/2015] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori (H. pylori) induces chronic gastric inflammation, atrophic gastritis, intestinal metaplasia, and cancer. Although the risk of gastric cancer increases exponentially with the extent of atrophic gastritis, the precise mechanisms of gastric carcinogenesis have not been fully elucidated. H. pylori induces genetic and epigenetic changes in gastric epithelial cells through activating intracellular signaling pathways in a cagPAI-dependent manner. H. pylori eventually induces gastric cancer with chromosomal instability (CIN) or microsatellite instability (MSI), which are classified as two major subtypes of gastric cancer. Elucidation of the precise mechanisms of gastric carcinogenesis will also be important for cancer therapy.
Collapse
|
25
|
Wang S, Tie J, Wang R, Hu F, Gao L, Wang W, Wang L, Li Z, Hu S, Tang S, Li M, Wang X, Nie Y, Wu K, Fan D. SOX2, a predictor of survival in gastric cancer, inhibits cell proliferation and metastasis by regulating PTEN. Cancer Lett 2015; 358:210-219. [PMID: 25543086 DOI: 10.1016/j.canlet.2014.12.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 01/02/2023]
Abstract
Inconsistent results of SOX2 expression have been reported in gastric cancer (GC). Here, we demonstrated that SOX2 was progressively downregulated during GC development via immunochemistry in 755 human gastric specimens. Low SOX2 levels were associated with pathological stage and clinical outcome. Multivariate analysis indicated that SOX2 protein expression served as an independent prognostic marker for GC. Gain-and loss-of function studies showed the anti-proliferative, anti-metastatic, and pro-apoptotic effects of SOX2 in GC. PTEN was selected as SOX2 targets by cDNA microarray and ChIP-DSL, further identified by luciferase assays, EMSA and ChIP-PCR. PTEN upregulation in response to SOX2-enforced expression suppressed GC malignancy via regulating Akt dephosphorylation. PTEN inhibition reversed SOX2-induced anticancer effects. Moreover, concordant positivity of SOX2 and PTEN proteins in nontumorous tissues but lost in matched GC specimens predicted a worse patient prognosis. Thus, SOX2 proved to be a new marker for evaluating GC outcome.
Collapse
Affiliation(s)
- Simeng Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Tie
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fengrong Hu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liucun Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenlan Wang
- Department of Aerospace Hygiene and Health Service, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lifeng Wang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zengshan Li
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sijun Hu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shanhong Tang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mengbin Li
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
26
|
Samadani AA, Akhavan-Niaki H. Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer. Med Oncol 2015; 32:48. [PMID: 25636508 DOI: 10.1007/s12032-015-0492-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Gastric cancer may appear by frequent genetic or epigenetic changes in oncogenes, tumor suppressor or DNA mismatch repair genes. Molecular studies show the possibility of involvement of certain cancer pathways in gastric cancer. In this respect, DNA methylation is one of the most important epigenetic alterations in gastric cancer and identifying the signaling mechanism and also methylation of some genes that are involved in gastric cancer can help to improve treatment strategies. Relatively, there are many reported methylation alteration of genes in stem cells in all kinds of tumors with some of these genes having a key role in tumor development. Correspondingly, KLF5, CDX1/2, WNT1 and FEM1A are considerable genes in gastric cancer, although many researches and studies have illustrated that sonic hedgehog and expression of its signaling cascade proteins are related in gastric cancer. Relatively, modification in these genes causes many eclectic cancers such as rhabdomyosarcoma and diverse kinds of digestive system tumor development. Conspicuously, these master genes have a noticeable role in stem cell's growth regulation as well as other kinds of cancer such as breast cancer and leukemia. Hence, we concluded that research and studies on methylation and expression of these genes and also the investigation of molecular signaling in gastric cancer can acquire impressive conclusions in order to control and treat this common place and serious problem.
Collapse
Affiliation(s)
- Ali Akbar Samadani
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
27
|
Rugge M, Capelle LG, Fassan M. Individual risk stratification of gastric cancer: evolving concepts and their impact on clinical practice. Best Pract Res Clin Gastroenterol 2014; 28:1043-1053. [PMID: 25439070 DOI: 10.1016/j.bpg.2014.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide and it mostly develops in long-standing inflammatory conditions, and Helicobacter pylori-gastritis, in particular. Despite the increasing understanding of both the phenotypic alterations and the molecular mechanisms occurring during GC multi-step carcinogenesis, no reliable biomarker is available to be reliably implemented into GC secondary prevention strategies. Multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling currently appears as the most appropriate approach for patients' stratification into different GC risk classes.
Collapse
Affiliation(s)
- Massimo Rugge
- Department of Medicine, DIMED, Surgical Pathology and Cytopathology Unit, University of Padua, 35100 Padua, Italy.
| | - Lisette G Capelle
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands
| | - Matteo Fassan
- Department of Medicine, DIMED, Surgical Pathology and Cytopathology Unit, University of Padua, 35100 Padua, Italy
| |
Collapse
|
28
|
Camilo V, Garrido M, Valente P, Ricardo S, Amaral AL, Barros R, Chaves P, Carneiro F, David L, Almeida R. Differentiation reprogramming in gastric intestinal metaplasia and dysplasia: role of SOX2 and CDX2. Histopathology 2014; 66:343-50. [PMID: 25196071 DOI: 10.1111/his.12544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/31/2014] [Indexed: 12/12/2022]
Abstract
AIMS Intestinal metaplasia (IM), which results from de-novo expression of CDX2, and dysplasia are precursor lesions of gastric cancer that are associated with an increased risk for cancer development. There is much evidence suggesting a role for the transcription factor SOX2 in gastric differentiation. The aim of this study was to attempt to establish the relationship of SOX2 with CDX2 and with the differentiation reprogramming that characterizes gastric carcinogenesis, to assess their involvement in IM and dysplasia. METHODS AND RESULTS Characterization of gastric (SOX2, MUC5AC, and MUC6) and intestinal (CDX2 and MUC2) markers in normal gastric mucosa, in 55 foci of IM and in 26 foci of dysplasia, was performed by immunohistochemistry. SOX2 was expressed in the normal gastric mucosa, in the presumptive stem cell compartment, and was maintained in 7% of the complete (MUC5AC-negative) and 85% of the incomplete (MUC5AC-positive) IM subtypes. Twelve per cent of the dysplastic lesions expressed SOX2, and the association with MUC5AC was lost. CDX2 was present in all IMs and dysplastic lesions. CONCLUSIONS SOX2 is associated with gastric differentiation in incomplete IM and is lost in the progression to dysplasia, whereas CDX2 is acquired de novo in IM and maintained in dysplasia. This suggests that the balance between gastric and intestinal differentiation programmes impacts on the gastric carcinogenesis cascade progression.
Collapse
Affiliation(s)
- Vânia Camilo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cobler L, Pera M, Garrido M, Iglesias M, de Bolós C. CDX2 can be regulated through the signalling pathways activated by IL-6 in gastric cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:785-92. [PMID: 24953186 DOI: 10.1016/j.bbagrm.2014.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/29/2014] [Accepted: 06/12/2014] [Indexed: 12/30/2022]
Abstract
The inflammatory infiltrate of the gastric mucosa associated with Helicobacter pylori infection increases the presence of the pro-inflammatory cytokine IL-6 that activates both the SHP-2/ERK/MAPK and the JAK/STAT signalling pathways. Furthermore, the ectopic expression of CDX2 is detected in pre-neoplasic lesions associated with decreased levels of SOX2, and we found that in gastric adenocarcinomas their expression is inversely correlated. To determine the role of IL-6 in the regulation of CDX2, MKN45 that constitutively expresses p-STAT3, and NUGC-4 gastric cancer cell lines were treated with IL-6, which induced the CDX2 up-regulation and SOX2 down-regulation. ChIP assays determined that in IL-6-treated cells, c-JUN and p-STAT3 bound to CDX2 promoter in MKN45 cells whereas in NUGC-4 cells, p-STAT3 binds to and c-JUN releases from the CDX2 promoter. Specific inhibition of STAT3 and ERK1/2 phosphorylation through AG490 and U0126, respectively, and STAT3 down-regulation using shRNA verified that the SHP-2/ERK/MAPK pathway regulates the expression of CDX2 in basal conditions, and the CDX2 up-regulation by IL-6 is through the JAK/STAT pathway in NUGC-4 cells whereas in MKN45 cells both pathways contribute to the CDX2 up-regulation. In conclusion, the signalling pathways activated by IL-6 have a crucial role in the regulation of CDX2 that is a key factor in the process of gastric carcinogenesis, suggesting that the inflammatory infiltrate in the gastric mucosa is relevant in this process and a potential target for new therapeutic approaches.
Collapse
Affiliation(s)
- Lara Cobler
- Gastroesophageal Cancer Research Group, Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Manuel Pera
- Gastroesophageal Cancer Research Group, Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Marta Garrido
- Gastroesophageal Cancer Research Group, Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Mar Iglesias
- Gastroesophageal Cancer Research Group, Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Carme de Bolós
- Gastroesophageal Cancer Research Group, Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 88, 08003 Barcelona, Spain.
| |
Collapse
|
30
|
Adalimumab Treatment in Biologically Naïve Crohn's Disease: Relationship with Ectopic MUC5AC Expression and Endoscopic Improvement. Gastroenterol Res Pract 2014; 2014:687257. [PMID: 24829572 PMCID: PMC4009194 DOI: 10.1155/2014/687257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 01/23/2023] Open
Abstract
Background. Adalimumab (ADA) is effective for patients with Crohn's disease (CD). However, there have been few reports on ADA therapy with respect to its relationship with pathologic findings and drug efficacy in biologically naïve CD cases. Methods. Fifteen patients with active biologically naïve CD were treated with ADA. We examined them clinically and pathologically with ectopic MUC5AC expression in the lesions before and after 12 and 52 weeks of ADA therapy, retrospectively. Results. Both mean CD activity index scores and serum C-reactive protein values were significantly lower after ADA therapy (P < 0.001). In the MUC5AC negative group, all cases exhibited clinical remission (CR) and endoscopic improvement at 52 weeks. In MUC5AC positive groups, loss of MUC5AC expression was detected in cases having CR and endoscopic improvement at 52 weeks, while remnant ectopic MUC5AC expression was observed in those exhibiting no endoscopic improvement and flare up after 52 weeks. Conclusions. ADA leads to CR and endoscopic improvement in biologically naïve CD cases. In addition, ectopic MUC5AC expression may be a predictive marker of flare up and endoscopic improvement in the intestines of CD patients.
Collapse
|
31
|
Ku HJ, Kim HY, Kim HH, Park HJ, Cheong JH. Bile acid increases expression of the histamine-producing enzyme, histidine decarboxylase, in gastric cells. World J Gastroenterol 2014; 20:175-182. [PMID: 24415870 PMCID: PMC3886006 DOI: 10.3748/wjg.v20.i1.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of bile acid on the expression of histidine decarboxylase (HDC), which is a major enzyme involved in histamine production, and gene expression of gastric transcription factors upon cooperative activation.
METHODS: HDC expression was examined by immunohistochemistry, reverse transcriptase polymerase chain reaction, and promoter assay in human gastric precancerous tissues, normal stomach tissue, and gastric cancer cell lines. The relationship between gastric precancerous state and HDC expression induced by bile acid was determined. The association between the expression of HDC and various specific transcription factors in gastric cells was also evaluated. MKN45 and AGS human gastric carcinoma cell lines were transfected with farnesoid X receptor (FXR), small heterodimer partner (SHP), and caudal-type homeodomain transcription factor (CDX)1 expression plasmids. The effects of various transcription factors on HDC expression were monitored by luciferase-reporter promoter assay.
RESULTS: Histamine production and secretion in the stomach play critical roles in gastric acid secretion and in the pathogenesis of gastric diseases. Here, we show that bile acid increased the expression of HDC, which is a rate-limiting enzyme of the histamine production pathway. FXR was found to be a primary regulatory transcription factor for bile acid-induced HDC expression. In addition, the transcription factors CDX1 and SHP synergistically enhanced bile acid-induced elevation of HDC gene expression. We confirmed similar expression patterns for HDC, CDX1, and SHP in patient tissues.
CONCLUSION: HDC production in the stomach is associated with bile acid exposure and its related transcriptional regulation network of FXR, SHP, and CDX1.
Collapse
|
32
|
Bornschein J, Tóth K, Selgrad M, Kuester D, Wex T, Molnár B, Tulassay Z, Malfertheiner P. Dysregulation of CDX1, CDX2 and SOX2 in patients with gastric cancer also affects the non-malignant mucosa. J Clin Pathol 2013; 66:819-822. [PMID: 23613102 DOI: 10.1136/jclinpath-2013-201448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interplay between gastric and intestinal transcription factors has an important impact on gastric carcinogenesis. We compared the gene expression of CDX1, CDX2, SOX2 and related downstream genes in tumour and tumour surrounding gastric tissue of 48 gastric cancer patients with 30 healthy controls. There was no difference of gene expression of CDX1 and CDX2 between tumour or tumour-adjacent and tumour-distant mucosa, but both factors were significantly higher expressed in cancer patients compared with controls (p<0.01). SOX2 was downregulated in tumour tissue compared to controls, whereas tumour-adjacent and tumour-distant mucosa showed intermediate SOX2 expression. Laurén type and Helicobacter pylori infection had no significant impact on expression of the transcription factors. Expression of CDX1 and CDX2 was higher in the presence of intestinal metaplasia. The differential regulation of the gene expression of CDX1, CDX2 and SOX2 in patients with gastric cancer affects not only the tumour but also the non-neoplastic tumour-distant mucosa.
Collapse
Affiliation(s)
- Jan Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-v.-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gen Y, Yasui K, Nishikawa T, Yoshikawa T. SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway. Cancer Sci 2013; 104:810-6. [PMID: 23510069 DOI: 10.1111/cas.12155] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/25/2013] [Accepted: 03/16/2013] [Indexed: 12/30/2022] Open
Abstract
The transcription factor SOX2 is essential for the maintenance of embryonic stem cells and normal development of the esophagus. Our previous study revealed that the SOX2 gene is an amplification target of 3q26.3 in esophageal squamous cell carcinoma (ESCC), and that SOX2 promotes ESCC cell proliferation in vitro. In the present study, we aimed to identify the mechanisms by which SOX2 promotes proliferation of ESCC cells. Using a phosphoprotein array, we assayed multiple signaling pathways activated by SOX2 and determined that SOX2 activated the AKT/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. LY294002, an inhibitor of phosphatidylinositol 3-kinase, and rapamycin, an inhibitor of mTORC1, suppressed the ability of SOX2 to enhance proliferation of ESCC cells in vitro. Effects of SOX2 knockdown, including reduced levels of phosphorylated AKT and decreased ESCC cell proliferation, were reversed with constitutive activation of AKT with knockdown of phosphatase and tensin homolog. In mouse xenografts, SOX2 promoted in vivo tumor growth of ESCC, which was dependent on AKT/mTORC1 activation. LY294002 suppressed the ability of SOX2 to enhance tumor growth of ESCC by reducing cell proliferation, but not by enhancing apoptosis. Furthermore, tissue microarray analysis of 61 primary ESCC tumors showed a positive correlation between expression levels of SOX2 and phosphorylated AKT. Our findings suggest that SOX2 promotes in vivo tumor growth of ESCC through activation of the AKT/mTORC1 signaling pathway, which enhances cell proliferation.
Collapse
Affiliation(s)
- Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
34
|
Sentani K, Sakamoto N, Shimamoto F, Anami K, Oue N, Yasui W. Expression of olfactomedin 4 and claudin-18 in serrated neoplasia of the colorectum: a characteristic pattern is associated with sessile serrated lesion. Histopathology 2013; 62:1018-27. [PMID: 23570326 DOI: 10.1111/his.12099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 01/13/2013] [Indexed: 01/14/2023]
Abstract
AIMS Olfactomedin 4 is a useful marker for stem cells in the intestine and is an independent prognostic molecule for survival in patients with colorectal cancer (CRC). Claudin-18, a component of tight junctions, correlates with poor survival in patients with CRC and is associated with the gastric phenotype. We investigated the possible usefulness of these molecules in serrated neoplasia of the colorectum. METHODS AND RESULTS We performed immunohistochemical analysis of colorectal polyps, including hyperplastic polyps (HP), sessile serrated lesions (SSL), traditional serrated adenomas (TSA) and conventional adenomas (CA). We also investigated the association between expression of these molecules and clinicopathological parameters in serrated adenocarcinoma (SAC) and non-SAC of the colorectum. Olfactomedin 4 expression was not detected or was decreased in SSL compared with the other polyp types. Claudin-18 expression was higher in SSL than in the other types. Similarly, positivity for olfactomedin 4 in SAC was significantly lower than that in non-SAC, and positivity for claudin-18 in SAC was significantly higher than that in non-SAC. Furthermore, claudin-18-positive SAC showed more advanced N grade and stage than claudin-18-negative SAC. CONCLUSIONS Reduced expression of olfactomedin 4 and ectopic expression of claudin-18 might be useful markers in the differential diagnosis of serrated polyps.
Collapse
Affiliation(s)
- Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche. Biochem Biophys Res Commun 2013; 432:558-63. [PMID: 23485463 DOI: 10.1016/j.bbrc.2013.02.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 01/10/2023]
Abstract
Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell-cell and epithelial-mesenchymal interactions in an environment that is extremely similar to the in vivo environment.
Collapse
|
36
|
Shin N, Park DY. Pathologic Diagnosis of Gastric Intestinal Metaplasia. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2013. [DOI: 10.7704/kjhugr.2013.13.2.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nari Shin
- Department of Pathology, Pusan National University School of Medicine, Busan, Korea
- Department of Pathology, Pusan National University Hospital, Busan, Korea
| | - Do Youn Park
- Department of Pathology, Pusan National University School of Medicine, Busan, Korea
- Department of Pathology, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
37
|
Helicobacter pylori infection and gastric carcinogenesis in rodent models. Semin Immunopathol 2012; 35:177-90. [PMID: 23111700 DOI: 10.1007/s00281-012-0357-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is an important factor for gastric carcinogenesis in human. In carcinogen-treated Mongolian gerbils, H. pylori infection enhances stomach carcinogenesis, while infection alone induced severe hyperplasia called heterotopic proliferative glands. A high-salt diet or early acquisition of the bacteria exacerbates inflammation and carcinogenesis. Oxygen radical scavengers or anti-inflammatory chemicals as well as eradication of H. pylori are effective to prevent carcinogenesis. H. pylori-associated inflammation induces intestinal metaplasia and intestinalization of stomach cancers independently. It is necessary to control cancer development not only in H. pylori-positive cases but also in H. pylori-negative metaplastic gastritis.
Collapse
|
38
|
Xiao ZY, Ru Y, Sun JT, Gao SG, Wang YF, Wang LD, Feng XS. Expression of CDX2 and villin in gastric cardiac intestinal metaplasia and the relation with gastric cardiac carcinogenesis. Asian Pac J Cancer Prev 2012; 13:247-50. [PMID: 22502678 DOI: 10.7314/apjcp.2012.13.1.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To determine whether CDX2 and villin protein expression are associated with intestinal metaplasia (IM) in gastric cardiac mucosa and to explore the relationship with evolution of gastric cardiac adenocarcinoma (GCA). METHODS We studied 143 gastric cardiac biopsy or resection specimens from Henan province China, including 25 cardiac gastritis specimens with IM, 65 dysplasia specimens with IM and 35 gastric cardiac adenocarcinoma specimens and stained them for CDX2 and villin by the immunohistochemical SP method. 15 normal gastric cardiac biopsy specimens were also collected as control. RESULTS (1) Normal gastric mucosa presented no CDX2 and villin expression. The positive rates of CDX2 protein in cardiac gastritis with IM, dysplasia with IM, and carcinoma tissues were 84.0% (21/25), 66.7% (32/48) and 36.4% (20/55), respectively. While the positive rates of villin protein in cardiac gastritis with IM, dysplasia with IM, and carcinoma tissues were 76.0% (19/25), 70.8% (34/48) and 45.5% (25/55), respectively.There were significant differences among the three groups for both CDX2 and villin (P<0.01). Spearman's rank correlation coefficient(rho) showed a close correlation between the two proteins (r=0.843, P<0.01) and both were positively related with tumor differentiation (both P<0.05), but not associated with age, sex, invasion and metastasis of lymph node (P>0.05). CONCLUSION Our results suggest that ectopic expression of CDX2 and villin may be involved in early-stage IM and tumorigenesis in gastric cardia and the expression of villin may be regulated by CDX2.
Collapse
Affiliation(s)
- Zhong-Yue Xiao
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Barros R, Freund JN, David L, Almeida R. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med 2012; 18:555-63. [PMID: 22871898 DOI: 10.1016/j.molmed.2012.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
Intestinal metaplasia of the stomach is a preneoplastic lesion that appears following Helicobacter pylori infection and confers increased risk for gastric cancer development. However, the molecular networks connecting infection to lesion formation and the cellular origin of this lesion remain largely unknown. A more comprehensive understanding of how intestinal metaplasia arises and is maintained will be a major breakthrough towards developing novel therapeutic interventions. Furthermore, after ascertaining the pivotal role of CDX2 in establishing and maintaining intestinal metaplasia, it becomes important to decipher the upstream molecular pathways leading to its ectopic expression. Here, we review the pathophysiology of intestinal metaplasia in the context of the molecular network involved in its establishment and maintenance, with emphasis on CDX2 function and regulation.
Collapse
Affiliation(s)
- Rita Barros
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal.
| | | | | | | |
Collapse
|
40
|
Camilo V, Barros R, Sousa S, Magalhães AM, Lopes T, Mário Santos A, Pereira T, Figueiredo C, David L, Almeida R. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis 2012; 33:1985-92. [PMID: 22791809 DOI: 10.1093/carcin/bgs233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Helicobacter pylori infection is the main risk factor for intestinal metaplasia (IM) and gastric cancer development. IM is a pre-neoplastic lesion, induced by the transcription factor CDX2, where the gastric mucosa is converted to an intestinal phenotype. We previously demonstrated that key elements of the bone morphogenetic protein (BMP) pathway co-localize with CDX2 in IM and upregulate CDX2 expression in gastric cell lines. These observations, together with the hypothesis that CDX2 could be repressed by SOX2, led us to test whether H. pylori, through BMPs, SOX2 and CDX2 could participate in a molecular network critical for the development of IM. AGS cells with and without SMAD4 knock-down were co-cultured with H. pylori or BMP2 to assess the expression of BMP pathway members as well as CDX2 and SOX2 by qPCR and western blot. Proximity ligation assay (PLA) was also performed to evaluate SMAD proteins interaction. Immunohistochemistry and western blot were performed in gastric samples from mice infected with Helicobacter spp. to measure Smad4, pSmad1/5/8, Cdx2 and Sox2 expression in vivo. Increased expression and activity of the BMP pathway accompanied by CDX2 upregulation and SOX2 downregulation were observed in AGS cells co-cultured with H. pylori or BMP2. These effects were impaired by downregulation of the BMP pathway. Finally, infected mice present BMP pathway upregulation, focal Cdx2 expression and decreased Sox2. These results provide a novel link between H. pylori infection and the BMP pathway in the regulation of intestinal and gastric-specific genes that might be relevant for gastric IM.
Collapse
Affiliation(s)
- Vânia Camilo
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xue Z, Yan H, Li J, Liang S, Cai X, Chen X, Wu Q, Gao L, Wu K, Nie Y, Fan D. Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem 2012; 113:302-12. [PMID: 21913215 DOI: 10.1002/jcb.23356] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs), or tumor initiating cells, are a subpopulation of cancer cells with self-renewal and differentiation properties. However, there has been no direct observation of the properties of gastric CSCs in vitro. Here we describe a vincristine (VCR)-preconditioning approach to obtain cancer stem-like cells (CSLCs) from the gastric cancer cell line SGC7901. The CSLCs displayed mesenchymal characteristics, including the up-regulated mesenchymal markers Snail, Twist, and vimentin, and the down-regulated epithelial marker E-cadherin. Using a Matrigel-based differentiation assay, CSLCs formed 2D tube-like and 3D complex lumen-like structures, which resembled differentiated gastric crypts. The characteristic of cellular differentiation was also found by transmission electron microscopy and up-regulation of gastrointestinal genes CDX2 and SOX2. We further showed that CSLCs could self-renew through significant asymmetric division compared with parent cells by tracing PKH-26, BrdU, and EDU label-retaining cells. In addition, these CSLCs also increased expression of CD44, CD90, and CXCR4 at the mRNA level, which was identified as novel targets. Furthermore, drug sensitivity assays and xenograft experiments demonstrated that the cells developed multi-drug resistance (MDR) and significant tumorigenicity in vivo. In summary, gastric CSCs were identified from VCR-preconditioned SGC7901 cell line, characterized by high tumorigenicity and the capacity for self-renewal and differentiation.
Collapse
Affiliation(s)
- Zengfu Xue
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gastric composite tumor of alpha fetoprotein-producing carcinoma/hepatoid adenocarcinoma and endocrine carcinoma with reference to cellular phenotypes. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:201375. [PMID: 22482081 PMCID: PMC3317075 DOI: 10.1155/2012/201375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/14/2011] [Accepted: 12/12/2011] [Indexed: 12/17/2022]
Abstract
Alpha-fetoprotein-producing carcinoma (AFPC)/hepatoid adenocarcinoma (HAC) and neuroendocrine carcinoma (NEC) are uncommon in the stomach. Composite tumors consisting of these carcinomas and their histologic phenotypes are not well known. Between 2002 and 2007, to estimate the prevalence of composite tumors consisting of tubular adenocarcinoma, AFPC/HAC and NEC, we reviewed specimens obtained from 294 consecutive patients treated surgically for gastric cancer. We examined histological phenotype of tumors of AFPC or NEC containing the composite tumor by evaluating immunohistochemical expressions of MUC2, MUC5AC, MUC6, CDX2, and SOX2. Immunohistochemically, AFPC/HAC dominantly showed the intestinal or mixed phenotype, and NEC frequently showed the gastric phenotype. In the composite tumor, the tubular and hepatoid components showed the gastric phenotype, and the neuroendocrine component showed the mixed type. The unique composite tumor predominantly showed the gastric phenotype, and the hepatoid and neuroendocrine components were considered to be differentiated from the tubular component.
Collapse
|
43
|
Hryniuk A, Grainger S, Savory JGA, Lohnes D. Cdx function is required for maintenance of intestinal identity in the adult. Dev Biol 2012; 363:426-37. [PMID: 22285812 DOI: 10.1016/j.ydbio.2012.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/09/2023]
Abstract
The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon.
Collapse
Affiliation(s)
- Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, K17 8M5
| | | | | | | |
Collapse
|
44
|
Cinghu S, Goh YM, Oh BC, Lee YS, Lee OJ, Devaraj H, Bae SC. Phosphorylation of the gastric tumor suppressor RUNX3 following H. pylori infection results in its localization to the cytoplasm. J Cell Physiol 2011; 227:1071-80. [DOI: 10.1002/jcp.22820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Chen H, Fang Y, Tevebaugh W, Orlando RC, Shaheen NJ, Chen X. Molecular mechanisms of Barrett's esophagus. Dig Dis Sci 2011; 56:3405-3420. [PMID: 21984436 PMCID: PMC3750118 DOI: 10.1007/s10620-011-1885-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
Barrett's esophagus (BE) is defined as the metaplastic conversion of esophageal squamous epithelium to intestinalized columnar epithelium. As a premalignant lesion of esophageal adenocarcinoma (EAC), BE develops as a result of chronic gastroesophageal reflux disease (GERD). Many studies have been conducted to understand the molecular mechanisms of this disease. This review summarizes recent results involving squamous and intestinal transcription factors, signaling pathways, stromal factors, microRNAs, and other factors in the development of BE. A conceptual framework is proposed to guide future studies. We expect elucidation of the molecular mechanisms of BE to help in the development of improved management of GERD, BE, and EAC.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| | | | | | | | | | | |
Collapse
|
46
|
The dichotomy in carcinogenesis of the distal esophagus and esophagogastric junction: intestinal-type vs cardiac-type mucosa-associated adenocarcinoma. Mod Pathol 2011; 24:1177-90. [PMID: 21572404 DOI: 10.1038/modpathol.2011.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenocarcinoma of the distal esophagus and esophagogastric junction continues to rise in incidence. An intestinal metaplasia (Barrett esophagus)-dysplasia-carcinoma sequence induced by gastroesophageal reflux disease is well established. However, a significant number of adenocarcinomas in the vicinity of the esophagogastric junction are seen in the background of gastric/cardiac-type mucosa without intestinal metaplasia. Thus, the aim of this study was to investigate the role of Barrett esophagus (intestinal-type mucosa) in the classification and prognosis of tumors of the distal esophagus and esophagogastric junction. Clinicopathological and molecular characteristics were examined in 157 consecutively resected adenocarcinomas of the distal esophagus and esophagogastric junction and were compared between tumors arising in association with intestinal-type and cardiac-type mucosa. Intestinal-type mucosa-associated adenocarcinomas were more likely to be associated with younger age (P=0.0057), reflux symptoms (P<0.0001), proximal location (P=0.0009), lower T stage (P<0.0001), fewer nodal metastases (P=0.0001), absence of lymphatic (P<0.0001), venous (P=0.0060) or perineural (P<0.0001) invasion. Histologically, intestinal-type mucosa-associated tumors were more likely to be low-grade glandular tumors (P=0.0095) of intestinal or mixed immunophenotype (P=0.015) and express nuclear β-catenin (P=0.0080), whereas tumors arising in a background of cardiac-type mucosa were more frequently associated with EGFR amplification (P=0.0051). Five-year overall survival rate was significantly higher in patients with intestinal-type mucosa-associated tumors (28 vs 9%, P=0.0015), although no survival benefit was seen after adjusting for potential confounders. Our findings support the theory that multiple distinct pathways of tumorigenesis exist in the vicinity of the esophagogastric junction, including one in which tumors arise from dysplastic intestinal metaplasia (intestinal pathway), and one potentially involving dysplasia of the cardiac-type mucosa (non-intestinal pathway). Additional studies are warranted to further clarify their pathogenesis and the molecular mechanisms involved.
Collapse
|
47
|
Gracz AD, Magness ST. Sry-box (Sox) transcription factors in gastrointestinal physiology and disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G503-15. [PMID: 21292996 PMCID: PMC3302185 DOI: 10.1152/ajpgi.00489.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genetic mechanisms underlying tissue maintenance of the gastrointestinal tract are critical for the proper function of the digestive system under normal physiological stress. The identification of transcription factors and related signal transduction pathways that regulate stem cell maintenance and lineage allocation is attractive from a clinical standpoint in that it may provide targets for novel cell- or drug-based therapies. Sox [sex-determining region Y (Sry) box-containing] factors are a family of transcription factors that are emerging as potent regulators of stem cell maintenance and cell fate decisions in multiple organ systems and might provide valuable insight toward the understanding of these processes in endodermally derived tissues of the gastrointestinal tract. In this review, we focus on the known genetic functions of Sox factors and their roles in epithelial tissues of the esophagus, stomach, intestine, colon, pancreas, and liver. Additionally, we discuss pathological conditions in the gastrointestinal tract that are associated with a dysregulation of Sox factors. Further study of Sox factors and their role in gastrointestinal physiology and pathophysiology may lead to advances that facilitate control of tissue maintenance and development of advanced clinical therapies.
Collapse
Affiliation(s)
- A. D. Gracz
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and ,2Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - S. T. Magness
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and
| |
Collapse
|
48
|
Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One 2010; 5:e13952. [PMID: 21103067 PMCID: PMC2980489 DOI: 10.1371/journal.pone.0013952] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/06/2010] [Indexed: 12/23/2022] Open
Abstract
Background In preimplantation mammalian development the transcription factor Sox2 (SRY-related HMG-box gene 2) forms a complex with Oct4 and functions in maintenance of self-renewal of the pluripotent inner cell mass (ICM). Previously it was shown that Sox2−/− embryos die soon after implantation. However, maternal Sox2 transcripts may mask an earlier phenotype. We investigated whether Sox2 is involved in controlling cell fate decisions at an earlier stage. Methods and Findings We addressed the question of an earlier role for Sox2 using RNAi, which removes both maternal and embryonic Sox2 mRNA present during the preimplantation period. By depleting both maternal and embryonic Sox2 mRNA at the 2-cell stage and monitoring embryo development in vitro we show that, in the absence of Sox2, embryos arrest at the morula stage and fail to form trophectoderm (TE) or cavitate. Following knock-down of Sox2 via three different short interfering RNA (siRNA) constructs in 2-cell stage mouse embryos, we have shown that the majority of embryos (76%) arrest at the morula stage or slightly earlier and only 18.7–21% form blastocysts compared to 76.2–83% in control groups. In Sox2 siRNA-treated embryos expression of pluripotency associated markers Oct4 and Nanog remained unaffected, whereas TE associated markers Tead4, Yap, Cdx2, Eomes, Fgfr2, as well as Fgf4, were downregulated in the absence of Sox2. Apoptosis was also increased in Sox2 knock-down embryos. Rescue experiments using cell-permeant Sox2 protein resulted in increased blastocyst formation from 18.7% to 62.6% and restoration of Sox2, Oct4, Cdx2 and Yap protein levels in the rescued Sox2-siRNA blastocysts. Conclusion and Significance We conclude that the first essential function of Sox2 in the preimplantation mouse embryo is to facilitate establishment of the trophectoderm lineage. Our findings provide a novel insight into the first differentiation event within the preimplantation embryo, namely the segregation of the ICM and TE lineages.
Collapse
|
49
|
Gen Y, Yasui K, Zen Y, Zen K, Dohi O, Endo M, Tsuji K, Wakabayashi N, Itoh Y, Naito Y, Taniwaki M, Nakanuma Y, Okanoue T, Yoshikawa T. SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma. ACTA ACUST UNITED AC 2010; 202:82-93. [PMID: 20875870 DOI: 10.1016/j.cancergencyto.2010.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 12/18/2009] [Accepted: 01/17/2010] [Indexed: 12/20/2022]
Abstract
SOX2 is a transcription factor with a high-mobility group DNA-binding domain that functions as a master regulator during embryogenesis and organogenesis. We investigated DNA copy number aberrations in esophageal squamous cell carcinoma (ESCC) cell lines using a high-density oligonucleotide microarray and found frequent amplification at the chromosomal region 3q26. The estimated extent of the minimal overlapping region of amplification was 1.3 Mb. This chromosomal region includes a single gene, SOX2. The SOX2 protein was overexpressed in cell lines in which the gene was amplified. Knockdown experiments showed that SOX2 promotes proliferation of ESCC cells. Genes potentially modulated by SOX2 were determined by expression array analyses combined with small interfering RNA cell-transfection studies. A copy number gain of SOX2 (>2-fold) was observed in 6 of the 40 primary ESCCs (15%). Immunohistochemical study revealed that expression of the SOX2 protein was significantly elevated in 62 of the 89 ESCC tumors (70%), compared with their nontumorous counterparts, and that upregulated expression of SOX2 was associated with poor differentiation of ESCC. Our results suggest that SOX2 is likely to be a target of the 3q26 amplification and may therefore be involved in the development or progression of ESCC.
Collapse
Affiliation(s)
- Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Watanabe H. Intestinal metaplasia -the effect of Acid on the gastric mucosa and gastric carcinogenesis-. J Toxicol Pathol 2010; 23:115-23. [PMID: 22272022 PMCID: PMC3234614 DOI: 10.1293/tox.23.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/02/2010] [Indexed: 12/25/2022] Open
Abstract
This review concerns stem cells and their relation to intestinal metaplasia. When
gastric regions of mice, Mongolian gerbils or several strains of rats were
irradiated with a total dose of 20 Gy of X-rays given in two fractions,
intestinal metaplasia was only induced in rats. In addition, it was greatly
influenced by rat strain and sex. Alkaline phosphatase (ALP) positive
metaplastic foci were increased by administration of ranitidine (H2
receptor antagonist), crude stomach antigens or subtotal resection of the fundus
and decreased by cysteamine (gastric acid secretion stimulator), histamine or
removal of the submandibular glands. Recent studies have shown that
Cdx2 transgenic mice with gastric achlorhydria develop
intestinal metaplasia and that in men and animals, Helicobacterpylori (H. pyrlori) infection can cause intestinal metaplasias
that are reversible on eradication. Our results combined with findings for
H. pylori infection or eradication and transgenic mice
suggest that an elevation in the pH of the gastric juice due to disappearance of
parietal cells is one of the principal factors for development of reversible
intestinal metaplasia. When different organs were transplanted into the stomach
or duodenum, they were found to transdifferentiate into gastric or duodenal
mucosae, respectively. Organ-specific stem cells in normal non-liver tissues
(heart, kidney, brain and skin) also differentiate into hepatocytes when
transplanted into an injured liver. Therefore, stem cells have a multipotential
ability, transdifferentiating into different organs when transplanted into
different environments. Finally, intestinal metaplasia has been found to
possibly increase sensitivity to the induction of tumors by colon carcinogens of
the 1,2-dimethylhydrazine (DMH), azoxymethane (AOM) or
2-amino-1-methyl-6-phenylimidazo[4.5-b]pyridine (PhIP) type. This carcinogenic
process, however, may be relatively minor compared with the main gastric
carcinogenesis process induced by N-methy1-N’-nitro-N-nitrosoguanidine (MMNG) or
N-methylnitrosourea (MNU), which is not affected by the presence of intestinal
metaplasia. The protocol used in these experiments may provide a new approach to
help distinguish between developmental events associated with intestinal
metaplasia and gastric tumors.
Collapse
Affiliation(s)
- Hiromitsu Watanabe
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|