1
|
Zhang Y, Li J. Recent advancements in understanding of biological role of homeobox C9 in human cancers. World J Clin Oncol 2024; 15:1168-1176. [PMID: 39351453 PMCID: PMC11438841 DOI: 10.5306/wjco.v15.i9.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Homeobox (HOX) C9, a member of the HOX family, is an important transcription factor, and it plays a significant role in various biological processes. This family of genes is highly valued for their essential roles in establishing and maintaining the body axis during embryonic development and adult tissues. Further, HOXC9 plays a central role in neuronal differentiation, angiogenesis, and adipose distribution, which are essential for the development of the nervous system, maturation of tissues and organs, and maintenance of energy balance and metabolic health. Recent research has found that abnormal HOXC9 expression is closely associated with the development and progression of various tumor types. The HOXC9 expression level can be an indicator of tumor prognosis. Therefore, elucidating the association between HOXC9 expression and its regulatory mechanisms and tumorigenesis can provide novel insights on the diagnosis and treatment of patients with cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Clinical Laboratory, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| |
Collapse
|
2
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|
3
|
Chen Z, Fan Y, Liu X, Shang X, Qi K, Zhang S. Clinicopathological significance of DAPK gene promoter hypermethylation in non-small cell lung cancer: A meta-analysis. Int J Biol Markers 2022; 37:47-57. [PMID: 34935548 DOI: 10.1177/17246008211067552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Death-associated protein kinase (DAPK) has a strong function of tumor suppression involving apoptosis regulation, autophagy, and metastasis inhibition. Hypermethylation of CpG islands in DAPK gene promoter region is one of the important ways to inactivate this tumor suppressor gene, which might promote lung carcinogenesis. However, the clinicopathological significance of the DAPK promoter hypermethylation in lung cancer remains unclear. In this study, we performed a meta-analysis trying to estimate the clinicopathological significance of DAPK promoter hypermethylation in non-small cell lung cancer (NSCLC). METHODS A detailed literature search for publications relevant to DAPK gene promoter methylation and NSCLC was made in PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, CSTJ, Wanfang databases, and SinoMed (CBM). The random-effects model and fixed-effects model were utilized to pool the relative ratio based on the heterogeneity test in the meta-analysis. RESULTS A total of 41 studies with 3348 patients were included. The frequency of DAPK methylation was significantly higher in NSCLC than in non-malignant control (odds ratio (OR) = 6.88, 95% confidence interval (CI): 4.17-11.35, P < 0.00001). The pooled results also showed that DAPK gene promoter hypermethylation was significantly associated with poor prognosis for overall survival in patients with NSCLC (hazard ratio: 1.23, 95% CI:1.01-1.52, P = 0.04). Moreover, DAPK gene promoter hypermethylation was significantly associated with squamous cell carcinoma (OR: 1.25, 95% CI: 1.01-1.54, P = 0.04) and smoking behavior (OR: 1.42, 95% CI: 1.04-1.93, P = 0.03) but not with TNM stage, tumor differentiation, age, or gender. CONCLUSION DAPK promoter hypermethylation might be a candidate diagnostic and prognostic tumor marker for NSCLC.
Collapse
Affiliation(s)
- Zhimao Chen
- Department of Thoracic Surgery, 26447Peking University First Hospital, Beijing, China
| | - Yu Fan
- Department of Pathology, 571674Shantou University Medical College, Shantou, Guangdong, China
| | - Xiangzheng Liu
- Department of Thoracic Surgery, 26447Peking University First Hospital, Beijing, China
| | - Xueqian Shang
- Department of Thoracic Surgery, 26447Peking University First Hospital, Beijing, China
| | - Kang Qi
- Department of Thoracic Surgery, 26447Peking University First Hospital, Beijing, China
| | - Shijie Zhang
- Department of Thoracic Surgery, 26447Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Pu W, Qian F, Liu J, Shao K, Xiao F, Jin Q, Liu Q, Jiang S, Zhang R, Zhang J, Guo S, Zhang J, Ma Y, Ju S, Ding W. Targeted Bisulfite Sequencing Reveals DNA Methylation Changes in Zinc Finger Family Genes Associated With KRAS Mutated Colorectal Cancer. Front Cell Dev Biol 2021; 9:759813. [PMID: 34778269 PMCID: PMC8581662 DOI: 10.3389/fcell.2021.759813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a leading cause of cancer death, and early diagnosis of CRC could significantly reduce its mortality rate. Previous studies suggest that the DNA methylation status of zinc finger genes (ZFGs) could be of potential in CRC early diagnosis. However, the comprehensive evaluation of ZFGs in CRC is still lacking. Methods: We first collected 1,426 public samples on genome-wide DNA methylation, including 1,104 cases of CRC tumors, 54 adenomas, and 268 para-tumors. Next, the most differentially methylated ZFGs were identified and validated in two replication cohorts comprising 218 CRC patients. Finally, we compared the prediction capabilities between the ZFGs and the SEPT9 in all CRC patients and the KRAS + and KRAS- subgroup. Results: Five candidate ZFGs were selected: ESR1, ZNF132, ZNF229, ZNF542, and ZNF677. In particular, ESR1 [area under the curve (AUC) = 0.91] and ZNF132 (AUC = 0.93) showed equivalent or better diagnostic capability for CRC than SEPT9 (AUC = 0.91) in the validation dataset, suggesting that these two ZFGs might be of potential for CRC diagnosis in the future. Furthermore, we performed subgroup analysis and found a significantly higher diagnostic capability in KRAS + (AUC ranged from 0.97 to 1) than that in KRAS- patients (AUC ranged from 0.74 to 0.86) for all these five ZFGs, suggesting that these ZFGs could be ideal diagnostic markers for KRAS mutated CRC patients. Conclusion: The methylation profiles of the candidate ZFGs could be potential biomarkers for the early diagnosis of CRC, especially for patients carrying KRAS mutations.
Collapse
Affiliation(s)
- Weilin Pu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Fei Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Keke Shao
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng, China
| | - Feng Xiao
- Department of Pathology, The Third People’s Hospital of Nantong City, Nantong, China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China
- Six Industrial Research Institute, Fudan University, Shanghai, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Li F, Chen Q, Yang Y, Li M, Zhang L, Yan Z, Zhang J, Wang K. ESR1 as a recurrence-related gene in intrahepatic cholangiocarcinoma: a weighted gene coexpression network analysis. Cancer Cell Int 2021; 21:225. [PMID: 33865377 PMCID: PMC8052670 DOI: 10.1186/s12935-021-01929-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is the second most common malignant hepatic tumor and has a high postoperative recurrence rate and a poor prognosis. The key roles of most tumor recurrence-associated molecules in iCCA remain unclear. This study aimed to explore hub genes related to the postsurgical recurrence of iCCA. Method Differentially expressed genes (DEGs) between iCCA samples and normal liver samples were screened from The Cancer Genome Atlas (TCGA) database and used to construct a weighted gene coexpression network. Module-trait correlations were calculated to identify the key module related to recurrence in iCCA patients. Genes in the key module were subjected to functional enrichment analysis, and candidate hub genes were filtered through coexpression and protein–protein interaction (PPI) network analysis. Validation studies were conducted to detect the “real” hub gene. Furthermore, the biological functions and the underlying mechanism of the real hub gene in iCCA tumorigenesis and progression were determined via in vitro experiments. Results A total of 1019 DEGs were filtered and used to construct four coexpression modules. The red module, which showed the highest correlations with the recurrence status, family history, and day to death of patients, was identified as the key module. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that genes in the red module were enriched in genes and pathways related to tumorigenesis and tumor progression. We performed validation studies and identified estrogen receptor 1 (ESR1), which significantly impacted the prognosis of iCCA patients, as the real hub gene related to the recurrence of iCCA. The in vitro experiments demonstrated that ESR1 overexpression significantly suppressed cell proliferation, migration, and invasion, whereas ESR1 knockdown elicited opposite effects. Further investigation into the mechanism demonstrated that ESR1 acts as a tumor suppressor by inhibiting the JAK/STAT3 signaling pathway. Conclusions ESR1 was identified as the real hub gene related to the recurrence of iCCA that plays a critical tumor suppressor role in iCCA progression. ESR1 significantly impacts the prognosis of iCCA patients and markedly suppresses cholangiocarcinoma cell proliferation, migration and invasion by inhibiting JAK/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01929-5.
Collapse
Affiliation(s)
- Fengwei Li
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China
| | - Qinjunjie Chen
- Department of Hepatic Surgery (IV) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Yang Yang
- Department of Hepatic Surgery (VI) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Meihui Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, #168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Lei Zhang
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China
| | - Zhenlin Yan
- Department of Hepatic Surgery (IV) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Junjie Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, #168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Kui Wang
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
6
|
Li Y, Zhang T, Zhang H, Wang X, Liu X, Huang Q, Li L. Clinical Significance of P16 Gene Methylation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:133-142. [PMID: 32949396 DOI: 10.1007/978-981-15-4494-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of death from cancer in China. The lack of early screening technologies makes most patients to be diagnosed at advanced stages with a poor prognosis which often miss the best treatment opportunities. Thus, identifying biomarkers for minimally invasive detection and prognosis of early stage disease is urgently needed. Genetic and epigenetic alterations that promote tumorigenesis and metastasis exist in multiple cancers. These aberrant alterations usually represent early events in cancer progression suggesting their potential applications as a biomarker for cancer prediction. Studies have shown that DNA methylation is one of the key factors in progression of lung cancer. P16 promoter methylation is one of the most common epigenetic change plays a key role in lung cancer. In this review, we highlight the p16 gene methylation and its clinical significance in lung cancer.
Collapse
Affiliation(s)
- Yanjun Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Hui Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xiangdong Wang
- Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Xiaozhuan Liu
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Qihong Huang
- Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Li Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Zhengzhou University People's Hospital, Zhengzhou, Henan, China. .,Henan University People's Hospital, Zhengzhou, Henan, China. .,Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Daniunaite K, Sestokaite A, Kubiliute R, Stuopelyte K, Kettunen E, Husgafvel-Pursiainen K, Jarmalaite S. Frequent DNA methylation changes in cancerous and noncancerous lung tissues from smokers with non-small cell lung cancer. Mutagenesis 2020; 35:geaa022. [PMID: 32914849 DOI: 10.1093/mutage/geaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/07/2020] [Indexed: 01/20/2023] Open
Abstract
Cancer deaths account for nearly 10 million deaths worldwide each year, with lung cancer (LCa) as the leading cause of cancer-related death. Smoking is one of the major LCa risk factors, and tobacco-related carcinogens are potent mutagens and epi-mutagens. In the present study, we aimed to analyse smoking-related epigenetic changes in lung tissues from LCa cases. The study cohort consisted of paired LCa and noncancerous lung tissues (NLT) from 104 patients, 90 of whom were smokers or ex-smokers (i.e. ever smokers) at the time of diagnosis. DNA methylation status of tumour suppressor genes DAPK1, MGMT, p16, RASSF1 and RARB was screened by means of methylation-specific PCR (MSP) and further analysed quantitatively by pyrosequencing. Methylation of at least one gene was detected in 59% (61 of 104) of LCa samples and in 39% (41 of 104) of NLT. DAPK1 and RASSF1 were more frequently methylated in LCa than in NLT (P = 0.022 and P = 0.041, respectively). The levels of DNA methylation were higher in LCa than NLT at most of the analysed CpG positions. More frequent methylation of at least one gene was observed in LCa samples of ever smokers (63%, 57 of 90) as compared with never smokers (36%, 5 of 14; P = 0.019). In the ever smokers group, methylation of the genes also occurred in NLT, but was rare or absent in the samples of never smokers. Among the current smokers, RASSF1 methylation in LCa showed association with the number of cigarettes smoked per day (P = 0.017), whereas in NLT it was positively associated with the duration of smoking (P = 0.039). Similarly, p16 methylation in LCa of current smokers correlated with the larger number of cigarettes smoked per day (P = 0.047). Overall, DNA methylation changes were present in both cancerous and noncancerous tissues of LCa patients and showed associations with smoking-related parameters.
Collapse
Affiliation(s)
- Kristina Daniunaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
- Finnish Institute of Occupational Health, Topeliuksenkatu, Helsinki, Finland
| | - Agne Sestokaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Raimonda Kubiliute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Kristina Stuopelyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| | - Eeva Kettunen
- Finnish Institute of Occupational Health, Topeliuksenkatu, Helsinki, Finland
| | | | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio ave. 7, Vilnius, Lithuania
- National Cancer Institute, Santariskiu St. 1, Vilnius, Lithuania
| |
Collapse
|
8
|
Kuang P, Chen P, Wang L, Li W, Chen B, Liu Y, Xu Y, Wang H, Zhao S, Ye L, Yu F, Ji H, He Y. RNA sequencing analysis of small cell lung cancer reveals candidate chemotherapy insensitivity long noncoding RNAs and microRNAs. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:121. [PMID: 32175414 PMCID: PMC7049041 DOI: 10.21037/atm.2020.01.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The further progression of credible expression profiling analysis of genes continues to expand our understanding of the biological characteristics in lung cancer. In this study, RNA sequencing (RNA-Seq) was used to contrast the transcriptomics profiling of small cell lung cancer (SCLC) that acquired partial response (PR) and stable disease (SD)/progressive disease (PD) after first-line chemotherapy. We aimed to illuminate the underlying mechanisms of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in the efficacy of SCLC first-line chemotherapy. METHODS Six male patients (mean age, 64.2 years) with SCLC were enrolled in this study. RNA-Seq was executed on the tumor tissues from 3 patients with PR outcome and 3 patients with SD or PD therapeutic effect after first-line chemotherapy. RESULTS RNA-Seq generated 26.67×106 (±8.7×106) reads in SCLC tissues [mean (±standard deviation)]. Analysis revealed that 64 lncRNAs had higher expression and 194 had lower expression in the PR group ≥2-fold (P<0.05). Three downregulated genes in the PR group [HOXA-AS3, cancer susceptibility 9 (CASC9), and KEGG] could have a role in the insensitivity of SCLC. A total of 1,303 differential miRNAs were defined between PR and the SD or PD SCLC group, while 520 miRNAs had higher expression, and 783 had lower expression in the PR group. Two lower expressed miRNAs in the PR group (miRNA 601 and miRNA 596) might be the key genes in SCLC chemotherapy insensitivity. CONCLUSIONS The expression of 3 gene (HOXA-AS3, CASC9, and KEGG) and 2 miRNAs (miRNA 601 and miRNA 596) were markedly decreased in SCLC patients who achieved PR. They thus might be the promising candidate genes in SCLC chemotherapy insensitivity.
Collapse
Affiliation(s)
- Peng Kuang
- Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang 330006, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Tongji University, Shanghai 200433, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Tongji University, Shanghai 200433, China
| | - Yi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Tongji University, Shanghai 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Tongji University, Shanghai 200433, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Lingyun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Feng Yu
- Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang 330006, China
| | - Hongbin Ji
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
9
|
Molecular profiling of TOX-deficient neoplastic cells in cutaneous T cell lymphoma. Arch Dermatol Res 2019; 312:513-525. [PMID: 31676945 PMCID: PMC7354281 DOI: 10.1007/s00403-019-02000-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/28/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is a rare but potentially devastating primary cutaneous lymphoma. CTCL is characterized by localization of neoplastic T lymphocytes to the skin, with mycosis fungoides (MF) and its leukemic form, Sézary syndrome (SS) being the most common variants. Thymocyte selection-associated high-mobility group box (TOX) gene has been found to be highly expressed in MF and SS. It is reported that higher expression levels of TOX in patients will increase risks of disease progression and poor prognosis. However, the molecular events leading to these abnormalities have not been well understood. To better understand the molecular mechanism underlying TOX-mediated differentially expressed genes (DEGs) in CTCL, and to identify DEGs pathways triggered after knockdown of TOX gene in the CTCL cell line Hut78, we employed two shRNA-mediated lentiviruses to knock down TOX gene in the skin lymphoma cell line HuT78. RNA sequencing (RNAseq) analysis was applied to analyze DEGs, DEGs GO and their corresponding pathways. Knockdown of TOX can induce upregulation of 547 genes and downregulation of 649 genes, respectively. HOXC9 was the most significant downregulated gene. Most DEGs are enriched in malignancies and relate to the Wnt and mTOR signaling pathways, and therefore they can regulate cellular processes and induce different biological regulation. Transcriptome analysis of DEGs after knockdown of TOX in our study provides insights into the mechanism of TOX in CTCL and suggests candidate targets for therapy of CTCL.
Collapse
|
10
|
Wang H, Zhao F, Cai S, Pu Y. MiR-193a regulates chemoresistance of human osteosarcoma cells via repression of IRS2. J Bone Oncol 2019; 17:100241. [PMID: 31193934 PMCID: PMC6543196 DOI: 10.1016/j.jbo.2019.100241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022] Open
Abstract
Chemoresistance prevents curative potential of chemotherapy in most cases. MicroRNAs (miRNAs) are key players in regulating chemoresistance in osteosarcoma, which is the most common primary bone cancer. Bisulfite sequencing and quantitative real time PCR analyses showed that miR-193a expression is downregulated by DNA hypermethylation at its promoter region in a chemoresistant cell line, SJSA-1, compared to a chemosensitive cell line G-292. Introduction of a miR-193a mimic in SJSA-1 cells or an antagomir into G-292 cells confirmed the role of miR-193a in osteosarcoma chemoresistance. Bioinformatics together with biochemical assays showed that insulin receptor substrate 2 (IRS2) is a target of miR-193a. Our data concludes that miR-193a plays a role in the osteosarcoma chemoresistance and thus might serve as a useful biomarker for osteosarcoma prognosis.
Collapse
Key Words
- 3PA, miR-193a-3p-antagomir
- 3PM, miR-193a-3p-mimic
- Ago, miR-193a-3p's agomir
- Anta, miR-193a-3p's antagomir
- BSP, Bisulfite Sequencing PCR
- CDDP, cisplatin
- Carb, carboplatin
- Chemoresistance
- DNA methylation
- Dox, doxorubicin
- Etop, etoposide
- IRS2
- IRS2, Insulin Receptor Substrate 2
- MTX, methotrexate
- Mut, mutation-type vector
- OS, osteosarcoma
- Osteosarcoma
- UTR, untranslated region
- WT, wild-type vector
- miR, microRNA
- miR-193a-3p
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Clinical Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Fangfang Zhao
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Youguang Pu
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| |
Collapse
|
11
|
Chen L, Wang Y, Liu F, Xu L, Peng F, Zhao N, Fu B, Zhu Z, Shi Y, Liu J, Wu R, Wang C, Yao S, Li Y. A systematic review and meta-analysis: Association between MGMT hypermethylation and the clinicopathological characteristics of non-small-cell lung carcinoma. Sci Rep 2018; 8:1439. [PMID: 29362385 PMCID: PMC5780517 DOI: 10.1038/s41598-018-19949-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
The relationship between O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and clinicopathological characteristics of non-small-cell lung carcinoma (NSCLC) has remained controversial and unclear. Therefore, in this study we have undertaken a systematic review and meta-analysis of relevant studies to quantitatively investigate this association. We identified 30 eligible studies investigating 2714 NSCLC patients. The relationship between MGMT hypermethylation and NSCLC was identified based on 20 studies, including 1539 NSCLC patient tissue and 1052 normal and adjacent tissue samples (OR = 4.60, 95% CI = 3.46~6.11, p < 0.00001). MGMT methylation varied with ethnicity (caucasian: OR = 4.56, 95% CI = 2.63~7.92, p < 0.00001; asian: OR = 5.18, 95% CI = 2.03~13.22, p = 0.0006) and control style (autologous: OR = 4.44, 95% CI = 3.32~5.92, p < 0.00001; heterogeneous: OR = 9.05, 95% CI = 1.79~45.71, p = 0.008). In addition, MGMT methylation was observed to be specifically associated with NSCLC clinical stage, and not with age, sex, smoking, pathological types, and differentiation status. Also MGMT methylation did not impact NSCLC patients survival (HR = 1.32, 95% CI = 0.77~2.28, p = 0.31). Our study provided clear evidence about the association of MGMT hypermethylation with increased risk of NSCLC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Yong Wang
- Department of Medical Oncology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Fen Liu
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Liyao Xu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Feifei Peng
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Ning Zhao
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Zijie Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Yu Shi
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China
| | - Jiansheng Liu
- Department of Medical Oncology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Renrui Wu
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Chen Wang
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Shengmin Yao
- Department of Internal Neurology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou, Jiangxi, 341000, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchan, Jiangxi, 330000, China.
| |
Collapse
|
12
|
Sun X, Yuan W, Hao F, Zhuang W. Promoter Methylation of RASSF1A indicates Prognosis for Patients with Stage II and III Colorectal Cancer Treated with Oxaliplatin-Based Chemotherapy. Med Sci Monit 2017; 23:5389-5395. [PMID: 29128865 PMCID: PMC5697441 DOI: 10.12659/msm.903927] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The purpose of this study was to investigate the prognostic significance of methylation of RAS association domain family protein 1 (RASSF1A) in the promoter region for patients with stage II and III colorectal cancer (CRC) receiving oxaliplatin-based chemotherapy. Material/Methods There were 108 eligible CRC patients and 78 healthy controls included in this study. Methylation-specific polymerase chain reaction (MSP) was applied to detect the methylation status of RASSF1A in patients before and after chemotherapy. The effects of RASSF1A methylation on chemotherapy-sensitivity and prognosis for patients were also evaluated in the present study. Results The frequency of RASSF1A methylation was higher in CRC patients than in the healthy controls (48.44% versus 5.13%, p<0.001). After two cycles of chemotherapy, methylation ratio was significantly decreased (21.30%, p<0.001). Promoter methylation of RASSF1A was significantly correlated with tumor stage and pathological differentiation (p=0.008 and p=0.007, respectively). Patients without methylation had a favorable objective response (OR), compared with those with methylation (53.33% versus 25%, p=0.014). Methylation status of RASSF1A could influence progression-free survival and overall survival (log rank test, p<0.05). Cox regression analysis indicated that RASSF1A methylation (HR=2.471, 95% CI=1.125–5.428, p=0.024) and OR (HR=2.678, 95% CI=1.085–6.610, p 0.033) were independently correlated with prognosis for patients treated with oxaliplatin-based chemotherapy. Conclusions Promoter methylation of RASSF1A can influence sensitivity to oxaliplatin-based chemotherapy, which can be used to predict outcomes for patients with stage II and III CRC. In addition, the aberrant methylation may be a promising target for improving chemotherapy efficacy.
Collapse
Affiliation(s)
- Xicai Sun
- Department of Health Management, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Wei Yuan
- Department of Radiotherapy, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Furong Hao
- Department of Radiotherapy, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Wenzhen Zhuang
- Medical Record Management Section, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
13
|
Yang Y, Yin W, Wu F, Fan J. Combination of azacitidine and trichostatin A decreased the tumorigenic potential of lung cancer cells. Onco Targets Ther 2017; 10:2993-2999. [PMID: 28652781 PMCID: PMC5476757 DOI: 10.2147/ott.s136218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose This study aims to investigate the possibility of using epigenetic inhibitors against lung cancer. Methods The changes in the proliferation of human lung cancer cells, NCI-H1975 and NCI-H1299 cells, treated with various doses of inhibitors of DNA methyltransferase (azacitidine [5-AZA]) or histone deacetylase inhibitors (trichostatin A [TSA]) were determined by cell counting. The cell viability of NCI-H1975 and NCI-H1299 cells treated with 5-AZA and/or TSA was measured by the MTT assay. The changes in expression of the AKT signaling pathway molecules caused by the application of 5-AZA and TSA were analyzed through their protein and mRNA levels. A xenograft model was used to observe the effects of 5-AZA and TSA on tumor growth in vivo. Results 5-AZA and TSA inhibited the proliferation and viability of NCI-H1975 and NCI-H1299 cells. Their joint application significantly influenced the expression of key molecules in AKT signaling pathway in vitro, and inhibited the growth of xenograft tumors in vivo. Furthermore, TSA and 5-AZA decreased the tumorigenic ability of NCI-H1975 cells in vivo. Conclusion The decreased cell viability and tumorigenic ability, as well as increased anti-oncogene expression following the joint application of 5-AZA and TSA, make these epigenetic inhibitors prospective therapeutic agents for lung cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wei Yin
- Key Laboratory of Oral Biomedical Engineering of Ministry of Education, Hospital of Stomatology, School of Stomatology, Wuhan University, Wuhan, China
| | - Fengying Wu
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Tomasetti M, Amati M, Neuzil J, Santarelli L. Circulating epigenetic biomarkers in lung malignancies: From early diagnosis to therapy. Lung Cancer 2017; 107:65-72. [DOI: 10.1016/j.lungcan.2016.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/20/2016] [Accepted: 05/29/2016] [Indexed: 12/18/2022]
|
15
|
Epigenetic basis of cancer health disparities: Looking beyond genetic differences. Biochim Biophys Acta Rev Cancer 2017; 1868:16-28. [PMID: 28108348 DOI: 10.1016/j.bbcan.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Despite efforts at various levels, racial health disparities still exist in cancer patients. These inequalities in incidence and/or clinical outcome can only be explained by a multitude of factors, with genetic basis being one of them. Several investigations have provided convincing evidence to support epigenetic regulation of cancer-associated genes, which results in the differential transcriptome and proteome, and may be linked to a pre-disposition of individuals of certain race/ethnicity to early or more aggressive cancers. Recent technological advancements and the ability to quickly analyze whole genome have aided in these efforts, and owing to their relatively easy detection, methylation events are much well-characterized, than the acetylation events, across human populations. The early trend of investigating a pre-determined set of genes for differential epigenetic regulation is paving way for more unbiased screening. This review summarizes our current understanding of the epigenetic events that have been tied to the racial differences in cancer incidence and mortality. A better understanding of the epigenetics of racial diversity holds promise for the design and execution of novel strategies targeting the human epigenome for reducing the disparity gaps.
Collapse
|
16
|
Wang XZ, Cheng Y, Wang KL, Liu R, Yang XL, Wen HM, Chai C, Liang JY, Wu H. Peperomin E reactivates silenced tumor suppressor genes in lung cancer cells by inhibition of DNA methyltransferase. Cancer Sci 2016; 107:1506-1519. [PMID: 27501331 PMCID: PMC5084666 DOI: 10.1111/cas.13029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
Advanced lung cancer has poor prognosis owing to its low sensitivity to current chemotherapy agents. Therefore, discovery of new therapeutic agents is urgently needed. In this study, we investigated the antitumor effects of peperomin E, a secolignan isolated from Peperomia dindygulensis, a frequently used Chinese folk medicine for lung cancer treatment. The results indicate that peperomin E has antiproliferative effects, promoting apoptosis and cell cycle arrest in non‐small‐cell lung cancer (NSCLC) cell lines in a dose‐dependent manner, while showing lower toxicity against normal human lung epidermal cells. Peperomin E inhibited tumor growth in A549 xenograft BALB/c nude mice without significant secondary adverse effects, indicating that it may be safely used to treat NSCLC. Furthermore, the mechanisms underlying the anticancer effects of peperomin E have been investigated. Using an in silico target fishing method, we observed that peperomin E directly interacts with the active domain of DNA methyltransferase 1 (DNMT1), potentially affecting its genome methylation activity. Subsequent experiments verified that peperomin E decreased DNMT1 activity and expression, thereby decreasing global methylation and reactivating the epigenetically silenced tumor suppressor genes including RASSF1A,APC,RUNX3, and p16INK4, which in turn activates their mediated pro‐apoptotic and cell cycle regulatory signaling pathways in lung cancer cells. The observations herein report for the first time that peperomin E is a potential chemotherapeutic agent for NSCLC. The anticancer effects of peperomin E may be partly attributable to its ability to demethylate and reactivate methylation‐silenced tumor suppressor genes through direct inhibition of the activity and expression of DNMT1.
Collapse
Affiliation(s)
- Xin-Zhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kui-Long Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Lin Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Mei Wen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuan Chai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Yu Liang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
17
|
Duppel U, Woenckhaus M, Schulz C, Merk J, Dietmaier W. Quantitative detection of TUSC3 promoter methylation -a potential biomarker for prognosis in lung cancer. Oncol Lett 2016; 12:3004-3012. [PMID: 27698890 PMCID: PMC5038372 DOI: 10.3892/ol.2016.4927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/17/2016] [Indexed: 11/06/2022] Open
Abstract
Aberrant promoter methylation of tumor relevant genes frequently occurs in early steps of carcinogenesis and during tumor progression. Epigenetic alterations could be used as potential biomarkers for early detection and for prediction of prognosis and therapy response in lung cancer. The present study quantitatively analyzed the methylation status of known and potential gatekeeper and tumor suppressor genes [O-6-methylguanine-DNA methyltransferase (MGMT), Ras association domain family member 1A (RASSF1A), Ras protein activator like 1 (RASAL1), programmed cell death 4 (PDCD4), metastasis suppressor 1 (MTSS1) and tumor suppressor candidate 3 (TUSC3)] in 42 lung cancers and in corresponding non-malignant bronchus and lung tissue using bisulfite-conversion independent methylation-quantification of endonuclease-resistant DNA (MethyQESD). Methylation status was associated with clinical and pathological parameters. No methylation was found in the promoter regions of PDCD4 and MTSS1 of either compartment. MGMT, RASSF1A and RASAL1 showed sporadic (up to 26.2%) promoter methylation. The promoter of TUSC3, however, was frequently methylated in the tumor (59.5%), benign bronchus (67.9%) and alveolar lung (31.0%) tissues from each tumor patient. The methylation status of TUSC3 was significantly associated with smaller tumor size (P=0.008) and a longer overall survival (P=0.013). Pooled blood DNA of healthy individuals did not show any methylation of either gene. Therefore, methylation of TUSC3 shows prognostic and pathobiological relevance in lung cancer. Furthermore, quantitative detection of TUSC3 promoter methylation appears to be a promising tool for early detection and prediction of prognosis in lung cancer. However, additional studies are required to confirm this finding.
Collapse
Affiliation(s)
- Uta Duppel
- Institute of Pathology, University of Regensburg, D-93053 Regensburg, Bavaria, Germany
| | | | - Christian Schulz
- Department of Internal Medicine II, University Hospital Regensburg, D-93053 Regensburg, Bavaria, Germany
| | - Johannes Merk
- Department of Thoracic Surgery, University Hospital Regensburg, D-93053 Regensburg, Bavaria, Germany
| | - Wolfgang Dietmaier
- Institute of Pathology, University of Regensburg, D-93053 Regensburg, Bavaria, Germany
| |
Collapse
|
18
|
Guo Q, Wang HB, Li YH, Li HF, Li TT, Zhang WX, Xiang SS, Sun ZQ. Correlations of Promoter Methylation in WIF-1, RASSF1A, and CDH13 Genes with the Risk and Prognosis of Esophageal Cancer. Med Sci Monit 2016; 22:2816-24. [PMID: 27506957 PMCID: PMC4982528 DOI: 10.12659/msm.896877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background This study was designed to explore the correlations of promoter methylation in Wnt inhibitory factor-1 (WIF-1), ras-association domain family member 1A (RASSF1A), and Cadherin 13 (CDH13) genes with the risk and prognosis of esophageal cancer (EC). Material/Methods A total of 71 EC tissues from resection and 35 adjacent normal tissues were collected. Methylation status in the promoter region was detected by methylation- and non-methylation-specific primers. Corresponding mRNA levels were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Correlations between the methylations of these 3 genes and clinicopathologic characteristics were analyzed. Kaplan-Meier method and Cox regression model were used to investigate the relationships between WIF-1, RASSF1A, and CDH13 promoter methylations and the prognosis of EC. Results Compared with adjacent normal tissues, the methylation frequencies of WIF-1, RASSF1A, and CDH13 genes were significantly higher but the mRNA levels of these 3 genes were significantly lower in EC tissues (all P<0.05). WIF-1 and CDH13 promoter methylations were associated with the degree of tumor differentiation and WIF-1 and RASSF1A promoter methylations were associated with age (all P<0.05). The survival rates of patients with WIF-1, RASSF1A, and CDH13 methylations were significantly lower than those of patients without methylation (all P<0.05). WIF-1, RASSF1A, and CDH13 promoter methylations were independent risk factors affecting the prognosis of EC (all P<0.05). Conclusions WIF-1, RASSF1A, and CDH13 promoter methylations are associated with EC. The methylation levels are negatively related with the prognosis in EC.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Hai-Bo Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Yong-Hui Li
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - He-Fei Li
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Ting-Ting Li
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Wen-Xue Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Sha-Sha Xiang
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Zhen-Qing Sun
- Department of Thoracic Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| |
Collapse
|
19
|
Di Paolo A, Del Re M, Petrini I, Altavilla G, Danesi R. Recent advances in epigenomics in NSCLC: real-time detection and therapeutic implications. Epigenomics 2016; 8:1151-67. [PMID: 27479016 DOI: 10.2217/epi.16.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSCLC is an aggressive disease with one of the poorer prognosis among cancers. The disappointing response to chemotherapy drives the search for genetic biomarkers aimed at both attaining an earlier diagnosis and choosing the most appropriate chemotherapy. In this scenario, epigenomic markers, such as DNA methylation, histone acetylation and the expression of noncoding RNAs, have been demonstrated to be reliable for the stratification of NSCLC patients. Newest techniques with increased sensitivity and the isolation of nucleic acids from plasma may allow an early diagnosis and then monitoring the efficacy over time. However, prospective confirmatory studies are still lacking. This article presents an overview of the epigenetic markers evaluated in NSCLC and discusses the role of their real-time detection in the clinical management of the disease.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Marzia Del Re
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Giuseppe Altavilla
- Department of Human Pathology, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Romano Danesi
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
20
|
MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively. Clin Exp Metastasis 2016; 33:359-72. [PMID: 26913720 PMCID: PMC4799803 DOI: 10.1007/s10585-016-9783-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/17/2016] [Indexed: 11/01/2022]
Abstract
MicroRNAs have been identified as key players in the development and progression of osteosarcoma, which is the most common primary malignancy of bone. Sequencing-based miR-omic and quantitative real-time PCR analyses suggested that the expression of miR-193a-3p and miR-193a-5p was decreased by DNA methylation at their promoter region in a highly metastatic osteosarcoma cell line (MG63.2) relative to their expression in the less metastatic MG63 cell line. Further wound-healing and invasion assays demonstrated that both miR-193a-3p and miR-193a-5p suppressed osteosarcoma cell migration and invasion. Moreover, introducing miR-193a-3p and miR-193a-5p mimics into MG63.2 cells or antagomiRs into MG63 cells confirmed their critical roles in osteosarcoma metastasis. Additionally, bioinformatics prediction along with biochemical assay results clearly suggested that the secretory small GTPase Rab27B and serine racemase (SRR) were direct targets of miR-193a-3p and miR-193a-5p, respectively. These two targets are indeed involved in the miR-193a-3p- and miR-193a-5p-induced suppression of osteosarcoma cell migration and invasion. MiR-193a-3p and miR-193a-5p play important roles in osteosarcoma metastasis through down-regulation of the Rab27B and SRR genes and therefore may serve as useful biomarkers for the diagnosis of osteosarcoma and as potential candidates for the treatment of metastatic osteosarcoma.
Collapse
|
21
|
Wei H, Fang N, Guo L, Wu Z, Zhou Q. [Meta-analysis of the Association between RASSF1A Gene Promoter Methylation and Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 18:443-50. [PMID: 26182870 PMCID: PMC6000249 DOI: 10.3779/j.issn.1009-3419.2015.07.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE The CpG island aberrant promoter methylation in the tumor suppressor gene region plays an important role in the process of tumorigenesis. Relevant evidence shows that the promoter methylation of RAS association domain family 1A (RASSF1A) gene, a tumor suppressor gene, has a close relationship with non-small cell lung cancer (NSCLC) development; therefore, RASSF1A may be a potential NSCLC biomarker. This paper discussed and summarized the relationship between RASSF1A gene promoter methylation frequency and NSCLC through meta-analysis. METHODS By searching Medline, EMBASE, CNKI, and Wanfang database, we selected and collected the published articles regarding RASSF1A gene promoter methylation and NSCLC risk according to the marked inclusion and exclusion criteria. Through meta-analysis, combined odds ratio (OR) and 95% confidence interval (CI) data were used to analyze the RASSF1A gene promoter methylation and NSCLC relationship. RESULTS A total of 23 articles were utilized in this study. Results indicated that the RASSF1A gene promoter methylation rate was 41.50% (95%CI: 34%-49%) in NSCLC tissue and was 5.58% (95%CI: 2%-9%) for the control group. Compared with normal lung tissue, RASSF1A methylation frequency in tumor tissue was significantly higher than that of the control group (OR=8.72, 95%CI: 4.88-15.58, P<0.05). Subgroup analysis showed that the RASSF1A gene promoter methylation rate of tumor tissue was higher than that of plasma group (OR=10.99, 95%CI: 2.48-48.68) and normal control tissue group (OR=8.74, 95%CI: 4.39-17.41). CONCLUSIONS The rate of RASSF1A promoter gene methylation in NSCLC patient tissue samples was higher than that of normal lung samples, whereas the rate of RASSF1A promoter gene methylation in the tissue has more significant effect on lung cancer occurrence. This finding indicates that RASSF1A gene promoter methylation could be used as an NSCLC biomarker and was involved in NSCLC carcinogenic effects.
Collapse
Affiliation(s)
- Huijun Wei
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Nianzhen Fang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Lili Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Zhihao Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| |
Collapse
|
22
|
Xuan F, Huang M, Liu W, Ding H, Yang L, Cui H. Homeobox C9 suppresses Beclin1-mediated autophagy in glioblastoma by directly inhibiting the transcription of death-associated protein kinase 1. Neuro Oncol 2015; 18:819-29. [PMID: 26582930 DOI: 10.1093/neuonc/nov281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/16/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcription factor homeobox C9 (HOXC9) plays a crucial role in developmental regulatory systems, where it determines the specific positional identities of cells along the anteroposterior axis. The expression of HOXC9 has been found to be dysregulated in some cancers such as lung cancer, breast cancer, and neuroblastoma. Here, we report for the first time that HOXC9 is a novel autophagy regulator and reveal its oncogenic role in cell survival and its usefulness as a prognostic marker in glioblastoma patients. METHODS Kaplan-Meier analysis was performed to evaluate the possible prognostic value of HOXC9 in glioblastoma. Growth curve assays, subcutaneous, and orthotopic implantations were used to analyze cell viability and tumor formation, respectively. Luciferase and chromatin immunoprecipitation assays were employed to explore the mechanisms involved in the association between HOXC9 and its downstream effector, death-associated protein kinase 1 (DAPK1). RESULTS High expression of HOXC9 was found to be an indicator of a poor prognosis in glioblastoma. HOXC9 knockdown resulted in a significant reduction of cell viability, migration, invasion, and tumorigenicity and a marked increase in autophagy. During the autophagy process, HOXC9 inhibited DAPK1 transcription by directly binding to its promoter. The downregulation of HOXC9 releases its transcriptional inhibition of DAPK1, resulting in the activation of the DAPK1-Beclin1 pathway, which induces autophagy in glioblastoma cells. CONCLUSIONS Collectively, our data indicate that HOXC9 is an oncogene in glioblastoma. We have revealed its role in the control of autophagy, and we suggest that HOXC9 is a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Wen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Hanfei Ding
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China (F.X., M.H., W.L., L.Y., H.C.); Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia (H.D.)
| |
Collapse
|
23
|
Molecular genetic approaches in the diagnosis of lung cancer. КЛИНИЧЕСКАЯ ПРАКТИКА 2015. [DOI: 10.17816/clinpract83261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It is an acute problem for the 21st century to find effective and inexpensive methods for early detection of lung cancer. Patients, suspected of having a malignant disease of lungs, generally undergo clinical studies such as CT scans of the chest and bronchoscopy. The latter is mainly used to confirm the diagnosis. However, even when the signs, symptoms and radiological findings indicate that clinical diagnosis of malignant lung disease is evident, additional invasive procedures for obtaining the biological material suitable for the final confirmation of the presence of malignant cells are required. Currently, there is a clear understanding of the need to find biomarkers able to detect pre-clinical stage of cancer cells using minimally invasive procedures.
Collapse
|
24
|
Huang YZ, Wu W, Wu K, Xu XN, Tang WR. Association of RASSF1A promoter methylation with lung cancer risk: a meta-analysis. Asian Pac J Cancer Prev 2015; 15:10325-8. [PMID: 25556469 DOI: 10.7314/apjcp.2014.15.23.10325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RASSF1A, regarded as a candidate tumor suppressor, is frequently silenced and inactivated by methylation of its promoter region in many human tumors. However, the association between RASSF1A promoter methylation and lung cancer risk remains unclear. To provide a more reliable estimate we conducted a meta-analysis of cohort studies to evaluate the potential role of RASSF1A promoter methylation in lung carcinogenesis. Relevant studies were identified by searches of PubMed, Web of Science, ProQest and Medline databasesusing the following key words: 'lung cancer or lung neoplasm or lung carcinoma', 'RASSF1A methylation' or 'RASSF1A hypermethylation'. According to the selection standard, 15 articles were identified and analysised by STATA 12.0 software. Combined odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of the association between RASSF1A promoter methylation and lung cancer risk. A chi-square-based Q test and sensitivity analyses were performed to test between-study heterogeneity and the contributions of single studies to the final results, respectively. Funnel plots were carried out to evaluate publication bias. Overall, a significant relationship between RASSF1A promoter methylation and lung cancer risk (OR, 16.12; 95%CI, 11.40-22.81; p<0.001) with no between-study heterogeneity. In subgroup analyses, increased risk of RASSF1A methylation in cases than controls was found for the NSCLC group (OR, 13.66, 95%CI, 9.529- 19.57) and in the SCLC group (OR, 314.85, 95%CI, 48.93-2026.2).
Collapse
Affiliation(s)
- Ying-Ze Huang
- Lab of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China E-mail :
| | | | | | | | | |
Collapse
|
25
|
Assessment of methylation status of locoregional lymph nodes in lung cancer using EBUS-NA. Clin Exp Metastasis 2015; 32:637-46. [DOI: 10.1007/s10585-015-9733-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022]
|
26
|
Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev 2015; 34:229-41. [DOI: 10.1007/s10555-015-9563-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Li Y, Zhu M, Zhang X, Cheng D, Ma X. Clinical significance of DAPK promoter hypermethylation in lung cancer: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1785-96. [PMID: 25848215 PMCID: PMC4378294 DOI: 10.2147/dddt.s78012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Death-associated protein kinase 1 (DAPK) is an important serine/threonine kinase involved in various cellular processes, including apoptosis, autophagy, and inflammation. DAPK expression and activity are deregulated in a variety of diseases including cancer. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. However, the association between DAPK promoter hypermethylation and the clinicopathological significance of lung cancer remains unclear. In this study, we searched the MEDLINE, PubMed, Web of Science, and Scopus databases, systematically investigated the studies of DAPK promoter hypermethylation in lung cancer and quantified the association between DAPK promoter hypermethylation and its clinicopathological significance by meta-analysis. We observed that the frequency of DAPK methylation was significantly higher in lung cancer than in non-malignant lung tissues (odds ratio 6.02, 95% confidence interval 3.17-11.42, P<0.00001). The pooled results also showed the presence of a prognostic impact of DAPK gene methylation in lung cancer patients (odds ratio 3.63, 95% confidence interval 1.09-12.06, P=0.04). In addition, we summarized these findings and discuss tumor suppressor function, clinicopathological significance, and potential drug targeting of DAPK in lung cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Min Zhu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Dongjun Cheng
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Xitao Ma
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
28
|
Zhai X, Li SJ. Methylation of RASSF1A and CDH13 genes in individualized chemotherapy for patients with non-small cell lung cancer. Asian Pac J Cancer Prev 2015; 15:4925-8. [PMID: 24998565 DOI: 10.7314/apjcp.2014.15.12.4925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the methylation of RASSF1A and CDH13 gene promoter regions as a marker for monitoring chemotherapeutic efficacy with personalized medicine for patients with NSCLC, in the hope of providing a new direction for NSCLC individualized chemotherapy. MATERIALS AND METHODS 42 NSCLC patients and 40 healthy controls were included. Patient blood samples were collected in the whole process of chemotherapy. Methylation of RASSF1A and CDH13 gene promoter regions was detected by the methylation specific polymerase chain reaction (MSP). RESULTS The rate of RASSF1A and CDH13 gene methylation in 42 cases of NSCLC patients was significantly higher than in 40 healthy controls (52.4% to 0.0%, 54.8% to 0.0%, p<0.05). After the chemotherapy, the hyper-methylation of RASSF1A and CDH13 genes in PR group and SD group decreased significantly (p<0.05), and was significantly different from that in PD group (p<0.05), but not as compared with healthy controls (P>0.05). With chemotherapy, RASSF1A and CDH13 promoter region methylation rate in 42 cases of patients showed a declining trend. CONCLUSIONS The methylation level of RASSF1A and CDH13 gene promoter region can reflect drug sensitivity of tumors to individualized treatment.
Collapse
Affiliation(s)
- Xu Zhai
- Clinical Laboratory Diagnostics, Graduate School, Dalian Medical University, Dalian, China E-mail :
| | | |
Collapse
|
29
|
Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of lung cancer. Transl Res 2015; 165:74-90. [PMID: 24686037 PMCID: PMC4162853 DOI: 10.1016/j.trsl.2014.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA expression, have been reported widely in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and to provide an overview of the potential translational applications of these changes, including applications for early detection, diagnosis, prognostication, and therapeutics.
Collapse
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert A Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minn
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI.
| |
Collapse
|
30
|
Lv L, Li Y, Deng H, Zhang C, Pu Y, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Zhang H, He Y, Zhu J. MiR-193a-3p promotes the multi-chemoresistance of bladder cancer by targeting the HOXC9 gene. Cancer Lett 2014; 357:105-113. [PMID: 25444900 DOI: 10.1016/j.canlet.2014.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/15/2023]
Abstract
Chemoresistance prevents the curative cancer chemotherapy and presents a formidable challenge for both cancer researchers and clinicians. We have previously shown that miR-193a-3p promotes the multi-chemoresistance of bladder cancer cells via repressing its three target genes: SRSF2, PLAU and HIC2. Here, we showed that as a new direct target, the homeobox C9 (HOXC9) gene also executes the promoting effect of miR-193a-3p on the bladder cancer chemoresistance from a systematic study of multi-chemosensitive (5637) and resistant (H-bc) bladder cancer cell lines in both cell culture and tumor-xenograft/nude mice system. Paralleled with the changes in the drug-triggered cell death, the activities of both DNA damage response and oxidative stress pathways were drastically altered by a forced reversal of miR-193a-3p or HOXC9 levels in bladder cancer cells. In addition to a new mechanistic insight, our results provide a set of the essential genes in the miR-193a-3p/HOXC9/DNA damage response/oxidative stress pathway axis as the diagnostic targets for the guided anti-bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Lei Lv
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Hui Deng
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Youguang Pu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Liting Qian
- Department of Radiotherapy, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Jun Xiao
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Gynecologic Cancer, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingwei Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongyu Zhang
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China
| | - Yinghua He
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China; Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China.
| |
Collapse
|
31
|
Promoter methylation of DAPK gene may contribute to the pathogenesis of nonsmall cell lung cancer: a meta-analysis. Tumour Biol 2014; 35:6011-20. [PMID: 24659425 DOI: 10.1007/s13277-014-1796-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/25/2014] [Indexed: 12/24/2022] Open
Abstract
We performed a meta-analysis of cohort studies to determine whether promoter methylation of the death-associated protein kinase (DAPK) gene contributes to the pathogenesis of nonsmall cell lung cancer (NSCLC). A range of electronic databases were searched: MEDLINE (1966 ∼ 2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980 ∼ 2013), CINAHL (1982 ∼ 2013), Web of Science (1945 ∼ 2013), and the Chinese Biomedical Database (CBM; 1982 ∼ 2013) without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude odds ratio (OR) with 95 % confidence interval (95 % CI) was calculated. Our meta-analysis integrated results from 12 clinical cohort studies that met all inclusion criteria with a total of 1,027 NSCLC patients. We observed that the frequency of DAPK gene methylation in cancer tissues were significantly higher than that in the adjacent normal and benign tissues (cancer tissues vs. benign tissues: OR=8.50, 95 % CI=5.88 ∼ 12.28, P<0.001; cancer tissues vs. adjacent tissues: OR=5.95, 95 % CI=4.11 ∼ 8.60, P<0.001; cancer tissues vs. normal tissues: OR=4.75, 95 % CI=3.28 ∼ 6.87, P<0.001; respectively). Subgroup analysis by ethnicity demonstrated that DAPK gene methylation was closely associated with the development and progression of NSCLC among both Asians and Caucasians (all P<0.05). Furthermore, we conducted a subgroup analysis based on sample source and discovered that DAPK gene methylation was implicated in the pathogenesis of NSCLC in both blood and tissue subgroups (all P<0.05). Our results suggest that DAPK promoter methylation may be involved in NSCLC carcinogenesis. Thus, the detection of aberrant DAPK methylation may be helpful in the diagnosis and prognosis of NSCLC.
Collapse
|
32
|
Guo S, Tan L, Pu W, Wu J, Xu K, Wu J, Li Q, Ma Y, Xu J, Jin L, Wang J. Quantitative assessment of the diagnostic role of APC promoter methylation in non-small cell lung cancer. Clin Epigenetics 2014; 6:5. [PMID: 24661338 PMCID: PMC3997934 DOI: 10.1186/1868-7083-6-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Background Adenomatous polyposis coli (APC) has been reported to be a candidate tumor suppressor in many cancers. However, the diagnostic role of APC promoter methylation in non-small cell lung cancer (NSCLC) remains unclear. We systematically integrated published articles and DNA methylation microarray data to investigate the diagnostic performance of the APC methylation test for NSCLC. Two thousand two hundred and fifty-nine NSCLC tumor samples and 1,039 controls were collected from 17 published studies and TCGA NSCLC data. The association between APC promoter methylation and NSCLC was evaluated in a meta-analysis. An independent DNA methylation microarray dataset from TCGA project, in which five CpG sites located in the promoter region of APC were involved, was used to validate the results of the meta-analysis. Results A significant association was observed between APC promoter hypermethylation and NSCLC, with an aggregated odds ratio (OR) of 3.79 (95% CI: 2.22 to 6.45) in a random effects model. Pooled sensitivity and specificity were 0.548 (95% CI: 0.42 to 0.67, P < 0.0001) and 0.776 (95% CI: 0.62 to 0.88, P < 0.0001), respectively. Each of the five CpG sites was much better in prediction (area under the curve, AUC: 0.71 to 0.73) in lung adenocarcinoma (Ad) than in lung squamous cell carcinoma (Sc) (AUC: 0.45 to 0.61). The AUCs of the logistic prediction model based on these five CpGs were 0.73 and 0.60 for Ad and Sc, respectively. Integrated analysis indicated that CpG site location, heterogeneous or autogenous controls, and the proportion of adenocarcinoma in samples were the most significant heterogeneity sources. Conclusions The methylation status of APC promoter was strongly associated with NSCLC, especially adenocarcinoma. The APC methylation test could be applied in the clinical diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Shicheng Guo
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lixing Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Weilin Pu
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Junjie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai 200433, China
| | - Kuan Xu
- Department of Head and Neck Surgery, Cancer Hospital, Fudan University, Shanghai 200032, China
| | - Jinhui Wu
- Department of General Surgery, University of Qingdao Affiliated Hospital of Medical College, Qingdao University, 1677 Wutaishan Street, Qingdao City 266071, China
| | - Qiang Li
- Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai 200433, China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jibin Xu
- Department of Cardiothoracic Surgery, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Liu WJ, Tan XH, Guo BP, Ke Q, Sun J, Cen H. Associations between RASSF1A promoter methylation and NSCLC: a meta-analysis of published data. Asian Pac J Cancer Prev 2014; 14:3719-24. [PMID: 23886171 DOI: 10.7314/apjcp.2013.14.6.3719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RASSF1A has been reported to be a candidate tumor suppressor in non-small cell lung cancer (NSCLC). However, the association between RASSF1A promoter methylation and NSCLC remains unclear, particularly in regarding links to clinicopathologic features. METHODS Eligible studies were identified through searching PubMed, EMBASE, Cochrane Library and China National Knowledge Infrastructure (CNKI) databases. Studies were pooled and odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated. Funnel plots were also performed to evaluate publication bias. RESULTS Nineteen studies involving 2,063 cases of NSCLC and 1,184 controls were included in this meta-analysis. A significant association was observed between RASSF1A methylation and NSCLC in the complete data set (OR = 19.42, 95% CI: 14.04- 26.85, P < 0.001). Pooling the control tissue subgroups (heterogeneous/autologous) gave pooled ORs of 32.4 (95% CI, 12.4-84.5) and 17.7 (95% CI, 12.5-25.0) respectively. Racial subgroup (Caucasian/Asian) analysis gave pooled ORs of 26.6 (95% CI, 10.9-64.9) and 20.9 (95% CI, 14.4-30.4) respectively. The OR for RASSF1A methylation in poorly-differentiated vs. moderately/well-differentiated NSCLC tissues was 1.88 (95% CI, 1.32- 2.68, P<0.001), whereas there were no significant differences in RASSF1A methylation in relation to gender, pathology, TNM stage and smoking behavior among NSCLC cases. CONCLUSION This meta-analysis suggests a significant association between RASSF1A methylation and NSCLC, confirming the role of RASSF1A as a tumor suppressor gene. Large-scale and well-designed case-control studies are needed to validate the associations identified in the present meta-analysis.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Department of Chemotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | | | |
Collapse
|
34
|
Gu C, Lu J, Cui T, Lu C, Shi H, Xu W, Yuan X, Yang X, Huang Y, Lu M. Association between MGMT promoter methylation and non-small cell lung cancer: a meta-analysis. PLoS One 2013; 8:e72633. [PMID: 24086261 PMCID: PMC3784462 DOI: 10.1371/journal.pone.0072633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/18/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND O(6)-methylguanine-DNA methyltransferase (MGMT) is one of most important DNA repair enzyme against common carcinogens such as alkylate and tobacco. Aberrant promoter methylation of the gene is frequently observed in non-small cell lung cancer (NSCLC). However, the importance of epigenetic inactivation of the gene in NSCLC published in the literature showed inconsistence. We quantified the association between MGMT promoter methylation and NSCLC using a meta-analysis method. METHODS We systematically reviewed studies of MGMT promoter methylation and NSCLC in PubMed, EMBASE, Ovid, ISI Web of Science, Elsevier and CNKI databases and quantified the association between MGMT promoter methylation and NSCLC using meta-analysis method. Odds ratio (OR) and corresponding 95% confidence interval (CI) were calculated to evaluate the strength of association. Potential sources of heterogeneity were assessed by subgroup analysis and meta-regression. RESULTS A total of 18 studies from 2001 to 2011, with 1, 160 tumor tissues and 970 controls, were involved in the meta-analysis. The frequencies of MGMT promote methylation ranged from 1.5% to 70.0% (median, 26.1%) in NSCLC tissue and 0.0% to 55.0% (median, 2.4%) in non-cancerous control, respectively. The summary of OR was 4.43 (95% CI: 2.85, 6.89) in the random-effects model. With stratification by potential source of heterogeneity, the OR was 20.45 (95% CI: 5.83, 71.73) in heterogeneous control subgroup, while it was 4.16 (95% CI: 3.02, 5.72) in the autologous control subgroup. The OR was 5.31 (95% CI: 3.00, 9.41) in MSP subgroup and 3.06 (95% CI: 1.75, 5.33) in Q-MSP subgroup. CONCLUSION This meta-analysis identified a strong association between methylation of MGMT gene and NSCLC. Prospective studies should be required to confirm the results in the future.
Collapse
Affiliation(s)
- Changmei Gu
- Department of Epidemiology and Biostatistics and the Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, the State Key Laboratory of Respiratory Disease, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianpen Cui
- Departments of Clinical Laboratory, Wuhan First Hospital, Wuhan, Hubei, China
| | - Cheng Lu
- Department of Anatomy, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hao Shi
- Department of Epidemiology and Biostatistics and the Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenmao Xu
- Departments of Clinical Laboratory, Wuhan First Hospital, Wuhan, Hubei, China
| | - Xueli Yuan
- Department of Epidemiology and Biostatistics and the Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yangxin Huang
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Meixia Lu
- Department of Epidemiology and Biostatistics and the Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Shao L, Wang L, Wei Z, Xiong Y, Wang Y, Tang K, Li Y, Feng G, Xing Q, He L. Dynamic network of transcription and pathway crosstalk to reveal molecular mechanism of MGd-treated human lung cancer cells. PLoS One 2012; 7:e31984. [PMID: 22693540 PMCID: PMC3365074 DOI: 10.1371/journal.pone.0031984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/16/2012] [Indexed: 01/16/2023] Open
Abstract
Recent research has revealed various molecular markers in lung cancer. However, the organizational principles underlying their genetic regulatory networks still await investigation. Here we performed Network Component Analysis (NCA) and Pathway Crosstalk Analysis (PCA) to construct a regulatory network in human lung cancer (A549) cells which were treated with 50 uM motexafin gadolinium (MGd), a metal cation-containing chemotherapeutic drug for 4, 12, and 24 hours. We identified a set of key TFs, known target genes for these TFs, and signaling pathways involved in regulatory networks. Our work showed that putative interactions between these TFs (such as ESR1/Sp1, E2F1/Sp1, c-MYC-ESR, Smad3/c-Myc, and NFKB1/RELA), between TFs and their target genes (such as BMP41/Est1, TSC2/Myc, APE1/Sp1/p53, RARA/HOXA1, and SP1/USF2), and between signaling pathways (such as PPAR signaling pathway and Adipocytokines signaling pathway). These results will provide insights into the regulatory mechanism of MGd-treated human lung cancer cells.
Collapse
Affiliation(s)
- Liyan Shao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lishan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yuyu Xiong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Kefu Tang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Qiu X, Qiao Y, Liu B, Li Y, You J, Zhou Q. [Advances of DNA methylation in early diagnosis of lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:234-41. [PMID: 22510510 PMCID: PMC5999983 DOI: 10.3779/j.issn.1009-3419.2012.04.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer-related death and thus a major health problem nowadays. No early diagnostic method is ideal up to now. Changes in DNA methylation occur on early stage of lung cancer. Detection of DNA methylation is expected to be an important method in early diagosis of lung cancer.
Collapse
Affiliation(s)
- Xiaoming Qiu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | | | | | | | |
Collapse
|
37
|
Yan DW, Fan JW, Yu ZH, Li MX, Wen YG, Li DW, Zhou CZ, Wang XL, Wang Q, Tang HM, Peng ZH. Downregulation of metallothionein 1F, a putative oncosuppressor, by loss of heterozygosity in colon cancer tissue. Biochim Biophys Acta Mol Basis Dis 2012; 1822:918-26. [PMID: 22426038 DOI: 10.1016/j.bbadis.2012.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Downregulation of metallothionein (MT) genes has been reported in several tumors with discrepant results. This study is to investigate molecular mechanism of MT gene regulation in colon cancer which is characterized by tumor suppressor gene alterations. EXPERIMENTAL DESIGN Integral analysis of microarray data with loss of heterozygosity (LOH) information was employed. Quantitative real-time PCR and immunohistochemistry were used to validate MT isoform expression in colon cancer tissues and cell lines. The effects of MT1F expression on RKO cell survival and tumorigenesis was analyzed. Bisulphite sequencing PCR (BSP) and methylation-specific PCR were employed to detect the methylation status of the MT1F gene in colon cancer tissues and cell lines. DNA sequencing was used to examine the LOH at the MT1F locus. RESULTS MT1F, MT1G, MT1X, and MT2A gene expression was significantly downregulated in colon cancer tissue (p<0.05). Exogenous MT1F expression increased RKO cell apoptosis and inhibited RKO cell migration, invasion and adhesion as well as in vivo tumorigenicity. Downregulation of MT1F gene in majority of human colon tumor tissues is mainly through mechanism by loss of heterozygosity (p=0.001) while CpG island methylation of MT1F gene promoter region was only observed in poorly differentiated, MSI-positive RKO and LoVo colon cancer cell lines. CONCLUSIONS MT1F is a putative tumor suppressor gene in colon carcinogenesis that is downregulated mainly by LOH in colon cancer tissue. Further studies are required to elucidate a possible role for MT1F downregulation in colon cancer initiation and/or progression.
Collapse
Affiliation(s)
- Dong-Wang Yan
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, 85 Wujin Road, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Quantitative analysis of multiple gene promoter methylation in Korean non-small cell lung cancer patients and its association study with cancer risk factor and survival. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Geng J, Sun J, Lin Q, Gu J, Zhao Y, Zhang H, Feng X, He Y, Wang W, Zhou X, Yu J. Methylation status of NEUROG2 and NID2 improves the diagnosis of stage I NSCLC. Oncol Lett 2012; 3:901-906. [PMID: 22741015 DOI: 10.3892/ol.2012.587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/26/2012] [Indexed: 01/09/2023] Open
Abstract
In our previous study, we attempted to develop a tool for the early diagnosis of non-small cell lung cancer (NSCLC) using DNA methylation biomarkers. With the aim of improving the diagnostic potential by optimizing the composition of the target set, in this study, 13 candidate genes (ACTA1, AIDH1A2, CBX8, CDH8, EVX1, MGC16275, NEUROG1, NEUROG2, NID2, OTX2OS1, PGAM2, PHOX2B and TOX) were analyzed by methylation-specific PCR to determine the methylation status of each gene in 5 NSCLC cell lines and in lung tissue samples from 15 healthy volunteers, 103 stage I NSCLC patients and 26 non-cancerous control patients. Results showed that NEUROG2 and NID2 were hypermethylated in stage I NSCLC tissues (31.07 and 46.60%, respectively) and unmethylated in normal lung tissues (0/15) and non-cancerous tissues (0/26). Following recombination, an optimized 5-gene panel (NEUROG2, NID2, RASSF1A, APC and HOXC9) achieved a sensitivity of 91.26% with a specificity of 84.62% in the detection of stage I NSCLC. The optimized 5-gene panel greatly improved the diagnostic power for stage I NSCLC.
Collapse
Affiliation(s)
- Junfeng Geng
- Department of General Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ma K, He Y, Zhang H, Fei Q, Niu D, Wang D, Ding X, Xu H, Chen X, Zhu J. DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression. J Biol Chem 2011; 287:5639-49. [PMID: 22117060 DOI: 10.1074/jbc.m111.291229] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chemoresistance prevents effective cancer therapy and is rarely predictable prior to treatment, particularly for hepatocellular carcinoma (HCC). Following the chemoresistance profiling of eight HCC cell lines to each of nine chemotherapeutics, two cell lines (QGY-7703 as a sensitive and SMMC-7721 as a resistant cell line to 5-fluorouracil (5-FU) treatment) were systematically studied for mechanistic insights underpinning HCC 5-FU chemoresistance. Genomic profiling at both DNA methylation and microRNA (miR) levels and subsequent mechanistic studies illustrate a new mechanism for how DNA methylation-regulated miR-193a-3p dictates the 5-FU resistance of HCC cells via repression of serine/arginine-rich splicing factor 2 (SRSF2) expression. In turn, SRSF2 preferentially up-regulates the proapoptotic splicing form of caspase 2 (CASP2L) and sensitizes HCC cells to 5-FU. Forced changes of miR-193a-3p level reverse all of the phenotypic features examined, including cell proliferation, cell cycle progression, and 5-FU sensitivity, in cell culture and in nude mice. Importantly, the siRNA-mediated repression of SRSF2 phenocopies all of the miR-193a-3p mimic-triggered changes in QGY-7703. This newly identified miR-193a-3p-SRSF2 axis highlights a new set of companion diagnostics required for optimal 5-FU therapy of HCC, which involve assaying both the DNA methylation state of the miR-193a gene and the expression of miR-193a-3p and SRSF2 and the relative level of the proapoptotic versus antiapoptotic splicing forms of caspase 2 in clinical samples.
Collapse
Affiliation(s)
- Kelong Ma
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wen J, Fu J, Zhang W, Guo M. Genetic and epigenetic changes in lung carcinoma and their clinical implications. Mod Pathol 2011; 24:932-43. [PMID: 21423157 DOI: 10.1038/modpathol.2011.46] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent advance in targeted therapy for lung cancer patients with epidermal growth factor receptor (EGFR) mutations has demonstrated a promising development toward personalized therapy for lung cancer patients. The development of lung cancer is a complex process, involving a series of genetic and epigenetic changes. Tobacco smoke is the predominant etiologic risk factor for lung cancer. However, some lung cancers, especially adenocarcinomas, arise in patients who have never smoked, suggesting the importance of host genetic/epigenetic susceptibility in the occurrence and development of lung cancer. Understanding of these genetic and epigenetic changes will further aid in the biomarker-driven personalized therapy for lung cancer patients. In this review, we summarize the genetic and epigenetic alterations observed in lung cancers, including chromosomal loss of heterozygosity, tumor-suppressor gene mutation, gene methylation, histone modification, and microRNA expression changes. Clinical and preclinical studies have implied specific genetic/epigenetic changes for clinical application in lung cancer patients. However, more efforts are required in validation of the identified molecular markers in lung cancer patients for early detections, assessment for treatment response, and survival predictions.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
42
|
Son JW, Jeong KJ, Jean WS, Park SY, Jheon S, Cho HM, Park CG, Lee HY, Kang J. Genome-wide combination profiling of DNA copy number and methylation for deciphering biomarkers in non-small cell lung cancer patients. Cancer Lett 2011; 311:29-37. [PMID: 21757291 DOI: 10.1016/j.canlet.2011.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 12/31/2022]
Abstract
Early detection of lung cancer provides the highest potential for saving lives. To date, no routine screening method enabling early detection is available, which is a key factor in the disease's high mortality rate. Copy number changes and DNA methylation alterations are good indicators of carcinogenesis and cancer prognosis. In this study, we attempted to combine profiles of DNA copy number and methylation patterns in 20 paired cancerous and noncancerous tissue samples from non-small cell lung cancer (NSCLC) patients, and we detected several clinically important genes with genetic and epigenetic relationships. Using array comparative genomic hybridization (aCGH), statistically significant differences were observed across the histological subtypes for gains at 1p31.1, 3q26.1, and 3q26.31-3q29 as well as for losses at 1p21.1, 2q33.3, 2q37.3, 3p12.3, 4q35.2, and 13q34 in squamous cell carcinoma (SQ) patients, and losses at 12q24.33 were measured in adenocarcinoma (AD) patients (p < 0.05). In an analysis of DNA methylation at 1505 autosomal CpG loci that are associated with 807 cancer-related genes, we identified six and nine loci with higher and lower DNA methylation levels, respectively, in tumor tissue compared to non-tumor lung tissues from AD patients. In addition, three loci with higher and seven loci with lower DNA methylation levels were identified in tumor tissue from SQ patients compared to non-tumor lung tissue. Subsequently, we searched for regions exhibiting concomitant hypermethylation and genomic loss in both ADs and SQs. One clone representing 7p15.2 (which includes candidate genes such as HOXA9 and HOXA11) and one target ID representing HOXA9_E252_R were detected. Quantitative real-time PCR identified the potential candidate gene HOXA9 as being down-regulated in the majority of NSCLC patients. Moreover, following HOXA9 over-expression, the invasion of representative cell lines, A549 and HCC95, were significantly inhibited. Taken together, our results show that the combined profiling analysis technique is a useful tool for identifying biomarkers in lung cancer and that HOXA9 might be a potential candidate gene for the pathogenesis and diagnosis of NSCLC patients.
Collapse
Affiliation(s)
- Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon 302-718, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ali AHK, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, Toba H, Kenzaki K, Sakiyama S, Tangoku A. Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog 2010; 50:89-99. [PMID: 21229606 DOI: 10.1002/mc.20697] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/25/2010] [Accepted: 09/28/2010] [Indexed: 12/16/2022]
Abstract
Our previous studies revealed a variety of genetic changes in lung cancers from chromate-exposed workers (chromate lung cancer). In the present study, we examined epigenetic changes in chromate lung cancers. Nested-methylation-specific PCR was employed in studying the methylation of CpG islands in the APC, MGMT, hMLH1 genes in 36 chromate lung cancers and 25 nonchromate lung cancers. Methylation in chromate lung cancers was detected at 86% for APC, 20% for MGMT, and 28% for hMLH1. Whereas, it occurred at lower frequencies in nonchromate lung cancers, particularly in APC (44%) and hMLH1 (0%) genes. Our previous study showed that methylation of p16 gene in chromate lung cancer and nonchromate lung cancer was 33% and 26%, respectively. The mean methylation index (MI), a reflection of the overall methylation status, was significantly higher in chromate lung cancers than nonchromate lung cancers (0.41 vs. 0.21, P=0.001). Methylation of multiple genes (particularly hMLH1, p16, and APC genes) had experienced more than 15 yr of chromate exposure in chromate lung cancer (MI: <15 yr; 0.19, ≥ 15 yr, 0.42). There is a significant correlation of p16 and hMLH1 methylation with the expressional decrease or loss of the corresponding gene products (P=0.037 and 0.024) respectively, and an inverse correlation between APC and MGMT methylation (P = 0.014). This study provides a novel evidence for the chromium carcinogenesis that chromate lung cancer is linked to the progressive methylation of some tumor suppressor genes, which may be related to genomic instability.
Collapse
Affiliation(s)
- Abdellah H K Ali
- Department of Respiratory Medicine, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang H, Zhang S, Zhang Z, Jia H, Gu S, Zhao D. [Prognostic value of methylation status of RASSF1A gene as an independent factor of non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:311-6. [PMID: 20677556 PMCID: PMC6000429 DOI: 10.3779/j.issn.1009-3419.2010.04.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
背景与目的 研究发现在很多肿瘤中都存在RASSF1A基因启动子区域高甲基化状态导致基因表达失活的现象,本研究就RASSF1A基因启动子的甲基化状态与非小细胞肺癌预后的关系进行探讨。 方法 采用甲基化特异的PCR检测150例非小细胞肺癌和20例肺部良性病变RASSF1A启动子甲基化状态。 结果 150例非小细胞肺癌中58例发现RASSF1A启动子存在甲基化(58/158, 38.7%),20例肺部良性病变中无一例发现RASSF1A启动子甲基化。存在RASSF1A启动子高甲基化的病例预后较未发现RASSF1A甲基化的病例差(P=0.004),Cox回归分析显示RASSF1A启动子的甲基化状态是非小细胞肺癌术后的一个预后相关因素(RR=1.584, 95%CI: 1.040-2.411, P=0.032)。 结论 MSP法检测RASSF1A启动子甲基化状态可以作为非小细胞肺癌术后的一个预后评价指标。
Collapse
Affiliation(s)
- Hui Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing 101149, China
| | | | | | | | | | | |
Collapse
|