1
|
Abooshahab R, Al-Salami H, Dass CR. Synergy between PEDF and Doxorubicin in Breast Cancer Cells: Effects on Metastatic and Metabolic Pathways. Int J Mol Sci 2024; 25:2755. [PMID: 38474001 DOI: 10.3390/ijms25052755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Pigment epithelium-derived factor (PEDF), a serine protease inhibitor (Serpin) family member, shows promise in inhibiting tumour growth. In our study, we explored the effects of PEDF on the efficacy of the frontline chemotherapy agent doxorubicin (Dox) in BC cells. We found that Dox+PEDF treatment significantly reduced glucose uptake in MDA-MB-231 cells compared to the control (p = 0.0005), PEDF (p = 0.0137), and Dox (p = 0.0171) alone but paradoxically increased it in MCF-7 cells. Our findings further revealed that PEDF, Dox, and Dox+PEDF substantially hindered tumour cell migration from tumour spheroids, with Dox+PEDF showing the most significant impact (p < 0.0001). We also observed notable decreases in the expression of metastatic markers (uPAR, uPA, CXCR4, MT1-MMP, TNF-α) across all treatment groups (p < 0.0001) in both cell lines. When it comes to metabolic pathways, PEDF increased phosphorylated IRS-1 (p-IRS1) levels in MDA-MB-231 and MCF-7 (p < 0.0001), while Dox decreased it, and the combination led to an increase. In MDA-MB-231 cells, treatment with PEDF, Dox, and the combination led to a notable decrease in both phosphorylated AKT (p-AKT) and total AKT levels. In MCF-7, while PEDF, Dox, and their combination led to a reduction in p-AKT, total levels of AKT increased in the presence of Dox and Dox+PEDF. Combining PEDF with Dox enhances the targeting of metastatic and metabolic pathways in breast cancer cell lines. This synergy, marked by PEDF's increasing roles in cancer control, may pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| |
Collapse
|
2
|
Elmi M, Dass JH, Dass CR. The Various Roles of PEDF in Cancer. Cancers (Basel) 2024; 16:510. [PMID: 38339261 PMCID: PMC10854708 DOI: 10.3390/cancers16030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a natural immunomodulator, anti-inflammatory, anti-angiogenic, anti-tumour growth and anti-metastasis factor, which can enhance tumour response to PEDF but can also conversely have pro-cancerous effects. Inflammation is a major cause of cancer, and it has been proven that PEDF has anti-inflammatory properties. PEDF's functional activity can be investigated through measuring metastatic and metabolic biomarkers that will be discussed in this review.
Collapse
Affiliation(s)
- Mitra Elmi
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Joshua H. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
3
|
Gil-Gas C, Sánchez-Díez M, Honrubia-Gómez P, Sánchez-Sánchez JL, Alvarez-Simón CB, Sabater S, Sánchez-Sánchez F, Ramírez-Castillejo C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers (Basel) 2023; 15:5422. [PMID: 38001682 PMCID: PMC10670784 DOI: 10.3390/cancers15225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies have increased the probability of remission, relapse rates remain high. Numerous studies have indicated the connection between cancer-initiating cells and slow cellular cycle cells, identified by their capacity to retain long labeling (LT+). In this study, we perform new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, percentage of biomarker-expressing cells, and carcinogenicity of cancer stem cells. The PEDF signaling pathway could be a useful tool for controlling cancer stem cells' self-renewal and therefore control patient relapse, as PEDF enhances resistance in breast cancer patient cells' in vitro culture. We have designed a peptide consisting of the C-terminal part of this protein, which acts by blocking endogenous PEDF in cell culture assays. We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against docetaxel treatment in cancer patient cells in in vitro culture. We have also demonstrated that this modified PEDF protein produces a significant decrease in the percentage of expressed cancer stem cell markers.
Collapse
Affiliation(s)
- Carmen Gil-Gas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Marta Sánchez-Díez
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paloma Honrubia-Gómez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Jose Luis Sánchez-Sánchez
- Oncology Unit, Hospital General de Almansa, 02640 Albacete, Spain;
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Carmen B. Alvarez-Simón
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastia Sabater
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Francisco Sánchez-Sánchez
- Laboratory of Medical Genetic, Faculty of Medicine, Instituto de Investigaciones en Discapacidades Neurológicas (IDINE), University of Castilla La-Mancha, 02006 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Oncology Group, Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| |
Collapse
|
4
|
Abooshahab R, Hooshmand K, Salami HA, Dass CR. The Impact of Pigment-Epithelium-Derived Factor on MCF-7 Cell Metabolism in the Context of Glycaemic Condition. Pharmaceutics 2023; 15:2140. [PMID: 37631354 PMCID: PMC10459545 DOI: 10.3390/pharmaceutics15082140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Studies have demonstrated that pigment-epithelium-derived factor (PEDF) is a robust inhibitor of tumour growth and development, implying that this may serve as a promising target for therapeutic intervention. However, the precise impact of PEDF on cancerous cell metabolic pathways remains uncertain despite ongoing research. In this light, this study aimed to employ a metabolomics approach for understanding the metabolic reprogramming events in breast cancer across different glycaemic loads and their response to PEDF. Gas chromatography-quadrupole mass spectrometry (GC/Q-MS) analysis revealed metabolic alterations in ER+ human cell line MCF-7 cells treated with PEDF under varying glycaemic conditions. The identification of significantly altered metabolites was accomplished through MetaboAnalyst (v.5.0) and R packages, which enabled both multivariate and univariate analyses. Out of the 48 metabolites identified, 14 were chosen based on their significant alterations in MCF-7 cells under different glycaemic conditions and PEDF treatment (p < 0.05, VIP > 0.8). Dysregulation in pathways associated with amino acid metabolism, intermediates of the TCA cycle, nucleotide metabolism, and lipid metabolism were detected, and they exhibited different responses to PEDF. Our results suggest that PEDF has a diverse influence on the metabolism of MCF-7 cells in both normo- and hyperglycaemic environments, thereby warranting studies using patient samples to correlate our findings with clinical response in the future.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (R.A.); (H.-A.S.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Kourosh Hooshmand
- System Medicine, Steno Diabetes Center Copenhagen, 2730 Copenhagen, Denmark;
| | - Hani-Al Salami
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (R.A.); (H.-A.S.)
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Bentley, WA 6102, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (R.A.); (H.-A.S.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
5
|
Brook N, Dharmarajan A, Chan A, Dass CR. Potential therapeutic role for pigment epithelium-derived factor in post-menopausal breast cancer bone metastasis. J Pharm Pharmacol 2023:7146711. [PMID: 37116213 DOI: 10.1093/jpp/rgad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVES This review discusses key oestrogens associated with the circulating pre- and post-menopausal milieu and how they may impact intratumoral oestrogen levels and breast cancer (BC) metastasis. It also identifies critical steps in BC metastasis to bone from the viewpoint of pigment epithelium-derived factor (PEDF) function, and discusses the role of several associated pro-metastatic biomarkers in BC bone metastasis. KEY FINDINGS PEDF is regulated by oestrogen in a number of oestrogen-sensitive tissues. Changes in circulating oestrogen levels associated with menopause may enhance the growth of BC bone metastases, leading to the establishment of a pre-metastatic niche. The establishment of such a pre-metastatic niche is driven by several key mediators, with pro-osteoclastic and pro-metastatic function which are upregulated by BC cells. These mediators appear to be regulated by oestrogen, as well as differentially affected by menopausal status. PEDF interacts with several pro-metastatic, pro-osteoclastic biomarkers, including C-X-C motif chemokine receptor 4 (CXCR4) and nuclear factor kappa B (NFκB) in BC bone metastasis. CONCLUSION Mediators such as CXCR4 and MT1-MMP underpin the ability of PEDF to function as an antimetastatic in other cancers such as osteosarcoma, highlighting the possibility that this serpin could be used as a therapeutic against BC metastasis in future.
Collapse
Affiliation(s)
- Naomi Brook
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Arun Dharmarajan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands 6009, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| |
Collapse
|
6
|
Metabolomics Profiling Reveals the Role of PEDF in Triple-Negative Breast Cancer Cell MDA-MB-231 under Glycaemic Loading. Pharmaceutics 2023; 15:pharmaceutics15020543. [PMID: 36839865 PMCID: PMC9962752 DOI: 10.3390/pharmaceutics15020543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein that belongs to the serine protease inhibitor (serpin) family. An increase in PEDF activity has been shown to be a potent inhibitor of tumour progression and proliferation, suggesting a possible therapeutic target. There is still a great deal to learn about how PEDF controls metabolic pathways in breast cancer and its metastatic form. Given this, the primary purpose of this study was to use a metabolomics approach to gain a better understanding of the mechanisms driving the reprogramming of metabolic events involved in breast cancer pertaining to PEDF under various glycaemic loads. We employed gas chromatography-quadrupole mass spectrometry (GC-Q-MS) to investigate metabolic changes in the triple-negative breast cancer (TNBC) cell line MDA-MB-231 treated with PEDF under glycaemic loading. Multivariate and univariate analyses were carried out as indicative tools via MetaboAnalyst (V.5.0) and R packages to identify the significantly altered metabolites in the MDA-MB-231 cell line after PEDF exposure under glycaemic loading. A total of 61 metabolites were found, of which nine were selected to be distinctively expressed in MDA-MB-231 cells under glycaemic conditions and exhibited differential responses to PEDF (p < 0.05, VIP > 1). Abnormalities in amino acid metabolism pathways were observed. In particular, glutamic acid, glutamine, and phenylalanine showed different levels of expression across different treatment groups. The lactate and glucose-6-phosphate production significantly increased in high-glucose vs. normal conditions while it decreased when the cells were exposed to PEDF, confirming the positive influence on the Warburg effect. The TCA cycle intermediates, including malate and citric acid, showed different patterns of expression. This is an important finding in understanding the link of PEDF with metabolic perturbation in TNBC cells in response to glycaemic conditions. Our findings suggest that PEDF significantly influenced the Warburg effect (as evidenced by the significantly lower levels of lactate), one of the well-known metabolic reprogramming pathways in cancer cells that may be responsive to metabolic-targeted therapeutic strategies. Moreover, our results demonstrated that GC-MS-based metabolomics is an effective tool for identifying metabolic changes in breast cancer cells after glycaemic stress or in response to PEDF treatment.
Collapse
|
7
|
Brook N, Gill J, Chih H, Francis K, Dharmarajan A, Chan A, Dass CR. Pigment epithelium-derived factor downregulation in oestrogen receptor positive breast cancer bone metastases is associated with menopause. Mol Cell Endocrinol 2023; 559:111792. [PMID: 36309204 DOI: 10.1016/j.mce.2022.111792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) has a critical role in bone development and anti-tumour function in breast cancer (BC). As the expression and role of PEDF in BC bone metastases is unknown, we aimed to characterise PEDF in primary and metastatic BC. Subcellular PEDF localisation was semi-quantitatively analysed via immunohistochemistry in patient-matched, archived formalin-fixed paraffin-embedded primary BC and liver, lung, and decalcified bone metastases specimens. PEDF localisation was evaluated in 23 metastatic BC patients diagnosed with ER+, human epidermal growth factor receptor-2 (HER2) negative BC or TNBC. Cytoplasmic (p = 0.019) and membrane (p = 0.048) PEDF was lower in bone metastases compared to primary ER+/HER2- BC. In contrast, nuclear PEDF scores were higher in metastases compared to primary TNBC (p = 0.027), and increased membrane PEDF in metastatic tissue had improved disease-free interval (p = 0.016). Nuclear PEDF was decreased in bone metastases compared to primary ER+//HER2- BC in post-menopausal patients (p = 0.029). These novel findings indicate PEDF plays a role in clinical BC metastasis. Significantly lower PEDF levels in the post-menopausal compared to pre-menopausal setting suggests future PEDF research may have greater clinical importance in the post-menopausal ER+/HER2- BC population.
Collapse
Affiliation(s)
- Naomi Brook
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Jespal Gill
- Pathwest, Fiona Stanley Hospital, Murdoch, Australia
| | - HuiJun Chih
- Curtin School of Population Health, Curtin University, Bentley, 6102, Australia
| | - Kate Francis
- Western Diagnostic Pathology, Jandakot, 6164, Australia
| | - Arun Dharmarajan
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia; Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands, 6009, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
8
|
NFκB-Mediated Mechanisms Drive PEDF Expression and Function in Pre- and Post-Menopausal Oestrogen Levels in Breast Cancer. Int J Mol Sci 2022; 23:ijms232415641. [PMID: 36555293 PMCID: PMC9779285 DOI: 10.3390/ijms232415641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) protein regulates normal bone, with anti-tumour roles in bone and breast cancer (BC). Pre- and post-menopausal oestrogen levels may regulate PEDF expression and function in BC, though the mechanisms behind this remain unknown. In this study, in vitro models simulating pre- and post-menopausal bone microenvironments were used to evaluate if PEDF regulates pro-metastatic biomarker expression and downstream functional effects on BC cells. PEDF treatment reduced phosphorylated-nuclear factor-κB p65 subunit (p-NFκB-p65), tumour necrosis factor-α (TNFα), C-X-C chemokine receptor type-4 (CXCR4), and urokinase plasminogen activator receptor (uPAR) in oestrogen receptor (ER)+/human epidermal growth factor receptor-2 (HER2)- BC cells under post-menopausal oestrogen conditions. In triple negative BC (TNBC) cells, PEDF treatment reduced pNFκB-p65 and uPAR expression under pre-menopausal oestrogen conditions. A potential reciprocal regulatory axis between p-NFκB-65 and PEDF in BC was identified, which was BC subtype-specific and differentially regulated by menopausal oestrogen conditions. The effects of PEDF treatment and NFκB inhibition on BC cell function under menopausal conditions were also compared. PEDF treatment exhibited superior anti-viability effects, while combined PEDF and NFκB-p65 inhibitor treatment was superior in reducing BC cell colony formation in a subtype-specific manner. Lastly, immunohistochemical evaluation of p-NFκB-p65 and PEDF expression in human BC and bone metastases specimens revealed an inverse correlation between nuclear PEDF and NFκB expression in bone metastases. We propose that menopausal status is associated with a PEDF/NFκB reciprocal regulatory axis, which drives PEDF expression and anti-metastatic function in a subtype-specific manner. Altogether, our findings identify pre-menopausal TNBC and post-menopausal ER+/HER2- BC patients as target populations for future PEDF research.
Collapse
|
9
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
10
|
Shahbazi B, Arab SS, Mafakher L, Azadmansh K, Teimoori-Toolabi L. Computational assessment of pigment epithelium-derived factor as an anti-cancer protein during its interaction with the receptors. J Biomol Struct Dyn 2022:1-17. [PMID: 35510592 DOI: 10.1080/07391102.2022.2069863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a member of the serine proteinase inhibitor (serpin) with antiangiogenic, anti-tumorigenic, antioxidant, anti-atherosclerosis, antithrombotic, anti-inflammatory, and neuroprotective properties. The PEDF can bind to low-density lipoprotein receptor-related protein 6 (LRP6), laminin (LR), vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2), and ATP synthase β-subunit receptors. In this study, we aimed to investigate the structural basis of the interaction between PEDF and its receptors using bioinformatics approaches to identify the critical amino acids for designing anticancer peptides. The human ATP synthase β-subunit was predicted by homology modeling. The molecular docking, molecular dynamics (MD) simulation, and Molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) were used to study this protein-receptor complex. The molecular docking showed PEDF could bind to the Laminin and VEGFR2 much stronger than ATP synthase β-subunit, VEGFR1, and LRP6. The PEDF could effectively interact with various receptors during the simulation. The N-terminal of PEDF has an important role in the interaction with the receptors. The MM/PBSA showed the electrostatic (ΔEElec) and van der Waals interactions (ΔEVdW) contributed positively to the binding process of the complexes. The critical amino acids in the binding interaction of PEDF to its receptors in the MD simulation were determined. The interaction mode of 34-mer PEDF to laminin, VEGFR2, and LRP6 were different from VEGFR1, ATP synthase β-subunit. The 34-mer PEDF has an important role in the interaction with different receptors and these critical amino acids can be used for designing peptides for future therapeutic aims.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Malekan M, Ebrahimzadeh MA. Vascular Endothelial Growth Factor Receptors [VEGFR] as Target in Breast Cancer Treatment: Current Status in Preclinical and Clinical Studies and Future Directions. Curr Top Med Chem 2022; 22:891-920. [PMID: 35260067 DOI: 10.2174/1568026622666220308161710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/09/2022]
Abstract
Breast cancer [BC] is one of the most common cancers among women, one of the leading causes of a considerable number of cancer-related death globally. Among all procedures leading to the formation of breast tumors, angiogenesis has an important role in cancer progression and outcomes. Therefore, various anti-angiogenic strategies have developed so far to enhance treatment's efficacy in different types of BC. Vascular endothelial growth factors [VEGFs] and their receptors are regarded as the most well-known regulators of neovascularization. VEGF binding to vascular endothelial growth factor receptors [VEGFRs] provides cell proliferation and vascular tissue formation by the subsequent tyrosine kinase pathway. VEGF/VEGFR axis displays an attractive target for anti-angiogenesis and anti-cancer drug design. This review aims to describe the existing literature regarding VEGFR inhibitors, focusing on BC treatment reported in the last two decades.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Morbidelli L, Donnini S. Introduction. ANTIANGIOGENIC DRUGS AS CHEMOSENSITIZERS IN CANCER THERAPY 2022:1-28. [DOI: 10.1016/b978-0-323-90190-1.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Abooshahab R, Al-Salami H, Dass CR. The increasing role of pigment epithelium-derived factor in metastasis: from biological importance to a promising target. Biochem Pharmacol 2021; 193:114787. [PMID: 34571004 DOI: 10.1016/j.bcp.2021.114787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serpin (serine protease inhibitor) family and is a well-known potent anti-tumor factor in a variety of cancers. It has been ascertained that PEDF regulates multiple metastatic processes through various plausible mechanisms, including inhibiting angiogenesis, inducing apoptosis, stimulating extracellular matrix (ECM) degradation, and suppressing the epithelial-to-mesenchymal transition (EMT) process. Although PEDF has been recognized as an anti-metastatic marker in most studies, its role remains controversial with conflicting reports of PEDF as a metastatic marker. The emerging insights into the mechanism(s) of PEDF in tumor progression and its therapeutic effects are discussed systematically in this review, aiming to improve our understanding in the context of metastasis and drug development.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
14
|
Detection of Circulating Serum Protein Biomarkers of Non-Muscle Invasive Bladder Cancer after Protein Corona-Silver Nanoparticles Analysis by SWATH-MS. NANOMATERIALS 2021; 11:nano11092384. [PMID: 34578700 PMCID: PMC8467878 DOI: 10.3390/nano11092384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Because cystoscopy is expensive and invasive, a new method of detecting non-invasive muscular bladder cancer (NMIBC) is needed. This study aims to identify potential serum protein markers for NMIBC to improve diagnosis and to find treatment approaches that avoid disease progression to a life-threatening phenotype (muscle-invasive bladder cancer, MIBC). Here, silver nanoparticles (AgNPs, 9.73 ± 1.70 nm) as a scavenging device together with sequential window acquisition of all theoretical mass spectra (SWATH-MS) were used to quantitatively analyze the blood serum protein alterations in two NMIBC subtypes, T1 and Ta, and they were compared to normal samples (HC). NMIBC’s analysis of serum samples identified three major groups of proteins, the relative content of which is different from the HC content: proteins implicated in the complement and coagulation cascade pathways and apolipoproteins. In conclusion, many biomarker proteins were identified that merit further examination to validate their useful significance and utility within the clinical management of NMIBC patients.
Collapse
|
15
|
Wang WJ, Wang J, Ouyang C, Chen C, Xu XF, Ye XQ. Overview of serpin B9 and its roles in cancer (Review). Oncol Rep 2021; 46:190. [PMID: 34278491 DOI: 10.3892/or.2021.8141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitor B9 (serpin B9) is a member of the serine protease inhibitor superfamily, which is widely found in animals, plants and microorganisms. Serpin B9 has been reported to protect cells from the immune‑killing effect of granzyme B (GrB) released by lymphocytes. In recent years, an increasing number of studies have indicated that serpin B9 is involved in tumour apoptosis, immune evasion, tumorigenesis, progression, metastasis, drug resistance and even in maintaining the stemness of cancer stem cells (CSCs). Moreover, according to clinical studies, serpin B9 has been demonstrated to be significantly associated with the development of precancerous lesions, a poor prognosis and ineffective therapies, suggesting that serpin B9 may be a potential target for cancer treatment and an indicator of cancer diagnosis; thus, it has begun to attract increased attention from scholars. The present review concisely described the structure and biological functions of the serpin superfamily and serpin B9. In addition, related research on serpins in cancer is discussed in order to provide a comprehensive understanding of the role of serpin B9 in cancer, as well as its clinical significance for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Wang
- Department of Respiratory Diseases, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Feng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Tsuruhisa S, Matsui T, Koga Y, Sotokawauchi A, Yagi M, Yamagishi SI. Pigment epithelium-derived factor inhibits advanced glycation end product-induced proliferation, VEGF and MMP-9 expression in breast cancer cells via interaction with laminin receptor. Oncol Lett 2021; 22:629. [PMID: 34267821 DOI: 10.3892/ol.2021.12890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is one of the adipocytokines with multifaceted functions, which may serve a role in the development of various types of cardiometabolic disorders. Advanced glycation end products (AGEs) have been shown to contribute to numerous aging-associated disorders, such as cancer. However, it remains unclear whether and how PEDF exerts antitumor effects in AGE-exposed human breast cancer MCF-7 cells, and therefore this was explored in the present study. NADPH oxidase activity was measured with luciferase assay, while gene and protein expression levels were evaluated with quantitative PCR and western blot analysis, respectively. AGEs significantly increased NADPH oxidase-driven superoxide generation, cytochrome b-245 β chain (gp91phox) and receptor for AGE (RAGE) mRNA expression, proliferation, mRNA and protein expression levels of vascular endothelial growth factor (VEGF), and matrix metalloproteinase (MMP)-9 mRNA expression in MCF-7 cells, all of which were dose-dependently inhibited by PEDF. Neutralizing antibody against laminin receptor (LR-Ab) significantly blocked these beneficial effects of PEDF in AGE-exposed MCF-7 cells. Furthermore, as in AGE-treated cells, PEDF dose-dependently inhibited the NADPH oxidase-driven superoxide generation, gp91phox, RAGE and MMP-9 mRNA expression, proliferation, mRNA and protein expression levels of VEGF in non-treated control MCF-7 cells, and these effects were also reversed by LR-Ab. LR levels were not affected by the treatment with AGEs, PEDF or LR-Ab. The present study suggested that PEDF may exert antitumor effects in AGE-exposed breast cancer cells by suppressing NADPH oxidase-induced ROS generation and VEGF and MMP-9 expression via interaction with LR. Since PEDF expression is decreased in breast cancer tissues, pharmacological upregulation or restoration of PEDF may inhibit the growth and metastasis of breast cancer.
Collapse
Affiliation(s)
- Shiori Tsuruhisa
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yoshinori Koga
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Ami Sotokawauchi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| |
Collapse
|
17
|
Brook N, Brook E, Dass CR, Chan A, Dharmarajan A. Pigment Epithelium-Derived Factor and Sex Hormone-Responsive Cancers. Cancers (Basel) 2020; 12:cancers12113483. [PMID: 33238558 PMCID: PMC7700359 DOI: 10.3390/cancers12113483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Oestrogens and androgens play important roles in normal and cancerous tissue and have been shown to negatively regulate pigment epithelium-derived factor (PEDF) expression in sex hormone-responsive tumours. PEDF suppresses tumour growth and its downregulation by oestrogen is implicated in tumorigenesis, metastasis, and progression. PEDF expression is reduced in cancerous tissue of the prostate, breast, ovary, and endometrium compared to their normal tissue counterparts, with a link between PEDF downregulation and sex hormone signalling observed in pre-clinical studies. PEDF reduces growth and metastasis of tumour cells by promoting apoptosis, inhibiting angiogenesis, increasing adhesion, and reducing migration. PEDF may also prevent treatment resistance in some cancers by downregulating oestrogen receptor signalling. By interacting with components of the tumour microenvironment, PEDF counteracts the proliferative and immunosuppressive effects of oestrogens, to ultimately reduce tumorigenesis and metastasis. In this review, we focus on sex hormone regulation of PEDF's anti-tumour action in sex hormone-responsive tumours.
Collapse
Affiliation(s)
- Naomi Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA 6102, Australia; (N.B.); (E.B.)
- Curtin Health Innovation Research Institute, Bentley, WA 6102, Australia
| | - Emily Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA 6102, Australia; (N.B.); (E.B.)
- Curtin Health Innovation Research Institute, Bentley, WA 6102, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA 6102, Australia; (N.B.); (E.B.)
- Curtin Health Innovation Research Institute, Bentley, WA 6102, Australia
- Correspondence: (C.R.D.); (A.D.); Tel.: +61-8-9266-1489 (C.R.D.)
| | - Arlene Chan
- School of Medicine, Curtin University, Bentley, WA 6102, Australia;
- Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands, WA 6009, Australia
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
- Correspondence: (C.R.D.); (A.D.); Tel.: +61-8-9266-1489 (C.R.D.)
| |
Collapse
|
18
|
Wu Y, Du K, Guan W, Wu D, Tang H, Wang N, Qi J, Gu Z, Yang J, Ding J. A novel definition of microvessel density in renal cell carcinoma: Angiogenesis plus vasculogenic mimicry. Oncol Lett 2020; 20:192. [PMID: 32952661 PMCID: PMC7479517 DOI: 10.3892/ol.2020.12054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023] Open
Abstract
The present study proposed the novel concept of total microvessel density (TMVD), which is the combination of the MVD and the vasculogenic mimicry (VM) status, and evaluated its clinical significance in patients with renal cell carcinoma (RCC). For that purpose, tumor samples from 183 patients with primary RCC were examined by CD34 single or periodic acid Schiff (PAS)/CD34 dual histology staining. MVD and VM were determined according to previous literature. Clinical information (tumor stage and grade, and duration of survival) was retrieved and analyzed. Survival information and VM-associated gene expression data of patients with RCC were also retrieved from The Cancer Genome Atlas (TCGA) database and the clinical significance of each individual gene was analyzed. The results indicated that MVD exhibited obvious differences among patients with RCC; however, it was not correlated with the stage/grade or length of survival in patients with RCC. In total, 81 patients (44.3%) were CD34(−)/PAS(+) and defined as VM(+), and they had a significantly shorter survival compared with that of VM(−) patients (P=0.0002). VM was not associated with MVD. TMVD was able to distinguish between patients with high and low MVD in terms of survival, thus TMVD was better compared with MVD alone at distinguishing between patients with different survival prognoses. TCGA data analysis revealed that among the VM-associated genes, nodal growth differentiation factor, caspase-3, matrix metalloproteinase-9 and galectin-3 had a statistically significant impact on the overall/disease-free survival of patients with RCC. In conclusion, the TMVD concept may be more appropriate and sensitive compared with the MVD or VM alone in predicting tumor aggressiveness and patient survival, particularly in RCC, which is a highly vascularized, VM-rich neoplasm, and certain VM formation-associated genes are negatively associated with the survival of patients with RCC.
Collapse
Affiliation(s)
- Yanyuan Wu
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Kun Du
- Department of Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Wenbin Guan
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Di Wu
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Haixiao Tang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Ning Wang
- Department of Urology, The People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Zhengqin Gu
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Junyao Yang
- Department of Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| | - Jie Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
19
|
Yamagishi SI, Koga Y, Sotokawauchi A, Hashizume N, Fukahori S, Matsui T, Yagi M. Therapeutic Potential of Pigment Epithelium-derived Factor in Cancer. Curr Pharm Des 2020; 25:313-324. [PMID: 30892156 DOI: 10.2174/1381612825666190319112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is one of the serine protease inhibitors with multifunctional properties, which is produced by various types of organs and tissues. There is an accumulating body of evidence that PEDF plays an important role in the maintenance of tissue homeostasis. Indeed, PEDF not only works as an endogenous inhibitor of angiogenesis, but also suppresses oxidative stress, inflammatory and thrombotic reactions in cell culture systems, animal models, and humans. Furthermore, we, along with others, have found that PEDF inhibits proliferation of, and induces apoptotic cell death in, numerous kinds of tumors. In addition, circulating as well as tumor expression levels of PEDF have been inversely associated with tumor growth and metastasis. These observations suggest that supplementation of PEDF proteins and/or enhancement of endogenous PEDF expression could be a novel therapeutic strategy for the treatment of cancer. Therefore, in this paper, we review the effects of PEDF on diverse types of cancer, and discuss its therapeutic perspectives.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Koga
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan.,Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ami Sotokawauchi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
20
|
Impact of pigment epithelium-derived factor on colorectal cancer in vitro and in vivo. Oncotarget 2018; 9:19192-19202. [PMID: 29721193 PMCID: PMC5922387 DOI: 10.18632/oncotarget.24953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/14/2018] [Indexed: 01/18/2023] Open
Abstract
Pigment epithelial derived factor (PEDF) is a secreted glycoprotein that is a non-inhibitory member of the serine protease inhibitor (serpin) family. PEDF exhibits multiple biological properties including neuroprotective, anti-angiogenic, and immune-modulating. Interestingly, PEDF exerts the inhibitory effects in cancers derived from certain tissues, including prostatic, ovarian, and pancreatic carcinomas. The current study aimed to elucidate its role in colorectal cancer development. PEDF expression in human colorectal cancer tissue was assessed using quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC). The effect of treatment with recombinant PEDF on cellular function was examined using in vitro functional assays. PEDF expression was downregulated in colorectal cancer cell tissue. Treatment with recombinant PEDF resulted in significant decreases in the rate of colorectal cancer cell migration and invasion and an increase in cellular adhesion in colorectal cancer cell lines examined. These results indicate that upregulation of PEDF expression may serve as a new strategy for further investigation of therapeutic relevance to the prevention of the metastatic spread of colorectal cancer.
Collapse
|
21
|
Niu S, Zhu Q, Jiang Y, Zhu J, Xiao M, You S, Zhou W, Xiao Y. Correlations Among Ultrasound-Guided Diffuse Optical Tomography, Microvessel Density, and Breast Cancer Prognosis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:833-842. [PMID: 29048710 DOI: 10.1002/jum.14416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To investigate the correlation among ultrasound-guided diffuse optical tomography (DOT), microvessel density, and breast cancer prognosis. METHODS Before surgery, the total hemoglobin (Hb) concentrations of 184 female patients with breast cancer with only a single lesion were measured. During follow-up, 23 patients had recurrence or metastatic disease after surgery. Among these patients, 18 with recurrence or metastatic disease within 3 years after surgery were paired with 18 patients without recurrence or metastatic disease. We retrospectively reviewed the pathologic sections of those 36 patients, conducted immunohistochemical staining, and counted the microvessel densities. Then we analyzed the correlation between microvessel density and total Hb, compared total Hb and microvessel density among breast cancers with different prognoses, and tested the value of DOT in predicting the prognosis of breast cancer. RESULTS Microvessel density and total Hb were linearly correlated (r = 0.584; P < .001). Total Hb and microvessel density were significantly increased in the metastasis group (P = .001 and .027, respectively). A receiver operating characteristic curve analysis showed that at a total Hb cutoff value of 221.7 μmol/L, the sensitivity, specificity, and area under the curve of DOT for predicting recurrence or metastasis were 0.826, 0.516, and 0.660, respectively. CONCLUSIONS The total Hb concentration can reflect a tumor's blood supply. Patients with a high total Hb concentration and microvessel density have a higher risk for a poorer prognosis. Total Hb can be used as an indicator of breast cancer prognosis. Diffuse optical tomography can help physicians identify patients with a high risk of metastasis and make clinical decisions.
Collapse
Affiliation(s)
- Sihua Niu
- Departments of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingli Zhu
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuxin Jiang
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Zhu
- Departments of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengsu Xiao
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanshan You
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weixun Zhou
- Department of Ultrasound, Peking University People's Hospital, Beijing, China
| | - Yu Xiao
- Department of Ultrasound, Peking University People's Hospital, Beijing, China
| |
Collapse
|
22
|
Di Paolo V, Russo I, Boldrini R, Ravà L, Pezzullo M, Benedetti MC, Galardi A, Colletti M, Rota R, Orlando D, Crocoli A, Peinado H, Milano GM, Di Giannatale A. Evaluation of Endoglin (CD105) expression in pediatric rhabdomyosarcoma. BMC Cancer 2018; 18:31. [PMID: 29304781 PMCID: PMC5755407 DOI: 10.1186/s12885-017-3947-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The Intratumoral Microvessel Density (IMVD) is commonly used to quantify tumoral vascularization and is usually assessed by pan-endothelial markers, such as CD31. Endoglin (CD105) is a protein predominantly expressed in proliferating endothelium and the IMVD determined by this marker measures specifically the neovascularization. In this study, we investigated the CD105 expression in pediatric rhabdomyosarcoma and assessed the neovascularization by using the angiogenic ratio IMVD-CD105 to IMVD-CD31. METHODS Paraffin-embedded archival tumor specimens were selected from 65 pediatric patients affected by rhabdomyosarcoma. The expression levels of CD105, CD31 and Vascular Endothelial Growth Factor (VEGF) were investigated in 30 cases (18 embryonal and 12 alveolar) available for this study. The IMVD-CD105 to IMVD-CD31 expression ratio was correlated with clinical and pathologic features of these patients. RESULTS We found a specific expression of endoglin (CD105) in endothelial cells of all the rhabdomyosarcoma specimens analyzed. We observed a significant positive correlation between the IMVD individually measured by CD105 and CD31. The CD105/CD31 expression ratio was significantly higher in patients with lower survival and embryonal histology. Indeed, patients with a CD105/CD31 expression ratio < 1.3 had a significantly increased OS (88%, 95%CI, 60%-97%) compared to patients with higher values (40%, 95%CI, 12%-67%). We did not find any statistical correlation among VEGF and EFS, OS and CD105/CD31 expression ratio. CONCLUSION CD105 is expressed on endothelial cells of rhabdomyosarcoma and represent a useful tool to quantify neovascularization in this tumor. If confirmed by further studies, these results will indicate that CD105 is a potential target for combined therapies in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Virginia Di Paolo
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Ida Russo
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Renata Boldrini
- Department of Laboratories - Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Lucilla Ravà
- Clinical Epidemiology, Bambino Gesù Children’s Hospital, IRCCS, Viale Ferdinando Baldelli 41, 00146 Rome, Italy
| | - Marco Pezzullo
- Core Facilities, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Maria Chiara Benedetti
- Department of Laboratories - Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Angela Galardi
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Marta Colletti
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Rossella Rota
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Domenico Orlando
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Alessandro Crocoli
- General Pediatric and Thoracic Surgery, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Hector Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), C/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| |
Collapse
|
23
|
Umbaugh CS, Diaz-Quiñones A, Neto MF, Shearer JJ, Figueiredo ML. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model. Oncotarget 2017; 9:5958-5978. [PMID: 29464047 PMCID: PMC5814187 DOI: 10.18632/oncotarget.23236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022] Open
Abstract
Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Charles Samuel Umbaugh
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Adriana Diaz-Quiñones
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Manoel Figueiredo Neto
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Joseph J Shearer
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Helal DS, El-Guindy DM. Maspin expression and subcellular localization in invasive ductal carcinoma of the breast: Prognostic significance and relation to microvessel density. J Egypt Natl Canc Inst 2017; 29:177-183. [PMID: 29126758 DOI: 10.1016/j.jnci.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
Maspin (Mammary serine protease inhibitor) is a tumor suppressor serine. Its clinical significance and role in breast carcinoma are contradictory and inconclusive. Researches demonstrated that the function of maspin differs according to its subcellular localization. This study was conducted to investigate the expression of maspin in invasive ductal carcinoma (IDC) of the breast with special emphasis on its subcellular localization and to evaluate its prognostic role in relation to clinicopathological parameters and microvessel density (MVD) of the tumor. The expression of maspin was evaluated immunohistochemically in 45 IDC cases. The positive rate of maspin expression was 73.3%. Maspin positivity was significantly related to higher tumor grade (p value = 0.041), nodal metastasis (p value = 0.044), perineural invasion (p value = 0.047), and high CD34+MVD (p value = 0.002). Nuclear maspin was detected in 36.6% whereas cytoplasmic maspin was detected in 63.4% of maspin positive cases. A significant inverse relationship was observed between nuclear maspin and high tumor grade (p value = 0.016), and nodal metastasis (p value = 0.047). These results suggest that maspin expression has a prognostic role in breast cancer. Maspin expression is related to increased angiogenesis. Subcellular localization of maspin can strongly affect cancer prognosis. Cytoplasmic maspin relates to poor prognostic parameters whereas nuclear maspin relates to good prognostic ones.
Collapse
Affiliation(s)
- Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Dina M El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Egypt.
| |
Collapse
|
25
|
Yuan SJ, Qiao TK, Qiang JW, Cai SQ, Li RK. The value of DCE-MRI in assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas. J Ovarian Res 2017; 10:65. [PMID: 28950890 PMCID: PMC5615469 DOI: 10.1186/s13048-017-0362-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
Background To investigate dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas (EOCs). Methods 7,12-dimethylbenz[A]anthracene (DMBA) was applied to induce EOCs in situ in 46 SD rats. Conventional MRI and DCE-MRI were performed to evaluate the morphology and perfusion features of the tumors, including the time-signal intensity curve (TIC), volume transfer constant (Ktrans), rate constant (Kep), extravascular extracellular space volume ratio (Ve) and initial area under the curve (IAUC). DCE-MRI parameters were correlated with histological grade, microvascular density (MVD), vascular endothelial growth factor (VEGF) and fraction of Ki67-positive cells and the serum level of cancer antigen 125 (CA125). Results Thirty-five of the 46 rats developed EOCs. DCE-MRI showed type III TIC more frequently than type II (29/35 vs. 6/35, p < 0.001) in EOCs. The two types of TIC of tumors had significant differences in the histological grade, MVD, expression of VEGF and Ki67, and the serum level of CA125 (all p < 0.01). Ktrans, Kep and IAUC values showed significant differences in different histological grades in overall and pairwise comparisons except for IAUC in grade 2 vs. grade 3 (all p < 0.01). There was no significant difference in Ve values among the three grade groups (p > 0.05). Ktrans, Kep and IAUC values were positively correlated with MVD, VEGF and Ki67 expression (all p < 0.01). Ve was not significantly correlated with MVD, VEGF expression, Ki67 expression and the CA125 level (all p > 0.05). Conclusions TIC types and perfusion parameters of DCE-MRI can reflect tumor grade, angiogenesis and cell proliferation to some extent, thereby helping treatment planning and predicting prognosis.
Collapse
Affiliation(s)
- Su Juan Yuan
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Tian Kui Qiao
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Jin Wei Qiang
- Department of Radiology, Jinshan Hospital, Shanghai Medical College, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.
| | - Song Qi Cai
- Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Ruo Kun Li
- Department of Radiology, Jinshan Hospital, Shanghai Medical College, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| |
Collapse
|
26
|
MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol 2017. [PMID: 28629431 PMCID: PMC5477161 DOI: 10.1186/s13045-017-0493-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Brain metastasis (BM) is associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). Recent studies demonstrated that microRNA-330-3p (miR-330-3p) was involved in NSCLC brain metastasis (BM). However, the exact parts played by miR-330-3p in BM of NSCLC remain unknown. Discovery and development of biomarkers and elucidation of the mechanism underlying BM in NSCLC is critical for effective prophylactic interventions. Here, we evaluated the expression and biological effects of miR-330-3p in NSCLC cells and explored the underlying mechanism of miR-330-3p in promoting cell migration and invasion in NSCLC. Methods Stable over-expression and knockdown of miR-330-3p in NSCLC cells was constructed with lentivirus. Expression levels of miR-330-3p in NSCLC cells were quantified by quantitive real-time PCR (qRT-PCR). The effects of miR-330-3p on NSCLC cells were investigated using assays of cell viability, migration, invasion, cell cycle, apoptosis, western blotting, immunohistochemical, and immunofluorescence staining. A xenograft nude mouse model and in situ brain metastasis model were used to observe tumor growth and brain metastasis. The potential target of miR-330-3p in NSCLC cells was explored using the luciferase reporter assay, qRT-PCR, and western blotting. The miR-330-3p targets were identified using bioinformatics analysis and verified by luciferase reporter assay. The correlation between GRIA3 and DNA methyltransferase (DNMT) 1 and DNMT3A was tested by RT-PCR, western blotting, and co-immunoprecipitation (IP). Results miR-330-3p was significantly up-regulated in NSCLC cell lines. MTT assay, transwell migration, and invasion assays showed that miR-330-3p promoted the growth, migration, and invasion of NSCLC cells in vitro and induced tumor growth and metastasis in vivo. Luciferase reporter assays showed that GRIA3 was a target of miR-330-3p. qRT-PCR and western blotting exhibited that miR-330-3p promoted the growth, invasion, and migration of NSCLC cells by activating mitogen-activated protein kinase (MAPK)/extracellular-regulated protein kinases (ERK) signaling pathway. Furthermore, miR-330-3p up-regulated the total DNA methylation in NSCLC cells, and co-IP-demonstrated GRIA3 was directly related with DNMT1 and DNMT3A. Conclusions miR-330-3p promoted the progression of NSCLC and might be a potential target for the further research of NSCLC brain metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0493-0) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Lim EA, Gunther JE, Kim HK, Flexman M, Hibshoosh H, Crew K, Taback B, Campbell J, Kalinsky K, Hielscher A, Hershman DL. Diffuse optical tomography changes correlate with residual cancer burden after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 2017; 162:533-540. [PMID: 28190249 DOI: 10.1007/s10549-017-4150-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Breast cancer (BC) patients who achieve a favorable residual cancer burden (RCB) after neoadjuvant chemotherapy (NACT) have an improved recurrence-free survival. Those who have an unfavorable RCB will have gone through months of ineffective chemotherapy. No ideal method exists to predict a favorable RCB early during NACT. Diffuse optical tomography (DOT) is a novel imaging modality that uses near-infrared light to assess hemoglobin concentrations within breast tumors. We hypothesized that the 2-week percent change in DOT-measured hemoglobin concentrations would associate with RCB. METHODS We conducted an observational study of 40 women with stage II-IIIC BC who received standard NACT. DOT imaging was performed at baseline and 2 weeks after treatment initiation. We evaluated the associations between the RCB index (continuous measure), class (categorical 0, I, II, III), and response (RCB class 0/I = favorable, RCB class II/III = unfavorable) with changes in DOT-measured hemoglobin concentrations. RESULTS The RCB index correlated significantly with the 2-week percent change in oxyhemoglobin [HbO2] (r = 0.5, p = 0.003), deoxyhemoglobin [Hb] (r = 0.37, p = 0.03), and total hemoglobin concentrations [HbT] (r = 0.5, p = 0.003). The RCB class and response significantly associated with the 2-week percent change in [HbO2] (p ≤ 0.01) and [HbT] (p ≤ 0.02). [HbT] 2-week percent change had sensitivity, specificity, positive, and negative predictive values for a favorable RCB response of 86.7, 68.4, 68.4, and 86.7%, respectively. CONCLUSION The 2-week percent change in DOT-measured hemoglobin concentrations was associated with the RCB index, class, and response. DOT may help guide NACT for women with BC.
Collapse
Affiliation(s)
- Emerson A Lim
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, 161 Fort Washington Avenue, 9th Floor, New York, NY, 10032, USA.
| | - Jacqueline E Gunther
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, 341 Mudd Bldg, New York, NY, 10027, USA
| | - Hyun K Kim
- Department of Radiology, Columbia University, 650 West 168th Street, Black Building, Rm 1727, New York, NY, 10032, USA
| | - Molly Flexman
- Philips Research Americas, 2 Canal Park, 3rd Floor, Cambridge, MA, 02141, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, VC 14-215, New York, NY, 10032, USA
| | - Katherine Crew
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Bret Taback
- Department of Surgery, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Jessica Campbell
- Herbert Irving Comprehensive Cancer Center, 161 Fort Washington Avenue, Mezzanine, New York, NY, 10032, USA
| | - Kevin Kalinsky
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| | - Andreas Hielscher
- Department of Biomedical Engineering, Columbia University, Engineering Terrace 351, Mail Code 8904, New York, NY, 10027, USA
| | - Dawn L Hershman
- Division of Hematology/Oncology, Department of Medicine, Department of Epidemiology, Columbia University Medical Center, 161 Fort Washington Avenue, 10th Floor, New York, NY, 10032, USA
| |
Collapse
|
28
|
Zhou D, Zhang M, Xu P, Yu Y, Ye G, Zhang L, Wu A. Expression of pigment epithelium-derived factor is associated with a good prognosis and is correlated with epithelial-mesenchymal transition-related genes in infiltrating ductal breast carcinoma. Oncol Lett 2015; 11:116-124. [PMID: 26870178 PMCID: PMC4727170 DOI: 10.3892/ol.2015.3880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/11/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a pivotal event in the progression of cancer towards metastasis. Given that pigment epithelium-derived factor (PEDF) inhibits angiogenesis, the present study analyzed whether PEDF expression is associated with EMT and prognosis in invasive ductal breast cancer (IDC). Immunohistochemical analysis was used to examine the expression levels of PEDF, E-cadherin, vimentin, Snail and nuclear factor-κB (NF-κB) in 119 cases of IDC. Correlations between PEDF expression and EMT-related genes, and clinicopathological features and clinical prognosis were analyzed. E-cadherin, vimentin, Snail and NF-κB expression was correlated with tumor size, lymph node metastasis and clinicopathological stage. PEDF expression was closely associated with tumor size. Spearman's rank correlation analysis revealed a positive correlation between PEDF and E-cadherin, vimentin, Snail and NF-κB expression (P<0.05). Additionally, Kaplan-Meier survival analysis demonstrated that the five-year survival rate was higher for patients with PEDF- and E-cadherin-positive tumors, but was lower for those with vimentin-, Snail- and NF-κB-positive tumors. Vimentin, E-cadherin and NF-κB levels were dependent prognostic factors of favorable outcomes in IDC, as determined by Cox multivariate analysis. PEDF expression in breast cancer was significantly associated with EMT-related genes, suggesting that it may be an EMT suppressor. However, its potential as a prognostic indicator in breast cancer warrants further investigation.
Collapse
Affiliation(s)
- Dan Zhou
- Department of General Surgery, Zhujiang Hospital Affiliated to Southern Medical University, Guangzhou, Guangdong 510282, P.R. China; Department of Breast Surgery, Foshan Hospital Affiliated to Sun Yat-Sen University, The First People's Hospital of Foshan, Foshan, Guangdong 528100, P.R. China
| | - Min Zhang
- Department of Histology and Embryology, State Key Laboratory, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pengcheng Xu
- Department of Histology and Embryology, State Key Laboratory, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yang Yu
- Department of Histology and Embryology, State Key Laboratory, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guolin Ye
- Department of Breast Surgery, Foshan Hospital Affiliated to Sun Yat-Sen University, The First People's Hospital of Foshan, Foshan, Guangdong 528100, P.R. China
| | - Lin Zhang
- Department of Histology and Embryology, State Key Laboratory, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital Affiliated to Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
29
|
Hong H, Zhou T, Fang S, Jia M, Xu Z, Dai Z, Li C, Li S, Li L, Zhang T, Qi W, Bardeesi ASA, Yang Z, Cai W, Yang X, Gao G. Pigment epithelium-derived factor (PEDF) inhibits breast cancer metastasis by down-regulating fibronectin. Breast Cancer Res Treat 2014; 148:61-72. [PMID: 25284724 DOI: 10.1007/s10549-014-3154-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/24/2014] [Indexed: 11/29/2022]
Abstract
Pigment epithelium-derived factor (PEDF) plays an important role in the tumor growth and metastasis inhibition. It has been reported that PEDF expression is significantly reduced in breast cancer, and associated with disease progression and poor patient outcome. However, the exact mechanism of PEDF on breast cancer metastasis including liver and lung metastasis remains unclear. The present study aims to reveal the impact of PEDF on breast cancer. The orthotopic tumor mice model inoculated by MDA-MB-231 cells stably expressing PEDF or control cells was used to assess liver and lung metastasis of breast cancer. In vitro, migration and invasion experiments were used to detect the metastatic abilities of MDA-MB-231 and SKBR3 breast cancer cells with or without overexpression of PEDF. The metastatic-related molecules including EMT makers, fibronectin, and p-AKT and p-ERK were detected by qRT-PCR, Western blot, and Fluorescent immunocytochemistry. PEDF significantly inhibited breast cancer growth and metastasis in vivo and in vitro. Mechanically, PEDF inhibited breast cancer cell migration and invasion by down-regulating fibronectin and subsequent MMP2/MMP9 reduction via p-ERK and p-AKT signaling pathways. However, PEDF had no effect on EMT conversion in the breast cancer cells which was usually involved in cancer metastasis. Furthermore, the study showed that laminin receptor mediated the down-regulation of fibronectin by PEDF. These results reported for the first time that PEDF inhibited breast cancer metastasis by down-regulating fibronectin via laminin receptor/AKT/ERK pathway. Our findings demonstrated PEDF as a dual effector in limiting breast cancer growth and metastasis and highlighted a new avenue to block breast cancer progression.
Collapse
Affiliation(s)
- Honghai Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li Y, Li S, Sun D, Song L, Liu X. Expression of 15-hydroxyprostaglandin dehydrogenase and cyclooxygenase-2 in non-small cell lung cancer: Correlations with angiogenesis and prognosis. Oncol Lett 2014; 8:1589-1594. [PMID: 25202373 PMCID: PMC4156203 DOI: 10.3892/ol.2014.2371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/01/2014] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate the function of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and cyclooxygenase-2 (COX-2) in angiogenesis and their association with the prognosis of non-small cell lung cancer (NSCLC). Using immunohistochemical staining, the expression of 15-PGDH and COX-2, and the microvessel density (MVD) levels were evaluated in 35 NSCLC specimens. Paracancerous normal lung tissue was collected as control samples from six patients. The correlation of 15-PGDH with COX-2, clinicopathological characteristics, MVD and overall survival (OS) was studied. NSCLC tissues showed a significantly lower expression level of 15-PGDH (P=0.009) and a significantly higher expression level of COX-2 (P=0.004) compared with normal lung tissue. The expression level of 15-PGDH was negatively correlated with MVD (P<0.001) and COX-2 expression (P=0.032). A low expression level of 15-PGDH, a high expression level of COX-2 and high levels of MVD were significantly correlated with a shorter OS time (15-PGDH, P<0.0001; COX-2, P=0.038; MVD, P<0.0001). This study provided clinical evidence that a low expression level of 15-PGDH is associated with a poor prognosis in NSCLC. Furthermore, it was shown that 15-PGDH and COX-2 reciprocally regulate cancer angiogenesis, which may affect the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Ying Li
- Center of Gerontology and Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Suli Li
- National Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Linlin Song
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
31
|
Over-expression of beclin-1 in gallbladder carcinoma and its relationship with prognosis. Contemp Oncol (Pozn) 2014; 18:171-6. [PMID: 25520576 PMCID: PMC4268994 DOI: 10.5114/wo.2014.41395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 04/06/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023] Open
Abstract
AIM OF THE STUDY We determined the expression of beclin-1 in gallbladder carcinoma, analyzed the association of beclin-1 expression with clinicopathologic parameters and prognosis, and investigated the relationship between microvessel density and beclin-1 expression. MATERIAL AND METHODS Tissue microarray blocks containing 118 primary gallbladder tumor sites were used. Clinical parameters and prognostic data were collected. Expression of beclin-1 in these specimens was analyzed by immunohistochemical studies and confirmed by Western blotting. Microvessel density was counted using immunohistochemical staining. RESULTS The overall rate of over-expression of beclin-1 was 68.1% (80 of 118). Over-expression of beclin-1 was significantly associated with TNM stage and liver metastasis. Over-expression of beclin-1 has no significant relationship with age, sex, lymphatic metastasis, or tumor differentiation. Based on the Kaplan-Meier method, over-expression of beclin-1 showed no significant difference for the overall survival rate in patients with gallbladder cancer. The multivariate Cox regression analysis demonstrated that beclin-1 was not an independent prognostic factor for gallbladder cancer. CONCLUSIONS Beclin-1 might play roles in the development of gallbladder cancer. However, beclin-1 may not be an effective prognostic factor for gallbladder cancer.
Collapse
|
32
|
Gnerlich JL, Yao KA, Fitchev PS, Goldschmidt RA, Bond MC, Cornwell M, Crawford SE. Peritumoral Expression of Adipokines and Fatty Acids in Breast Cancer. Ann Surg Oncol 2013; 20 Suppl 3:S731-8. [DOI: 10.1245/s10434-013-3274-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 12/16/2022]
|
33
|
Craword SE, Fitchev P, Veliceasa D, Volpert OV. The many facets of PEDF in drug discovery and disease: a diamond in the rough or split personality disorder? Expert Opin Drug Discov 2013; 8:769-92. [PMID: 23642051 DOI: 10.1517/17460441.2013.794781] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pigment epithelium-derived factor (PEDF) was discovered as a neurotrophic factor secreted by retinal pigment epithelial cells. A decade later, it re-emerged as a powerful angiogenesis inhibitor guarding ocular function. Since then, significant advances were made identifying PEDF's mechanisms, targets and biomedical applications. AREAS COVERED The authors review several methodologies that have generated significant new information about the potential of PEDF as a drug. Furthermore, the authors review and discuss mechanistic and structure-function analyses combined with the functional mapping of active fragments, which have yielded several short bioactive PEDF peptides. Additionally, the authors present functional studies in knockout animals and human correlates that have provided important information about conditions amenable to PEDF-based therapies. EXPERT OPINION Through its four known receptors, PEDF causes a wide range of cellular events vitally important for the organism, which include survival and differentiation, migration and invasion, lipid metabolism and stem cell maintenance. These processes are deregulated in multiple pathological conditions, including cancer, metabolic and cardiovascular disease. PEDF has been successfully used in countless preclinical models of these conditions and human correlates suggest a wide utility of PEDF-based drugs. The most significant clinical application of PEDF, to date, is its potential therapeutic use for age-related macular degeneration. Moreover, PEDF-based gene therapy has advanced to early stage clinical trials. PEDF active fragments have been mapped and used to design short peptide mimetics conferring distinct functions of PEDF, which may address specific clinical problems and become prototype drugs.
Collapse
Affiliation(s)
- Susan E Craword
- St. Louis University School of Medicine, Department of Pathology, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
34
|
Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 2013; 13:258-71. [PMID: 23486238 PMCID: PMC3707632 DOI: 10.1038/nrc3484] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The potent actions of pigment epithelium-derived factor (PEDF) on tumour-associated cells, and its extracellular localization and secretion, stimulated research on this multifunctional serpin. Such studies have identified several PEDF receptors and downstream signalling pathways. Known cellular PEDF responses have expanded from the initial discovery that PEDF induces retinoblastoma cell differentiation to its anti-angiogenic, antitumorigenic and antimetastatic properties. Although the diversity of PEDF activities seems to be complex, they are consistent with the varied mechanisms that regulate this multimodal factor. If PEDF is to be used for cancer management, a deeper appreciation of its many functions and mechanisms of action is needed.
Collapse
Affiliation(s)
- S Patricia Becerra
- National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
35
|
Nelius T, Samathanam C, Martinez-Marin D, Gaines N, Stevens J, Hickson J, de Riese W, Filleur S. Positive correlation between PEDF expression levels and macrophage density in the human prostate. Prostate 2013; 73:549-61. [PMID: 23038613 PMCID: PMC3600115 DOI: 10.1002/pros.22595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/04/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND In this study, we investigated the capacity of pigment epithelium-derived factor (PEDF) to modulate the recruitment and the differentiation of monocytes/macrophages both in vitro and in human prostate. METHODS Using Boyden chambers, we assessed PEDF effect on the migration of monocytes and chemically activated RAW 264.7 macrophages. Normal, prostatitis, and prostate cancer specimens were retrospectively selected and examined by immunohistochemistry for PEDF expression and infiltration of immune CD68 + macrophagic cells. PEDF expression and macrophage density were then correlated with each other and clinicopathological parameters. M1 and M2 differentiation markers were quantified by qRT-PCR, Western blotting, and ELISA. RESULTS In chemotaxis, PEDF induced the migration of monocytes/macrophages. In immunohistochemistry, macrophages were markedly increased in prostatitis and malignant compared to normal tissues. PEDF was expressed at variable levels in the stroma and epithelium. PEDF mRNA was down-regulated in both prostate cancer and prostatitis compared to normal tissues. In correlation studies, macrophage density and PEDF expression were respectively positively and negatively associated with prostate size. Most importantly, PEDF expression positively correlated with macrophage density. Finally, PEDF stimulated the expression of iNOS, IL12, and TNFα; and inhibited IL10 and arginase 1 in mouse and human macrophages confirming a M1-type differentiation. CONCLUSIONS Our data demonstrate that PEDF acts directly on monocytes/macrophages by inducing their migration and differentiation into M1-type cells. These findings suggest a possible role of macrophages in PEDF anti-tumor properties and may support further development of PEDF-based anti-cancer therapy.
Collapse
Affiliation(s)
- Thomas Nelius
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Christina Samathanam
- The University of Texas Health Science Center at Houston, Medical School, Department of Pathology and Laboratory Medicine, Houston-TX
| | | | - Natalie Gaines
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Jessica Stevens
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Johnny Hickson
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Werner de Riese
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
| | - Stéphanie Filleur
- Texas Tech University Health Sciences Center, Department of Urology, Lubbock-TX
- Texas Tech University Health Sciences Center, Department of Immunology and Molecular Microbiology, Lubbock-TX
| |
Collapse
|
36
|
Feng CC, Wang PH, Ding Q, Guan M, Zhang YF, Jiang HW, Wen H, Wu Z. Expression of pigment epithelium-derived factor and tumor necrosis factor-α is correlated in bladder tumor and is related to tumor angiogenesis. Urol Oncol 2013; 31:241-6. [DOI: 10.1016/j.urolonc.2010.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 01/22/2023]
|
37
|
Jan R, Huang M, Lewis-Wambi J. Loss of pigment epithelium-derived factor: a novel mechanism for the development of endocrine resistance in breast cancer. Breast Cancer Res 2012; 14:R146. [PMID: 23151593 PMCID: PMC3906603 DOI: 10.1186/bcr3356] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/18/2012] [Accepted: 11/09/2012] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Despite the benefits of endocrine therapies such as tamoxifen and aromatase inhibitors in treating estrogen receptor (ER) alpha-positive breast cancer, many tumors eventually become resistant. The molecular mechanisms governing resistance remain largely unknown. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein that displays broad anti-tumor activity based on dual targeting of the tumor microenvironment (anti-angiogenic action) and the tumor cells (direct anti-tumor action). Recent studies indicate that PEDF expression is significantly reduced in several tumor types, including breast cancer, and that its reduction is associated with disease progression and poor patient outcome. In the current study, we investigated the role of PEDF in the development of endocrine resistance in breast cancer. METHODS PEDF mRNA and protein levels were measured in several endocrine-resistant breast cancer cell lines including MCF-7:5C, MCF-7:2A, and BT474 and in endocrine-sensitive cell lines MCF-7, T47D, and ZR-75-1 using real-time PCR and western blot analyses. Tissue microarray analysis and immunohistochemistry were used to assess the PEDF protein level in tamoxifen-resistant breast tumors versus primary tumors. Lentiviruses were used to stably express PEDF in endocrine-resistant breast cancer cell lines to determine their sensitivity to tamoxifen following PEDF re-expression. RESULTS We found that PEDF mRNA and protein levels were dramatically reduced in endocrine-resistant MCF-7:5C, MCF-7:2A, and BT474 breast cancer cells compared with endocrine-sensitive MCF-7, T47D, and ZR-75-1 cells, and that loss of PEDF was associated with enhanced expression of pSer167ERα and the receptor tyrosine kinase rearranged during transfection (RET). Importantly, we found that silencing endogenous PEDF in tamoxifen-sensitive MCF-7 and T47D breast cancer cells conferred tamoxifen resistance whereas re-expression of PEDF in endocrine-resistant MCF-7:5C and MCF-7:2A cells restored their sensitivity to tamoxifen in vitro and in vivo through suppression of RET. Lastly, tissue microarray studies revealed that PEDF protein was reduced in ~52.4% of recurrence tumors (31 out of 59 samples) and loss of PEDF was associated with disease progression and poor patient outcome. CONCLUSION Overall, these findings suggest that PEDF silencing might be a novel mechanism for the development of endocrine resistance in breast cancer and that PEDF expression might be a predictive marker of endocrine sensitivity.
Collapse
Affiliation(s)
- Rifat Jan
- Cancer Biology Program, The Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Min Huang
- Department of Pathology, The Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Joan Lewis-Wambi
- Cancer Biology Program, The Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
38
|
Chen LT, Xu SD, Xu H, Zhang JF, Ning JF, Wang SF. MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med Oncol 2012; 29:1673-80. [PMID: 22052152 DOI: 10.1007/s12032-011-0083-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/28/2011] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer deaths in the world. Brain metastasis (BM) can affect about 25% of non-small cell lung cancer (NSCLC) patients during their lifetime. Efforts to characterize patients that will develop BM have been disappointing. MicroRNAs (miRNAs) play a role in regulating a variety of targets and, consequently, multiple pathways, which make them a powerful tool for early detection of disease, risk assessment and prognosis. In this study, using RT-PCR and further northern blot validation, we confirmed that miR-378 was significantly differentially expressed in the matched NSCLC from 8 patients with BM and 21 without BM. Our study showed evidences that miR-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. MiR-378 may be a potential biomarker for characterizing non-small cell lung cancer brain metastasis and assisting clinicians in stratifying the high-risk patients on a clinical trial for either prophylactic cranial irradiation or a new intervention that may mitigate BM development, ultimately leading to a new standard of care for NSCLC patients.
Collapse
Affiliation(s)
- Lan-tao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, No 23 You-zheng Street, Nan-gang District, Harbin 150001, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Jang TJ, Kim SW, Lee KS. The expression of pigment epithelium-derived factor in bladder transitional cell carcinoma. KOREAN JOURNAL OF PATHOLOGY 2012; 46:261-5. [PMID: 23110012 PMCID: PMC3479768 DOI: 10.4132/koreanjpathol.2012.46.3.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/29/2022]
Abstract
Background Pigment epithelium-derived factor (PEDF) is an anti-angiogenic factor. The purpose of this study is to examine the involvement of PEDF in the angiogenesis and biological behavior of bladder transitional cell carcinoma (TCC). Methods We examined the expression of PEDF in 99 bladder TCCs and ten non-neoplastic tissues, and evaluated microvessel density (MVD). Results The positive immunoreactivity for PEDF was seen in normal urothelium in 60% (6/10) and TCC in 13% (13/99). The PEDF expression had a significant correlation with MVD, i.e., a low MVD in 42% (5/12), a middle MVD in 11% (8/76) and a high MVD 0% (0/11) of tumors. The PEDF expression was not significantly correlated with the differentiation and invasion of TCC, but the degree of MVD was significantly higher in both high grade TCC and the pT2 tumors. Conclusions The degree of PEDF expression is significantly higher in normal bladder urothelium than bladder TCC; it is inversely correlated with the angiogenesis; and it is not related to the differentiation and progression of TCC. It can therefore be concluded that bladder TCC would initially occur if there is a lack of the PEDF expression.
Collapse
Affiliation(s)
- Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, Korea
| | | | | |
Collapse
|
40
|
Seki H, Hayashida T, Jinno H, Hirose S, Sakata M, Takahashi M, Maheswaran S, Mukai M, Kitagawa Y. HOXB9 expression promoting tumor cell proliferation and angiogenesis is associated with clinical outcomes in breast cancer patients. Ann Surg Oncol 2012; 19:1831-40. [PMID: 22396001 DOI: 10.1245/s10434-012-2295-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Studies have suggested that HOXB9 expression in breast cancer cells promotes cellular invasiveness, metastatic ability, and tumor neovascularization in the surrounding tissue in in vitro and in vivo assays. These findings imply that HOXB9 overexpression may alter tumor-specific cell fates and the tumor stromal microenvironment, contributing to breast cancer progression. The objective of this study was to analyze whether these results could be applied to clinical practice. METHODS A total of 141 consecutive, invasive ductal carcinoma patients who underwent surgical treatment were examined. Immunohistochemical staining was performed to evaluate the expression of HOXB9, Ki-67, CD31, and CD34, and the association of tumor proliferation and angiogenesis with HOXB9 expression was analyzed. RESULTS Of the 141 tumor specimens immunostained for HOXB9, 69 (48.9%) stained positive. Larger primary tumor size, hormone receptor negativity, HER2 positivity, higher nuclear grade, and number of pathologic nodal metastases were significant variables associated with HOXB9 expression. Notably, 12 (92.3%) of 13 triple-negative breast cancer cases showed HOXB9 expression. Disease-free survival and overall survival were significantly different between the HOXB9-positive and HOXB9-negative groups (hazard ratio 20.714, P = 0.001; and hazard ratio 9.206, P = 0.003, respectively). Multivariate analysis indicated that HOXB9 expression was the only independent prognostic factor for disease-free survival (hazard ratio 15.532, P = 0.009). HOXB9-positive tumors showed a significant increase in the number of vasculature and the Ki-67 ratio compared with HOXB9-negative tumors. CONCLUSIONS HOXB9 expression, which promotes tumor proliferation and angiogenesis, is a significant prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Hirohito Seki
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun S, Jiang Y, Zhang G, Song H, Zhang X, Zhang Y, Liang X, Sun Q, Pang D. Increased expression of fibroblastic growth factor receptor 2 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol 2011; 105:773-9. [PMID: 22006548 DOI: 10.1002/jso.22120] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/21/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Although there is growing evidence supporting the hypothesis that fibroblast growth factor receptor 2 (FGFR2) is one of the few candidate genes linked with breast cancer susceptibility, the precise role of FGFR2 protein expression in breast cancer is still unknown. Our study examines FGFR2 protein expression in breast cancer and determines its associations with clinicopathological features and survival. METHODS Specimens from 125 invasive ductal carcinoma grade 2 (IDC2) breast cancer patients were investigated by immunohistochemistry for FGFR2 protein expression. Associations between the expression of FGFR2 and various clinicopathological features as well as survival status were studied. RESULT Cytoplasmic and nuclear FGFR2 were expressed in 64.8% and 56.8% of breast cancer patients, respectively. Cytoplasmic FGFR2 expression was significantly associated with tumor size and TNM stage. Furthermore, patients with high expression levels of cytoplasmic and nuclear FGFR2 showed much lower overall survival (OS) and disease-free survival (DFS) rates than those patients with low FGFR2 expression. Cytoplasmic FGFR2 expression and lymph node metastasis were independent prognostic factors for both DFS and OS by multivariate analysis. CONCLUSIONS High FGFR2 expression is correlated with poor OS and DFS in breast cancer patients. It could be a biomarker for poor prognosis.
Collapse
Affiliation(s)
- Shanshan Sun
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gutiérrez ML, Muñoz-Bellvis L, Abad MDM, Bengoechea O, González-González M, Orfao A, Sayagués JM. Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology. PLoS One 2011; 6:e22315. [PMID: 21811587 PMCID: PMC3141022 DOI: 10.1371/journal.pone.0022315] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/19/2011] [Indexed: 11/28/2022] Open
Abstract
The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP)-arrays to define those chromosomal regions which most commonly harbour copy number (CN) alterations and loss of heterozygozity (LOH) in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70%) extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9) versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11). From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterogenity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Luís Muñoz-Bellvis
- Unidad de Cirugía Hepatobiliopancreática y Trasplante de Páncreas, Departamento de Cirugía, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María del Mar Abad
- Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María González-González
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| | - José María Sayagués
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
43
|
Angiogenesis and breast cancer. JOURNAL OF ONCOLOGY 2010; 2010. [PMID: 20953378 PMCID: PMC2952923 DOI: 10.1155/2010/576384] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/29/2010] [Accepted: 09/02/2010] [Indexed: 12/25/2022]
Abstract
Angiogenesis is an essential step for breast cancer progression and dissemination. The development of new blood vessels in cancer setting (angiogenesis) is conducted by numerous physiological and pathological stimuli, where the main stimulus is hypoxia. The knowledge of different molecular pathways regulating angiogenesis is constantly growing. An increased and complex scenario of angiogenesis is nowadays available in breast cancer, specifically, and permits not only to understand most of the important phases of neoplastic growth but also offer an exciting perspective for new therapeutic proposals based on blocking new blood vessels sprouting. This review focused on historical and recent understanding of angiogenesis occurrence in breast cancer.
Collapse
|