1
|
Torres D, Villamayor PR, Román A, García P, Martínez P, Sanchez-Quinteiro P. In-depth histological, lectin-histochemical, immunohistochemical and ultrastructural description of the olfactory rosettes and olfactory bulbs of turbot (Scophthalmus maximus). Cell Tissue Res 2024; 397:215-239. [PMID: 39112611 DOI: 10.1007/s00441-024-03906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Chemical communication through olfaction is crucial for fish behaviours, mediating in socio-sexual behaviours as reproduction. Turbot, a flatfish with significant aquaculture production, possesses a well-developed olfactory system from early developmental stages. After metamorphosis, flatfish acquire their characteristic bilateral asymmetry with an ocular side facing the open water column, housing the dorsal olfactory rosette, and a blind side in contact with the sea bottom where the ventral rosette is located. This study aimed to address the existing gap in specific histological, ultrastructural, lectin-histochemical and immunohistochemical studies of the turbot olfactory rosettes and olfactory bulbs. We examined microdissected olfactory organs of adult turbots and premetamorphic larvae by using routine histological staining techniques, and a wide array of lectins and primary antibodies against G-proteins and calcium-binding proteins. We observed no discernible structural variations in the olfactory epithelium between rosettes, except for the dorsal rosette being larger in size compared to the ventral rosette. Additionally, the use of transmission electron microscopy significantly improved the characterization of the adult olfactory epithelium, exhibiting high cell density, small cell size, and a wide diversity of cell types. Moreover, specific immunopositivity in sensory and non-sensory cells provided us of essential information regarding their olfactory roles. The results obtained significantly enriched the scarce morphological and neurochemical information available on the turbot olfactory system, revealing a highly complex olfactory epithelium with distinct features compared to other teleost species, especially with regard to olfactory cell distribution and immunolabelling patterns.
Collapse
Affiliation(s)
- Dorinda Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Paula R Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Albina Román
- Electron Microscopy Unit, Research Infrastructures Area, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo García
- Pescanova Biomarine Center, 36980 O Grove, Pontevedra, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain.
| |
Collapse
|
2
|
Torres MV, Ortiz-Leal I, Ferreiro A, Rois JL, Sanchez-Quinteiro P. Immunohistological study of the unexplored vomeronasal organ of an endangered mammal, the dama gazelle (Nanger dama). Microsc Res Tech 2023; 86:1206-1233. [PMID: 37494657 DOI: 10.1002/jemt.24392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Dama gazelle is a threatened and rarely studied species found primarily in northern Africa. Human pressure has depleted the dama gazelle population from tens of thousands to a few hundred individuals. Since 1970, a founder population consisting of the last 17 surviving individuals in Western Sahara has been maintained in captivity, reproducing naturally. In preparation for the future implementation of assisted reproductive technology, certain aspects of dama gazelle reproductive biology have been established. However, the role played by semiochemical-mediated communications in the sexual behavior of dama gazelle remains unknown due partially to a lack of a neuroanatomical or morphofunctional characterization of the dama gazelle vomeronasal organ (VNO), which is the sensory organ responsible for pheromone processing. The present study characterized the dama gazelle VNO, which appears fully equipped to perform neurosensory functions, contributing to current understanding of interspecies VNO variability among ruminants. By employing histological, lectin-histochemical, and immunohistochemical techniques, we conducted a detailed morphofunctional evaluation of the dama gazelle VNO along its entire longitudinal axis. Our findings of significant structural and neurochemical transformation along the entire VNO suggest that future studies of the VNO should take a similar approach. The present study contributes to current understanding of dama gazelle VNO, providing a basis for future studies of semiochemical-mediated communications and reproductive management in this species. RESEARCH HIGHLIGHTS: This exhaustive immunohistological study of the vomeronasal organ (VNO) of the dama gazelle provides the first evidence of notable differences in the expression of neuronal markers along the rostrocaudal axis of the VNO. This provides a morphological basis for the implementation of pheromones in captive populations of dama gazelle.
Collapse
Affiliation(s)
- Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | | | | | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
3
|
Bone metastasis of hepatocellular carcinoma: facts and hopes from clinical and translational perspectives. Front Med 2022; 16:551-573. [DOI: 10.1007/s11684-022-0928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
4
|
Long X, Zhang L, Wang WQ, Zhang EL, Lv X, Huang ZY. Response of Scalp and Skull Metastasis to Anti-PD-1 Antibody Combined with Regorafenib Treatment in a Sorafenib-Resistant Hepatocellular Carcinoma Patient and a Literature Review. Onco Targets Ther 2022; 15:703-716. [PMID: 35791424 PMCID: PMC9250789 DOI: 10.2147/ott.s365652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Scalp and skull metastasis of hepatocellular carcinoma (HCC) is extremely rare. Modalities for the treatment of this disease include craniotomy, radiotherapy and chemotherapy, which are unsatisfactory. We report a case of HCC with scalp and skull metastasis and review similar cases from the literature to accumulate experience for better management of this type of HCC metastasis. Case Presentation A 54-year-old female was diagnosed with advanced HCC with posterior portal vein tumor thrombus (PVTT) at admission. She received laparoscopic microwave therapy for a large tumor in Segment 6, which was then followed by sorafenib therapy. One year later, sorafenib resistance developed, metastasis occurred in the scalp and skull, left sacroiliac joint, and lung; PVTT extended into the main portal vein and alpha-feta protein (AFP) levels exceeded 65,000 ng/mL. Systemic therapy was then substituted by regorafenib combined with sintilimab. Three months later, AFP decreased to 2005 ng/mL; meanwhile, skull and lung metastatic lesions shrank significantly. Furthermore, both lump and limp disappeared. One year after the combination of regorafenib and sintilimab, skull and lung metastasis, and PVTT were completely relieved. Moreover, primary liver lesions showed no sign of activity. With comprehensive therapy, the patient has survived for 5 years and 7 months. Conclusion Sorafenib-regorafenib sequential treatment combined with sintilimab is safe and effective when used to treat HCC skull metastasis, for which high-level evidence is needed to support this treatment strategy.
Collapse
Affiliation(s)
- Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wen-Qiang Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Er-Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xing Lv
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhi-Yong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
5
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
6
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
7
|
Huang Z, Chu L, Liang J, Tan X, Wang Y, Wen J, Chen J, Wu Y, Liu S, Liao J, Hou R, Ding Z, Zhang Z, Liang H, Song S, Yang C, Zhang J, Guo T, Chen X, Zhang B. H19 Promotes HCC Bone Metastasis Through Reducing Osteoprotegerin Expression in a Protein Phosphatase 1 Catalytic Subunit Alpha/p38 Mitogen-Activated Protein Kinase-Dependent Manner and Sponging microRNA 200b-3p. Hepatology 2021; 74:214-232. [PMID: 33615520 DOI: 10.1002/hep.31673] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Bone is the second most frequent site of metastasis for HCC, which leads to an extremely poor prognosis. HCC bone metastasis is typically osteolytic, involving the activation of osteoclasts. Long noncoding RNA H19 plays an important role in the pathogenesis of human cancers. Nonetheless, the mechanism underlying the participation of H19 in HCC bone metastasis remains unclear. APPROACH AND RESULTS The current study established a mouse HCC bone metastasis model by using serial intracardiac injection and cell isolation to obtain cells with distinct bone metastasis ability. H19 was highly expressed in these cells and in clinical HCC bone metastasis specimens. Both osteoclastogenesis in vitro and HCC bone metastasis in vivo were promoted by H19 overexpression, whereas these processes were suppressed by H19 knockdown. H19 overexpression attenuated p38 phosphorylation and further down-regulated the expression of osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor. However, up-regulated OPG expression as well as suppressed osteoclastogenesis caused by H19 knockdown were recovered by p38 interference, indicating that p38 mitogen-activated protein kinase (MAPK)-OPG contributed to H19-promoted HCC bone metastasis. Furthermore, we demonstrated that H19 inhibited the expression of OPG by binding with protein phosphatase 1 catalytic subunit alpha (PPP1CA), which dephosphorylates p38. SB-203580-mediated inactivation of p38MAPK reversed the down-regulation of HCC bone metastasis caused by H19 knockdown in vivo. Additionally, H19 enhanced cell migration and invasion by up-regulating zinc finger E-box binding homeobox 1 through the sequestration of microRNA (miR) 200b-3p. CONCLUSIONS H19 plays a critical role in HCC bone metastasis by reducing OPG expression, which is mediated by the PPP1CA-induced inactivation of the p38MAPK pathway; and H19 also functions as a sponge for miR-200b-3p.
Collapse
Affiliation(s)
- Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xiaolong Tan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yu Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Rui Hou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Shasha Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Guo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
8
|
Zhang S, Xu Y, Xie C, Ren L, Wu G, Yang M, Wu X, Tang M, Hu Y, Li Z, Yu R, Liao X, Mo S, Wu J, Li M, Song E, Qi Y, Song L, Li J. RNF219/ α-Catenin/LGALS3 Axis Promotes Hepatocellular Carcinoma Bone Metastasis and Associated Skeletal Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001961. [PMID: 33643786 PMCID: PMC7887580 DOI: 10.1002/advs.202001961] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Indexed: 05/10/2023]
Abstract
The incidence of bone metastases in hepatocellular carcinoma (HCC) has increased prominently over the past decade owing to the prolonged overall survival of HCC patients. However, the mechanisms underlying HCC bone-metastasis remain largely unknown. In the current study, HCC-secreted lectin galactoside-binding soluble 3 (LGALS3) is found to be significantly upregulated and correlates with shorter bone-metastasis-free survival of HCC patients. Overexpression of LGALS3 enhances the metastatic capability of HCC cells to bone and induces skeletal-related events by forming a bone pre-metastatic niche via promoting osteoclast fusion and podosome formation. Mechanically, ubiquitin ligaseRNF219-meidated α-catenin degradation prompts YAP1/β-catenin complex-dependent epigenetic modifications of LGALS3 promoter, resulting in LGALS3 upregulation and metastatic bone diseases. Importantly, treatment with verteporfin, a clinical drug for macular degeneration, decreases LGALS3 expression and effectively inhibits skeletal complications of HCC. These findings unveil a plausible role for HCC-secreted LGALS3 in pre-metastatic niche and can suggest a promising strategy for clinical intervention in HCC bone-metastasis.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Yingru Xu
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Chan Xie
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Liangliang Ren
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Geyan Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Meisongzhu Yang
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xingui Wu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Yameng Hu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ziwen Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ruyuan Yu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xinyi Liao
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Shuang Mo
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Jueheng Wu
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Mengfeng Li
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Erwei Song
- Department of Breast OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yanfei Qi
- Centenary InstituteUniversity of SydneySydney2000Australia
| | - Libing Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
9
|
Zhang L, Niu H, Ma J, Yuan BY, Chen YH, Zhuang Y, Chen GW, Zeng ZC, Xiang ZL. The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol Cancer 2019; 18:120. [PMID: 31349837 PMCID: PMC6659280 DOI: 10.1186/s12943-019-1044-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background Bone metastasis (BM) has long been recognized as a major threat to the quality of life of hepatocellular cancer (HCC) patients. While LncRNA34a (Lnc34a) has been shown to regulate colon cancer stem cell asymmetric division, its effect on HCC BM remains unknown. Methods In situ hybridization and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of Lnc34a in HCC tissues and cell lines. Ventricle injection model was constructed to explore the effect of Lnc34a on BM in vivo. The methylation of miR-34a promoter and histones deacetylation were examined by using bisulfate-sequencing PCR and chromatin immunoprecipitation assays. RNA pull down and RNA immunoprecipitation were performed to investigated the interaction between Lnc34a and epigenetic regulators. Dual-luciferase reporter assay was conducted to find miR-34a target. The involvement of TGF-β pathway in the BM from HCC was determined by qRT-PCR, western, and elisa assays. Results We found that Lnc34a was significantly overexpressed in HCC tissues and associated with BM. Both in vitro and in vivo experiments indicate that the restoration or knockdown of Lnc34a expression in HCC cells had a marked effect on cellular migration, invasion, and metastasis. Mechanistic analyses suggested that Lnc34a epigenetically suppresses miR-34a expression through recruiting DNMT3a via PHB2 to methylate miR-34a promoter and HDAC1 to promote histones deacetylation. On the other hand, miR-34a targets Smad4 via the TGF-β pathway, followed by altering the transcription of the downstream genes (i.e., CTGF and IL-11) that are associated with BM. Conclusions Our study is the first to document the pro-bone metastatic role of Lnc34a in BM of HCC and reveal a novel mechanism for the activation of the TGF-β signaling pathway in HCC BM, providing evidence of a potential therapeutic strategy in HCC BM. Electronic supplementary material The online version of this article (10.1186/s12943-019-1044-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Jie Ma
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Bao-Ying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yu-Han Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Gen-Wen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
10
|
CCN2-MAPK-Id-1 loop feedback amplification is involved in maintaining stemness in oxaliplatin-resistant hepatocellular carcinoma. Hepatol Int 2019; 13:440-453. [PMID: 31250351 PMCID: PMC6661033 DOI: 10.1007/s12072-019-09960-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Chemotherapy is an alternative treatment for advanced HCCs, but chemo-resistance prevents cancer therapies from achieving stable and complete responses. Understanding the underlying mechanisms in chemo-resistance is critical to improve the efficacy of HCC. Methods The expression levels of Id-1 and CCN2 were detected in large cohorts of HCCs, and functional analyses of Id-1 and CCN2 were performed both in vitro and in vivo. cDNA microarrays were performed to evaluate the alterations of expression profiling of HCC cells with overexpression of CCN2. Finally, the role of downstream signaling of MAPK/Id-1 signaling pathway in oxaliplatin resistance were also explored. Results The increased expression of Id-1 and CCN2 were closely related to oxaliplatin resistance in HCC. Upregulation of CCN2 and Id-1 was independently associated with shorter survival and increased recurrence in HCC patients, and significantly enhanced oxaliplatin resistance and promoted lung metastasis in vivo, whereas knock-down of their expression significantly reversed the chemo-resistance and inhibited HCC cell stemness. cDNA microarrays and PCR revealed that Id-1 and MAPK pathway were the downstream signaling of CCN2. CCN2 significantly enhanced oxaliplatin resistance by activating the MAPK/Id-1 signaling pathway, and Id-1 could upregulate CCN2 in a positive feedback manner. Conclusions CCN2/MAPK/Id-1 loop feedback amplification is involved in oxaliplatin resistance, and the combination of oxaliplatin with inhibitor of CCN2 or MAPK signaling could provide a promising approach to ameliorating oxaliplatin resistance in HCC. Electronic supplementary material The online version of this article (10.1007/s12072-019-09960-5) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Zhang S, Li B, Tang W, Ni L, Ma H, Lu M, Meng Q. Effects of connective tissue growth factor on prostate cancer bone metastasis and osteoblast differentiation. Oncol Lett 2018; 16:2305-2311. [PMID: 30008933 PMCID: PMC6036428 DOI: 10.3892/ol.2018.8960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Previous studies have demonstrated that connective tissue growth factor (CTGF) is expressed at increased levels in prostate cancer bone metastasis mouse models and patients with prostate cancer which metastasizes to the bone; however, the underlying molecular mechanism(s) remain unknown. The present study investigated the function of CTGF in osteoblast differentiation and its effect on prostate cancer bone metastasis by analyzing CTGF gene expression and transcription at different levels of invasion, metastasis of prostate cancer cells, and the influence of CTGF on proliferation and xenotransplantation. A mouse model demonstrating bone metastasis was used to investigate the function(s) of CTGF in bone metastasis and osteoblast differentiation. Results demonstrated that CTGF expression was increased in association with high bone metastasis in prostate cancer cells, and its expression was significantly decreased in whole cell lysates. CTGF expression in prostate cancer cells with high levels of bone metastasis was increased 1.9-fold compared with prostate cancer cells with low levels of bone metastasis. The expression of CTGF in mesenchymal cells was markedly increased compared with epithelial cells. Results indicated that the increased expression of CTGF does not affect the proliferation of tumor cells and possesses no influence on tumor volume. Control and CTGF plasmids were transfected into RM1 cells and led to 4 and 17% bone lesions, respectively. Increased expression of CTGF significantly enlarged the tumor area in the bone metastatic position compared with the control. Positive areas of alkaline phosphatase were significantly decreased as the concentration of CTGF increased. The results of the present study demonstrated that CTGF promotes prostate carcinoma to metastasize in the bone by dysregulating osteoblast differentiation.
Collapse
Affiliation(s)
- Shuangli Zhang
- Department of Orthopaedic Surgery, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baolin Li
- Department of Orthopaedic Surgery, Harbin The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Wei Tang
- Department of Orthopaedic Surgery, The Second People's Hospital of Rizhao, Rizhao, Shandong 276807, P.R. China
| | - Linying Ni
- Department of Orthopaedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Huili Ma
- Department of Orthopaedic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Ming Lu
- Department of Oncological Surgery, The First Hospital of Qiqihaer City, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, Harbin The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
12
|
Jia Q, Dong Q, Qin L. CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 2016; 7:1203-1214. [PMID: 26497214 PMCID: PMC4811454 DOI: 10.18632/oncotarget.6209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) results from an underlying chronic liver inflammatory disease, such as chronic hepatitis B or C virus infections, and the general prognosis of patients with HCC still remains extremely dismal because of the high frequency of HCC metastases. Throughout the process of tumor metastasis, tumor cells constantly communicate with the surrounding microenvironment and improve their malignant phenotype. Therefore, there is a strong rationale for targeting the tumor microenvironment as primary treatment of HCC therapies. Recently, CCN family proteins have emerged as localized multitasking signal integrators in the inflammatory microenvironment. In this review, we summarize the current knowledge of CCN family proteins in inflammation and the tumor. We also propose that the CCN family proteins may play a central role in signaling the tumor microenvironment and regulating the metastasis of HCC.
Collapse
Affiliation(s)
- Qingan Jia
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|