1
|
Zhang JW, Gao XL, Wang J, Fan XL, Liang QW. Comprehensive analysis illustrating the role of HOXB8 in head and neck squamous cell carcinoma: evidence from multi-omics analysis and experiments validation. BMC Cancer 2025; 25:804. [PMID: 40307753 PMCID: PMC12042558 DOI: 10.1186/s12885-025-14205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND HOXB8 is implicated in various cancers. However, the effect pattern of HOXB8 in head and neck squamous cell carcinoma (HNSCC) remains unclear. METHODS Open-access transcriptional profiles, clinical information, and mutational data were downloaded from the Cancer Genome Atlas database. R software was used for all analysis based on public data through specific R packages. Western blot and real-time quantitative PCR was used to detect the protein and RNA level of HOXB8, respectively. In vivo and in vitro experiments were conducted to explore the effect of HOXB8 on HNSCC cells. RESULTS Here, we discovered that HOXB8 was upregulated in HNSCC tissue and associated with worse clinical outcomes (clinical stage and prognosis). Results indicated that HOXB8 was primarily distributed in the nucleoplasm. Results of cell lines indicated that HOXB8 is upregulated in HNSCC cells. Further experiments, both in vitro and in vivo, revealed that the suppression of HOXB8 can markedly curb the proliferation, invasion, and migration capabilities of HNSCC cells. Results of biological enrichment and western blot indicated that HOXB8 can regulate the PI3K/AKT/mTOR and EMT pathways. It also came to our attention that HOXB8 could modulate the tumor microenvironment in HNSCC. We observed that patients with high HOXB8 expression had lower infiltration levels of CD8 + T cells but higher infiltration levels of M2 macrophages. Finally, we developed a prognostic model based on molecules derived from HOXB8 (ADD2, SYT1, PXYLP1, MRPL33). CONCLUSIONS Our study contributes to the existing knowledge on HOXB8 in HNSCC, which may inform future research directions.
Collapse
Affiliation(s)
- Jun-Wei Zhang
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Xi-Lin Gao
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Jing Wang
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Xue-Li Fan
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China
| | - Qi-Wei Liang
- Longgang Center Hospital, the ninth people's hospital of shenzhen, Shenzhen, China.
| |
Collapse
|
2
|
Liang Y, Lin H, Jiang Z, Zhao Q, Cui R, Li S. HOXB8 mediates resistance to cetuximab in colorectal cancer cells through activation of the STAT3 pathway. Discov Oncol 2024; 15:603. [PMID: 39472327 PMCID: PMC11522251 DOI: 10.1007/s12672-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Homeobox B8 (HOXB8) belongs to the HOX family and was essential to the development of colorectal carcinoma. Among the prevalent monoclonal antibodies for treating RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients, cetuximab stands out, but resistance to cetuximab frequently arises in targeted treatments. Currently, the role of HOXB8 in cetuximab-resistant mCRC remains unclear. By comparing drug-sensitive cell lines (SW48) with drug-resistant cell lines (HCT116, CACO2), we discovered that HOXB8 was substantially expressed in cetuximab-resistant cell lines, and furthermore, in drug-resistant cell lines (HCT116, CACO2), HOXB8 knockdown increased the cytotoxicity of cetuximab via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Conversely, the excessive expression of HOXB8 reduced the growth suppression in SW48 cells caused by cetuximab by triggering the STAT3 signaling pathway. Conclusively, we conclude that HOXB8 has played an essential role in cetuximab-resistant mCRC and that treating HOXB8 specifically may be a useful treatment approach for certain cetuximab-resistant mCRC patients.
Collapse
Affiliation(s)
- Yunan Liang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Han Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Zongsheng Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Qi Zhao
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| | - Shaotang Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
3
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
4
|
Yeung CLS, Yam JWP. Therapy-induced modulation of extracellular vesicles in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:1088-1101. [PMID: 35158067 DOI: 10.1016/j.semcancer.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
Despite rapid development of anti-tumorigenic treatments, the clinical outcome for hepatocellular carcinoma (HCC) is still far from satisfactory. With a deeper understanding about tumor microenvironment (TME), the critical role of extracellular vesicles (EVs) as intercellular liaison has come into spotlight. The dynamic functionality of these nanoparticles revealed cancer cells can employ both tumor and non-tumorous components for their own benefit, so as to mediate cell-to-cell communication and interchange of oncogenic biomolecules. Increasing studies on HCC-derived EVs have identified various irregulated biomolecules, that may serve as biomarkers or therapeutic targets. In this review, we first introduce the current knowledge about EVs and how they operate to maintain a healthy liver microenvironment. We then summarize some of the aberrant observations reported on HCC-derived EVs and how they contribute to HCC pathogenesis. Finally, we describe how current treatments for HCC alter behavior of EVs, which may shed light for potential prognostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong.
| |
Collapse
|
5
|
Shahrear S, Zinnia MA, Ahmed T, Islam ABMMK. Deciphering the role of predicted miRNAs of polyomaviruses in carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166537. [PMID: 36089125 DOI: 10.1016/j.bbadis.2022.166537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
Human polyomaviruses are relatively common in the general population. Polyomaviruses maintain a persistent infection after initial infection in childhood, acting as an opportunistic pathogen in immunocompromised populations and their association has been linked to carcinogenesis. A comprehensive understanding of the underlying molecular mechanisms of carcinogenesis in consequence of polyomavirus infection remains elusive. However, the critical role of viral miRNAs and their potential targets in modifying the transcriptome profile of the host remains largely unknown. Polyomavirus-derived miRNAs have the potential to play a substantial role in carcinogenesis. Employing computational approaches, putative viral miRNAs along with their target genes have been predicted and possible roles of the targeted genes in many significant biological processes have been obtained. Polyomaviruses have been observed to target intracellular signal transduction pathways through miRNA-mediated epigenetic regulation, which may contribute to cancer development. In addition, BKPyV-infected human renal cell microarray data was coupled with predicted target genes and analysis of the downregulated genes indicated that viruses target multiple signaling pathways (e.g. MAPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway) in the host as well as turning off several tumor suppression genes (e.g. FGGY, EPHX2, CACNA2D3, CDH16) through miRNA-induced mechanisms, assuring cell transformation. This study provides a conceptual framework for the underlying molecular mechanisms involved in the course of carcinogenesis upon polyomavirus infection.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
6
|
Yao J, Liu Y, Yang J, Li M, Li S, Zhang B, Yang R, Zhang Y, Cui X, Feng C. Single-Cell Sequencing Reveals that DBI is the Key Gene and Potential Therapeutic Target in Quiescent Bladder Cancer Stem Cells. Front Genet 2022; 13:904536. [PMID: 35769986 PMCID: PMC9235029 DOI: 10.3389/fgene.2022.904536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Drug resistance and recurrence often develop during the treatment of muscle-invasive bladder cancer (MIBC). The existence of cancer stem cells (CSCs) in MIBC makes the formulation of effective treatment strategies extremely challenging. We aimed to use single-cell RNA sequencing approaches to identify CSCs and evaluate their molecular characteristics and to discover possible therapeutic measures. Methods: GEO data sets GSE130001 and GSE146137 were used to construct an expression matrix. After cells were identified by type, malignant epithelial cells inferred by InferCNV were extracted for stemness evaluation. The subset of cells with the highest stemness was subjected to weighted gene coexpression network analysis (WGCNA) and pseudotime analysis to identify key genes. In addition, we predicted drug sensitivity relationships for key genes in CTD and predicted the correlation between drugs and survival through siGDC. Results: We found that there were some CSCs in MIBC samples. The CSC population was heterogeneous during tumor development and was divided into quiescent and proliferating CSCs. We identified DBI as the key gene in quiescent CSCs. Analysis of a TCGA data set showed that higher DBI expression indicated higher histological grade. In addition, we predicted that acetaminophen can reduce DBI expression, thereby reducing the stemness of CSCs. Thus, we identified a potential new use of acetaminophen. Conclusion: We systematically explored CSCs in tumors and determined that DBI may be a key gene and potential therapeutic target in quiescent CSCs. In addition, we confirmed that acetaminophen may be a candidate drug targeting CSCs, improving our understanding of CSC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jitao Yang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengling Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Simin Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuchong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Cui, ; ChunQing Feng,
| | - ChunQing Feng
- Department of Urology Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- *Correspondence: Xiaoyu Cui, ; ChunQing Feng,
| |
Collapse
|
7
|
Obesity-Associated Differentially Methylated Regions in Colon Cancer. J Pers Med 2022; 12:jpm12050660. [PMID: 35629083 PMCID: PMC9142939 DOI: 10.3390/jpm12050660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity with adiposity is a common disorder in modern days, influenced by environmental factors such as eating and lifestyle habits and affecting the epigenetics of adipose-based gene regulations and metabolic pathways in colorectal cancer (CRC). We compared epigenetic changes of differentially methylated regions (DMR) of genes in colon tissues of 225 colon cancer cases (154 non-obese and 71 obese) and 15 healthy non-obese controls by accessing The Cancer Genome Atlas (TCGA) data. We applied machine-learning-based analytics including generalized regression (GR) as a confirmatory validation model to identify the factors that could contribute to DMRs impacting colon cancer to enhance prediction accuracy. We found that age was a significant predictor in obese cancer patients, both alone (p = 0.003) and interacting with hypomethylated DMRs of ZBTB46, a tumor suppressor gene (p = 0.008). DMRs of three additional genes: HIST1H3I (p = 0.001), an oncogene with a hypomethylated DMR in the promoter region; SRGAP2C (p = 0.006), a tumor suppressor gene with a hypermethylated DMR in the promoter region; and NFATC4 (p = 0.006), an adipocyte differentiating oncogene with a hypermethylated DMR in an intron region, are also significant predictors of cancer in obese patients, independent of age. The genes affected by these DMR could be potential novel biomarkers of colon cancer in obese patients for cancer prevention and progression.
Collapse
|
8
|
Liu L, Wang L, Li X. The roles of HOXB8 through activating Wnt/β-catenin and STAT3 signaling pathways in the growth, migration and invasion of ovarian cancer cells. Cytotechnology 2022; 74:77-87. [PMID: 35185287 PMCID: PMC8816987 DOI: 10.1007/s10616-021-00508-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer is one of the gynecological malignancies ranked third in incidence and first in mortality in the world. Homoboxb8 (HOXB8) has been demonstrated to play crucial roles in various tumors. However, the function of HOXB8 in ovarian cancer remains to be addressed. Quantitative real-time polymerase chain reaction, immunohistochemistry staining and western blot assays demonstrated that HOXB8 expression was up-regulated in human ovarian cancer tissues and cells. The results of CCK-8 and colony formation assays indicated that HOXB8 promoted the proliferation of ovarian cancer cells. Transwell and immunofluorescence (IF) staining assay demonstrated that HOXB8 promoted the migration and invasion of ovarian cancer cells. Importantly, mechanism analysis implied that HOXB8 increased the expression of β-catenin and phosphorylation of STAT3, and the downstream target molecules of Cyclin D1, c-Myc, TWIST1, MMP7 and MMP9, indicating that HOXB8 could promote the activation of Wnt/β-catenin and STAT3 pathways. Moreover, HOXB8 knockdown suppressed xenograft tumor growth, and inhibited the levels of HOXB8 and Ki-67, while increasing the level of E-cadherin in mice. In conclusion, HOXB8 promotes cell proliferation, migration and invasion through modulating Wnt/β-catenin and STAT3 signaling pathways in ovarian cancer, suggesting that HOXB8 may provide a promising target for the therapy of ovarian cancer. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Lidan Liu
- Department of Obstetrics and Gynecology, Wuhan NO. 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430022 Hubei China
| | - Lifei Wang
- Department of Obstetrics and Gynecology, Wuhan NO. 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430022 Hubei China
| | - Xiujuan Li
- Department of Geriatrics, Wuhan NO. 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430022 Hubei China
| |
Collapse
|
9
|
Morgan R, Hunter K, Pandha HS. Downstream of the HOX genes: explaining conflicting tumour suppressor and oncogenic functions in cancer. Int J Cancer 2022; 150:1919-1932. [PMID: 35080776 PMCID: PMC9304284 DOI: 10.1002/ijc.33949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The HOX genes are a highly conserved group of transcription factors that have key roles in early development, but which are also highly expressed in most cancers. Many studies have found strong associative relationships between the expression of individual HOX genes in tumours and clinical parameters including survival. For the majority of HOX genes, high tumour expression levels seem to be associated with a worse outcome for patients, and in some cases this has been shown to result from the activation of pro-oncogenic genes and pathways. However, there are also many studies that indicate a tumour suppressor role for some HOX genes, sometimes with conclusions that contradict earlier work. In this review, we have attempted to clarify the role of HOX genes in cancer by focusing on their downstream targets as identified in studies that provide experimental evidence for their activation or repression. On this basis, the majority of HOX genes would appear to have a pro-oncogenic function, with the notable exception of HOXD10, which acts exclusively as a tumour suppressor. HOX proteins regulate a wide range of target genes involved in metastasis, cell death, proliferation, and angiogenesis, and activate key cell signalling pathways. Furthermore, for some functionally related targets, this regulation is achieved by a relatively small subgroup of HOX genes.
Collapse
Affiliation(s)
- Richard Morgan
- School of Biomedical SciencesUniversity of West LondonLondonUK
| | - Keith Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Hardev S. Pandha
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
10
|
Li X, Chen S, Zhu Y, Fei J, Song L, Sun G, Niu W, Guo L, Wang J. Comprehensive bioinformatics analyses identified Homeobox B9 as a potential prognostic biomarker and therapeutic target for gastric cancer. J Gastrointest Oncol 2021; 12:2132-2149. [PMID: 34790380 DOI: 10.21037/jgo-21-598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background The Homeobox B (HOXB) family promotes tumor progression, but the mechanism of its action in gastric cancer (GC) is unclear. We sought to identify the HOXB family members that are critical to the prognosis of GC patients. Methods The Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, UALCAN, Kaplan-Meier plotter, and the GeneMANIA databases were used to analyze the messenger RNA (mRNA) expression levels, prognostic value, and gene-gene interaction network of the HOXB9 family members in GC. The expression of HOXB9 in GC and its relationship with various clinicopathological parameters and the prognosis of patients were verified by immunohistochemistry. Results The expression of HOXB3, HOXB5, HOXB6, HOXB7, HOXB9, and HOXB13 mRNA was significantly upregulated in GC. There was a significant correlation between the upregulation of HOXB3, HOXB5, and HOXB9 mRNA and a low overall survival (OS) rate. The high expression of HOXB7, HOXB9, and HOXB13 mRNA was closely correlated to tumor grade and stage. HOXB9 was the HOXB family member most closely related to the occurrence and development of GC. A further analysis showed that HOXB9 might be involved in deoxyribonucleic acid repair and division regulation. A validation study showed that the advanced cancer group had a higher level of HOXB9 expression than the early cancer group. The high expression of HOXB9 in gastric tissue plays an important role in the survival and prognosis of GC patients. Conclusions HOXB family members have different degrees of abnormal expression in GC. High HOXB9 expression in GC tissues was significantly correlated with a worse prognosis. Thus, HOXB9 is a potential novel biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shujia Chen
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yinghui Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayue Fei
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liaoyuan Song
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guoyan Sun
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Niu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiwei Wang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
11
|
Feng Y, Zhang T, Wang Y, Xie M, Ji X, Luo X, Huang W, Xia L. Homeobox Genes in Cancers: From Carcinogenesis to Recent Therapeutic Intervention. Front Oncol 2021; 11:770428. [PMID: 34722321 PMCID: PMC8551923 DOI: 10.3389/fonc.2021.770428] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
The homeobox (HOX) genes encoding an evolutionarily highly conserved family of homeodomain-containing transcriptional factors are essential for embryogenesis and tumorigenesis. HOX genes are involved in cell identity determination during early embryonic development and postnatal processes. The deregulation of HOX genes is closely associated with numerous human malignancies, highlighting the indispensable involvement in mortal cancer development. Since most HOX genes behave as oncogenes or tumor suppressors in human cancer, a better comprehension of their upstream regulators and downstream targets contributes to elucidating the function of HOX genes in cancer development. In addition, targeting HOX genes may imply therapeutic potential. Recently, novel therapies such as monoclonal antibodies targeting tyrosine receptor kinases, small molecular chemical inhibitors, and small interfering RNA strategies, are difficult to implement for targeting transcriptional factors on account of the dual function and pleiotropic nature of HOX genes-related molecular networks. This paper summarizes the current state of knowledge on the roles of HOX genes in human cancer and emphasizes the emerging importance of HOX genes as potential therapeutic targets to overcome the limitations of present cancer therapy.
Collapse
Affiliation(s)
- Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Huang T, Cai M, Chen C, Ling C, Zhang B, Zheng W, Luo L. LINC01116 boosts the progression of pituitary adenoma via regulating miR-744-5p/HOXB8 pathway. Mol Cell Endocrinol 2021; 536:111350. [PMID: 34098015 DOI: 10.1016/j.mce.2021.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/18/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Pituitary adenoma (PA) is one of the common intracranial tumors. In order to optimize status quo, seeking out potential biomarkers for pituitary adenoma diagnosis and treatment is urgent and important. Long non-coding RNAs (lncRNAs) have been related with progression of various cancers. Based on this reason and unknown role of long intergenic non-protein coding RNA 1116 (LINC01116) in pituitary adenoma, we aimed to explore the function and molecular mechanism of LINC01116 in pituitary adenoma. The RT-qPCR analysis showed that LINC01116 was abnormally overexpressed in pituitary adenoma cells. Down-regulated LINC01116 effectively suppressed cell proliferation and migration as well as epithelial-mesenchymal transition (EMT) progression in pituitary adenoma. Additionally, LINC01116 could competitively sponge miR-744-5p as shown by RIP, RNA pull down and luciferase reporter assays. Similarly, we also proved that homeobox B8 (HOXB8) was the target gene of miR-744-5p in pituitary adenoma cells. In the end, the rescue assays unmasked that HOXB8 could effectually reverse inhibition effect of LINC016 knockdown on pituitary adenoma cells proliferation, migration and EMT, further suggesting that LINC01116 expedited the pituitary adenoma progression by up-regulating HOXB8. Taken together, LINC01116 boosted the progression of pituitary adenoma cells via regulating miR-744-5p/HOXB8 pathway.
Collapse
Affiliation(s)
- Tengchao Huang
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Meiqin Cai
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chuan Chen
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Cong Ling
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Baoyu Zhang
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Wenhan Zheng
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Lun Luo
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
13
|
Cai G, Yang Q, Sun W. RSF1 in cancer: interactions and functions. Cancer Cell Int 2021; 21:315. [PMID: 34147108 PMCID: PMC8214769 DOI: 10.1186/s12935-021-02012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
RSF1, remodelling and spacing factor 1, is an important interphase centromere protein and is overexpressed in many types of cancers and correlated with poor overall survival. RSF1 has functions mainly in maintaining chromosome stability, facilitating DNA repair, maintaining the protein homeostasis of RSF1 and suppressing the transcription of some oncogenes when RSF1 protein is expressed at an optimal level; however, RSF1 overexpression facilitates drug resistance and cell cycle checkpoint inhibition to prompt cancer proliferation and survival. The RSF1 expression level and gene background are crucial for RSF1 functions, which may explain why RSF1 has different functions in different cancer types. This review summarizes the functional domains of RSF1, the overexpression status of RSF1 and SNF2H in cancer based on the TCGA and GTEX databases, the cancer-related functions of RSF1 in interacting with H2Aub, HDAC1, CENP-A, PLK1, ATM, CENP-S, SNF2H, HBX, BubR1, cyclin E1, CBP and NF-κB and the potential clinical value of RSF1, which will lay a theoretical foundation for the structural biology study of RSF1 and application of RSF1 inhibitors, truncated RSF1 proteins and SNF2H inhibitors in the treatment of RSF1-overexpressing tumours.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Kadioglu O, Saeed MEM, Mahmoud N, Hussein Azawi SS, Rincic M, Liehr T, Efferth T. Identification of metastasis-related genes by genomic and transcriptomic studies in murine melanoma. Life Sci 2020; 267:118922. [PMID: 33358905 DOI: 10.1016/j.lfs.2020.118922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023]
Abstract
AIMS We systematically characterized metastatic murine B16-F10 melanoma, a sub-line derived from murine melanoma B16-F1 cells. MATERIALS AND METHODS RNA-sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel potential metastasis mechanisms. Chromosomal aberrations were identified by multicolor fluorescence in situ hybridization (mFISH) using all 21 murine whole chromosome painting probes. KEY FINDINGS Numerous genes were overexpressed in B16-F10 cells, some of which have been already described as being metastasis-linked. Nr5a1/sf1, a known prognostic marker for adrenal tumors, was 177-fold upregulated in B16-F10 cells compared to B16-F1 cells. Hoxb8 was 75-fold upregulated, which was previously associated with gastric cancer progression and metastasis. Ptk7, which is linked with tumorigenesis and metastasis of esophageal squamous carcinoma, was 67-fold upregulated. B16-F10 cells acquired additional chromosomal aberrations compared to B16-F1 cells, including dic(4)(pter->qter:qter->pter), +dic(6;15), +der(10)t(10;?1;16). SIGNIFICANCE In addition to well-known metastatic genes, numerous novel genes and genomic aberrations were identified, which may serve as targets for treatment in the future. Transcriptomic and genetic analyses in B16-F10 cells unraveled a range of novel metastasis mechanisms, which may also have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Shaymaa S Hussein Azawi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Liu Z, Zhou W, Lin C, Wang X, Zhang X, Zhang Y, Yang R, Chen W, Cao W. Dysregulation of FOXD2-AS1 promotes cell proliferation and migration and predicts poor prognosis in oral squamous cell carcinoma: a study based on TCGA data. Aging (Albany NY) 2020; 13:2379-2396. [PMID: 33318296 PMCID: PMC7880351 DOI: 10.18632/aging.202268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) plays an important role in the pathogenesis of some cancers. However, its functional role in oral squamous cell carcinoma (OSCC) remains largely unknown. In this study, we conducted expressional and functional analyses of FOXD2-AS1 using data from the Cancer Genome Atlas (TCGA) and in vitro OSCC assays. FOXD2-AS1 dysregulation was remarkably associated with radiation therapy, anatomic location, high histologic grade, and lymphovascular invasion (P < 0.05). A nomogram based on FOXD2-AS1 expression was constructed for use as a diagnostic indicator for OSCC patients, and multivariate cox regression analysis showed that FOXD2-AS1 expression was an independent prognostic factor for OSCC patients. KEGG, gene set enrichment analysis, and immune infiltration evaluations indicated that FOXD2-AS1 was involved in tumor progression via epithelial-to-mesenchymal transition and cell cycle regulation and was negatively associated with mast cell, DCs, iDCs, and B cells. FOXD2-AS1 silencing suppressed the proliferation and migration of Cal27 cells. Our findings showed that an aberrantly high FOXD2-AS1 expression predicts poor prognosis in OSCC; FOXD2-AS1 may act as an oncogenic protein by regulating cell proliferation and migration and may suppress adaptive immunity by modulating the number and function of antigen-presenting cells.
Collapse
Affiliation(s)
- Zheqi Liu
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Chengzhong Lin
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
- Second Dental Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Yu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Rong Yang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
16
|
Chi QW, Zhao C, Li ST. Development and validation of a HOXB8 gene-based prognostic model and nomogram for colorectal cancer patients. Shijie Huaren Xiaohua Zazhi 2020; 28:1128-1136. [DOI: 10.11569/wcjd.v28.i22.1128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND At present, colorectal cancer (CRC) is still associated with a high rate of recurrence and distant metastasis with a poor prognosis. HOXB8 gene is related to the tumorigenesis and development in CRC.
AIM To explore the prognostic value of HOXB8 gene in CRC patients, and provide a novel insight into the monitoring of disease progression and cancer recurrence in patients with high-risk CRC.
METHODS The mRNA sequencing data of HOXB8 in CRC patients was downloaded from The Cancer Genome Atlas database. Then, we analyzed the relationship between HOXB8 expression and clinicopathologic features in CRC, and performed survival analysis based on HOXB8 expression. Univariate and multivariate Cox regression analyese were performed for identifying prognostic factors for CRC, and then a nomogram was established and evaluated by concordance index, calibration curve, and decision curve analysis (DCA).
RESULTS HOXB8 mRNA expression was significantly correlated with CRC tumor tissue (P < 0.001), right-side CRC (P < 0.001), T stage (P = 0.024), and M stage (P = 0.0074). Survival analysis showed that overexpression of HOXB8 was associated with a poor progression-free survival (PFS) in CRC patients (P = 0.0019). Univariate and multivariate COX analyses suggested that the expression level of HOXB8 [HR: 1.539 (1.066-2.221), P = 0.021] and TNM stage were independent prognostic factors for PFS of CRC patients. A nomogram was established to predict 3- and 5-year PFS of CRC patients based on four factors including HOXB8 expression and TNM stage. The concordance index was 0.735, suggesting good discrimination; the calibration curve and DCA showed that the nomogram had good predictive power and clinical practicability.
CONCLUSION The expression of HOXB8 is significantly related to the prognosis of CRC patients, and it has appreciated predictive ability for disease progression and cancer recurrence in CRC patients. HOXB8 could act as a potential biomarker to identify high-risk CRC patients and become a novel therapeutic target and prognostic indicator for CRC.
Collapse
Affiliation(s)
- Qiang-Wei Chi
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, China
| | - Chang Zhao
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, China
| | - Shao-Tang Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, China
| |
Collapse
|
17
|
Abuderman AA, Harb OA, Gertallah LM. Prognostic and clinic-pathological significances of HOXB8, ILK and FAT4 expression in colorectal cancer. Contemp Oncol (Pozn) 2020; 24:183-192. [PMID: 33235545 PMCID: PMC7670183 DOI: 10.5114/wo.2020.100281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION HOXB8 is a protein that was found to promote cancer proliferation and invasion. ILK is a protein kinase which has a role in carcinogenesis. FAT4 is a tumor homologue that has a role in EMT and autophagy regulation. AIM OF THE STUDY To identify expression of Human HOXB8, Integrin-linked kinase (ILK1) and FAT homolog 4 (FAT4) in colorectal cancer (CRC) correlating their expression with pathological, prognostic and clinical parameters of CRC. MATERIAL AND METHODS We assessed the expression of HOXB8, ILK and FAT4 in fifty CRC patients and ten samples from nearby non-neoplastic colonic mucosa using immunohistochemistry. RESULTS The expression of HOXB8 and ILK in CRC was positively associated with high tumor grade, advanced tumor stage, lymph node involvement (p < 0.001), occurrence of distant metastases (p = 0.003 and 0.024 respectively), higher incidence of tumor recurrence (p = 0.03, p < 0.001 respectively), worse survival rates (p = 0.038 and 0.003 respectively). The expression of FAT4 in CRC was correlated with lower grade, early stage of the tumor, absence of lymph node involvement (p < 0.001) and lack of distant metastases (p = 0.011). High FAT4 expression was associated with absence of tumor recurrence (p < 0.001) and favorable survival rates (p < 0.001 and 0.003). CONCLUSIONS High immunohistochemical expression of HOXB8 and ILK in addition to low immunohistochemical expression of FAT4 was associated with unfavorable prognostic and pathological parameters of CRC.
Collapse
Affiliation(s)
- Abdulwahab A. Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ola A. Harb
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Loay M. Gertallah
- Department of General Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Reactivation of microRNA-506 inhibits gastric carcinoma cell metastasis through ZEB2. Aging (Albany NY) 2020; 11:1821-1831. [PMID: 30923258 PMCID: PMC6461178 DOI: 10.18632/aging.101877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are frequently dysregulated in a variety of human cancers, including gastric carcinoma. To improve our understanding of the role of miRNAs in gastric carcinoma and potential identify novel biomarkers or therapeutic agents, we performed microarray analysis to identify differentially expressed miRNAs in gastric carcinoma, compared with paired non-cancerous gastric tissues. We identified significantly differentially expressed miRNAs in gastric carcinoma tissues, including miR-506. We validated the microarray results by quantitative reverse transcription polymerase chain reaction in 26 specimens and confirmed significant downregulation of miR-506 in gastric carcinoma. Bioinformatics analysis predicted ZEB2 (zinc finger E-box-binding homeobox 2) as a potential target of miR-506. MiR-506 levels and ZEB2 levels were inversely correlated in gastric carcinoma, and low miR-506 levels in gastric carcinoma were associated with poor prognosis. Overexpression of miR-506 in gastric carcinoma cells significantly inhibited cell migration and invasion, while depletion of miR-506 in gastric carcinoma cells significantly increased cell migration and invasion. Transplantation of miR-506-overexpressing gastric carcinoma cells developed significantly smaller tumor, compared to the control. Thus, our results suggest that miR-506 may function as a tumor suppressor and targets and inhibits ZEB2 in gastric carcinoma.
Collapse
|
19
|
de Bessa Garcia SA, Araújo M, Pereira T, Mouta J, Freitas R. HOX genes function in Breast Cancer development. Biochim Biophys Acta Rev Cancer 2020; 1873:188358. [PMID: 32147544 DOI: 10.1016/j.bbcan.2020.188358] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer develops in the mammary glands during mammalian adulthood and is considered the second most common type of human carcinoma and the most incident and mortal in the female population. In contrast to other human structures, the female mammary glands continue to develop after birth, undergoing various modifications during pregnancy, lactation and involution under the regulation of hormones and transcription factors, including those encoded by the HOX clusters (A, B, C, and D). Interestingly, HOX gene deregulation is often associated to breast cancer development. Within the HOXB cluster, 8 out of the 10 genes present altered expression levels in breast cancer with an impact in its aggressiveness and resistance to hormone therapy, which highlights the importance of HOXB genes as potential therapeutic targets used to overcome the limitations of tamoxifen-resistant cancer treatments. Here, we review the current state of knowledge on the role of HOX genes in breast cancer, specially focus on HOXB, discussing the causes and consequences of HOXB gene deregulation and their relevance as prognostic factors and therapeutic targets.
Collapse
Affiliation(s)
- Simone Aparecida de Bessa Garcia
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Mafalda Araújo
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Tiago Pereira
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - João Mouta
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Renata Freitas
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal.; ICBAS- Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Portugal..
| |
Collapse
|
20
|
Jiang X, Li J, Wang W, Hu Z, Guan C, Zhao Y, Li W, Cui Y. AR-induced ZEB1-AS1 represents poor prognosis in cholangiocarcinoma and facilitates tumor stemness, proliferation and invasion through mediating miR-133b/HOXB8. Aging (Albany NY) 2020; 12:1237-1255. [PMID: 31978895 PMCID: PMC7053610 DOI: 10.18632/aging.102680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) has displayed vital regulatory function in various tumors. However, the biological function of ZEB1-AS1 in cholangiocarcinoma (CCA) remains unclear. In this study, we confirmed that ZEB1-AS1 expression was increased in CCA tissues and cells, respectively. Upregulated ZEB1-AS1 was related to lymph node invasion, advanced TNM stage and poor survival of CCA patients. ZEB1-AS1 exhibited high sensitivity and specificity to be an independent poor prognostic factor of patients with CCA. Functionally, knocking down ZEB1-AS1 attenuated tumor cell stemness, restrained cellular viability in vitro and in vivo, and inhibited CCA cell migration and invasion by reversing epithelial-mesenchymal transition. For the mechanism, androgen receptor (AR) directly promoted ZEB1-AS1 expression, and further ZEB1-AS1 increased oncogene homeobox B8 (HOXB8) by sponging miR-133b. In addition, malignant phenotypes of CCA promoted by ZEB1-AS1 dysregulation were rescued separately through interfering miR-133b and HOXB8, suggesting AR/ZEB1-AS1/miR-133b/HOXB8 exerted crucial functions in tumorigenesis and progression of CCA.
Collapse
Affiliation(s)
- Xingming Jiang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinglin Li
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Weina Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zengtao Hu
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuqiao Zhao
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yunfu Cui
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
21
|
Yan X, Yu H, Liu Y, Hou J, Yang Q, Zhao Y. miR-27a-3p Functions as a Tumor Suppressor and Regulates Non-Small Cell Lung Cancer Cell Proliferation via Targeting HOXB8. Technol Cancer Res Treat 2020; 18:1533033819861971. [PMID: 31319766 PMCID: PMC6640059 DOI: 10.1177/1533033819861971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-27a-3p has been implicated to play crucial roles in human cancers. However, the biological role and underlying mechanisms of microRNA-27a-3p in regulating nonsmall lung cancer remain unclear. MicroRNA-27a-3p expression levels in non-small lung cancer cell lines were detected by quantitative real-time polymerase chain reaction, using a normal cell line as control. The effects of microRNA-27a-3p on cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 assay and flow cytometry assay. Luciferase activity reporter assay and Western blot were conducted to validate the potential targets of miR27a-3p after preliminary screening by TargetScan. Effect of microRNA-27a-3p or homeobox B8 on the overall survival of patients with non-small lung cancer was analyzed at Kaplan-Meier Plotter website. MicroRNA-27a-3p expression levels were significantly reduced in non-small lung cancer cell lines compared with normal cell line. Overexpression of microRNA-27a-3p inhibits non-small lung cancer cell proliferation but promotes cell apoptosis. Homeobox B8 was further validated as a functional target of microRNA-27a-3p. Collectively, our results indicated that microRNA-27a-3p acts as a tumor suppressor in non-small lung cancer via targeting homeobox B8.
Collapse
Affiliation(s)
- Xiaohong Yan
- Department of Medical Oncology, Baoji Municipal Central Hospital, Baoji, People’s Republic of China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Yao Liu
- Department of Medical Oncology, Baoji Municipal Central Hospital, Baoji, People’s Republic of China
| | - Jie Hou
- Department of Medical Oncology, Baoji Municipal Central Hospital, Baoji, People’s Republic of China
| | - Qiao Yang
- Department of Medical Oncology, Baoji Municipal Central Hospital, Baoji, People’s Republic of China
| | - Yaning Zhao
- Department of Medical Oncology, Baoji Municipal Central Hospital, Baoji, People’s Republic of China
- Yaning Zhao, PhD, Department of Medical Oncology, Baoji Municipal Central Hospital, No. 8 Jiangtan Road, Weibin District, Baoji 721008, People’s Republic of China.
| |
Collapse
|
22
|
Zhang L, Wang Y, Zhang L, You G, Li C, Meng B, Zhou M, Zhang M. LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis. Cancer Cell Int 2019; 19:320. [PMID: 31827394 PMCID: PMC6889337 DOI: 10.1186/s12935-019-1036-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic cancer (PC) is one of the deadliest cancers about the digestive system. Recent researches have validated that long non-coding RNAs (lncRNAs) play vital roles in various cancers, while the function of LINC01006 in PC is rarely clarified. Aim of the study Investigation of the specific role of LINC01006 in PC. Methods LINC01006 expression was examined by RT-qPCR. CCK-8, EdU, transwell, wound healing, and western blot assays were carried out to explore the function of LINC01006 in PC. The interaction among LINC01006, miR-2682-5p and HOXB8 was verified by luciferase reporter, RIP and ChIP assays. Results The expression of LINC01006 was markedly upregulated in PC tissues and cells. Furthermore, LINC01006 knockdown inhibited PC cell proliferation, invasion and migration, and upregulation of LINC01006 led to the opposite results. Besides, miR-2682-5p expression was downregulated and negatively regulated by LINC01006 in PC. Meanwhile, LINC01006 could bind with miR-2682-5p in PC. Moreover, miR-2682-5p negatively regulated HOXB8 expression and there was a binding site between miR-2682-5p and HOXB8 in PC. Additionally, miR-2682-5p overexpression or HOXB8 knockdown rescued the promotive effects of LINC01006 upregulation on PC cell progression. Similarly, miR-2682-5p inhibition or HOXB8 overexpression countervailed the repressive role of LINC01006 downregulation in PC cell progression. In addition, the transcription factor HOXB8 could activate LINC01006 transcription in PC. Conclusions LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis, which may facilitate the treatment for PC.
Collapse
Affiliation(s)
- Luyang Zhang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Yunjian Wang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Ling Zhang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Guohua You
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Congyu Li
- 2Department of Ultrasonography, Affiliated of Cancer Hospital of Zhengzhou University, Zhengzhou, 450008 Henan China
| | - Bo Meng
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Minghe Zhou
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Min Zhang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| |
Collapse
|
23
|
Yu M, Zhan J, Zhang H. HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cell Signal 2019; 66:109469. [PMID: 31733300 DOI: 10.1016/j.cellsig.2019.109469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
HOX family transcription factors belong to a highly conserved subgroup of the homeobox superfamily that determines cellular fates in embryonic morphogenesis and the maintenance of adult tissue architecture. HOX family transcription factors play key roles in numerous cellular processes including cell growth, differentiation, apoptosis, motility, and angiogenesis. As tumor promoters or suppressors HOX family members have been reported to be closely related with a variety of cancers. They closely regulate tumor initiation and growth, invasion and metastasis, angiogenesis, anti-cancer drug resistance and stem cell origin. Here, we firstly described the pivotal roles of HOX transcription factors in tumorigenesis. Then, we summarized the main signaling pathways regulated by HOX transcription factors, including Wnt/β-catenin, transforming growth factor β, mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor-κB signalings. Finally, we outlined the important post-translational modifications of HOX transcription factors and their regulation in cancers. Future research directions on the HOX transcription factors are also discussed.
Collapse
Affiliation(s)
- Miao Yu
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
24
|
Homeobox B8 Targets Sterile Alpha Motif Domain-Containing Protein 9 and Drives Glioma Progression. Neurosci Bull 2019; 36:359-371. [PMID: 31646435 DOI: 10.1007/s12264-019-00436-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most commonly occurring tumors of the central nervous system. Glioblastoma multiforme (GBM) is the most malignant and aggressive brain cancer in adults. Further understanding of the mechanisms underlying the aggressive nature of GBM is urgently needed. Here we identified homeobox B8 (HOXB8), a member of the homeobox family, as a crucial contributor to the aggressiveness of GBM. Data mining of publicly accessible RNA sequence datasets and our patient cohorts confirmed a higher expression of HOXB8 in the tumor tissue of GBM patients, and a strong positive correlation between the expression level and pathological grading of tumors and a negative correlation between the expression level and the overall survival rate. We next showed that HOXB8 promotes the proliferation and migration of glioblastoma cells and is crucial for the activation of the PI3K/AKT pathway and expression of epithelial-mesenchymal transition-related genes, possibly through direct binding to the promoter of SAMD9 (Sterile Alpha Motif Domain-Containing Protein 9) and activating its transcription. Collectively, we identified HOXB8 as a critical contributor to the aggressiveness of GBM, which provides insights into a potential therapeutic target for GBM and opens new avenues for improving its treatment outcome.
Collapse
|
25
|
Ying Y, Wang Y, Huang X, Sun Y, Zhang J, Li M, Zeng J, Wang M, Xiao W, Zhong L, Xu B, Li L, Tao Q, Wang X, Shu XS. Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1. Oncogene 2019; 39:1004-1017. [DOI: 10.1038/s41388-019-1013-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
|
26
|
Kuo TL, Cheng KH, Chen LT, Hung WC. Deciphering The Potential Role of Hox Genes in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11050734. [PMID: 31137902 PMCID: PMC6562939 DOI: 10.3390/cancers11050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The Hox gene family plays an important role in organogenesis and animal development. Currently, 39 Hox genes that are clustered in four chromosome regions have been identified in humans. Emerging evidence suggests that Hox genes are involved in the development of the pancreas. However, the expression of Hox genes in pancreatic tumor tissues has been investigated in only a few studies. In addition, whether specific Hox genes can promote or suppress cancer metastasis is not clear. In this article, we first review the recent progress in studies on the role of Hox genes in pancreatic cancer. By comparing the expression profiles of pancreatic cancer cells isolated from genetically engineered mice established in our laboratory with three different proliferative and metastatic abilities, we identified novel Hox genes that exhibited tumor-promoting activity in pancreatic cancer. Finally, a potential oncogenic mechanism of the Hox genes was hypothesized.
Collapse
Affiliation(s)
- Tzu-Lei Kuo
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
27
|
Silencing of hsa_circ_0004771 inhibits proliferation and induces apoptosis in breast cancer through activation of miR-653 by targeting ZEB2 signaling pathway. Biosci Rep 2019; 39:BSR20181919. [PMID: 30979827 PMCID: PMC6522819 DOI: 10.1042/bsr20181919] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Circular RNAs (circRNAs) have been reported as the competing endogenous RNAs (ceRNAs) to sponge microRNAs (miRNAs) implicating in the initiation and progression of breast cancer. However, the functions of circRNAs in breast cancer have not been completely clarified. In the present study, we aimed to identify differentially expressed circRNAs in breast cancer tumor tissues, and their roles and downstream targets were investigated in the progression of breast cancer. Methods: High-throughput circRNA sequencing was performed to detect the differentially expressed circRNAs. The CCK-8 and flow cytometry were performed to measure the cell viability and apoptosis in breast cancer cells. Gene and protein expression were assayed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Results: hsa_circ_0004771 and Zinc finger E-box binding homeobox 2 (ZEB2) expression levels were up-regulated and positively correlated in breast cancer tumor tissues. In addition, the expression levels of miR-653 were reduced in breast cancer tumor tissues. We also found that hsa_circ_0004771 functioned as a sponge of miR-653 to inhibit its expression. miR-653 as a post-transcriptional regulator down-regulated the expression of ZEB2 by binding to its 3′-UTR. Interestingly, a significant inverse correlation was observed between miR-653 and hsa_circ_0004771 or ZEB2 expression in breast cancer tumor tissues. Knockdown of hsa_circ_0004771 and ZEB2 served as equally authentic of miR-653 mimics to induce growth inhibition and apoptosis in breast cancer cells. Conclusion: Hsa_circ_0004771/miR-653/ZEB2 regulatory feedback revealed a new molecular mechanism in the pathogenesis of breast cancer, which might provide novel therapeutic targets for the treatment of breast cancer.
Collapse
|
28
|
Ding J, Wu W, Yang J, Wu M. Long non-coding RNA MIF-AS1 promotes breast cancer cell proliferation, migration and EMT process through regulating miR-1249-3p/HOXB8 axis. Pathol Res Pract 2019; 215:152376. [PMID: 31097355 DOI: 10.1016/j.prp.2019.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/03/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is one of the leading cause of cancer-related death among females worldwide. Mounting evidences indicate that long non-coding RNAs (lncRNAs) were involved in tumor progression by acting as either oncogenes or tumor suppressors in multiple cancers. In this study, we focused on the function and mechanism of lncRNA Migration Inhibitory Factor Antisense RNA 1 (MIF-AS1) in BC. qRT-PCR showed that MIF-AS1 was upregulated in BC tissues and cells. To detect its bio-function, a series of loss-of-function assays were carried out. Thereafter, we found that MIF-AS1 depletion inhibited BC cell proliferation, migration and epithelial-mesenchymal transition (EMT). Recently, increasing studies indicate that lncRNAs can function as competing endogenous RNAs (ceRNAs). Using bioinformatics analysis and luciferase reporter assay, we identified that MIF-AS1 regulated the level of Homeobox B8 (HOXB8) via binding to miR-1249-3p. Taken all together, our findings proved that MIF-AS1 acted as a ceRNA by modulating miR-1249-3p/HOXB8 axis in breast cancer. LncRNA MIF-AS1 might be a new biomarker and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Jinhua Ding
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China
| | - Weizhu Wu
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China.
| | - Jiahui Yang
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China
| | - Minhua Wu
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang Province, 315000, China
| |
Collapse
|
29
|
Wang T, Lin F, Sun X, Jiang L, Mao R, Zhou S, Shang W, Bi R, Lu F, Li S. HOXB8 enhances the proliferation and metastasis of colorectal cancer cells by promoting EMT via STAT3 activation. Cancer Cell Int 2019; 19:3. [PMID: 30622439 PMCID: PMC6317211 DOI: 10.1186/s12935-018-0717-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that the expression of homeobox8 (HOXB8) is higher in colorectal cancer (CRC) tissues than in normal tissues; however, the precise role of HOXB8 in human CRC cells remains to be elucidated. METHODS We generated lentiviral constructs to overexpress and silence HOXB8 in CRC cell lines, and examined their biological functions through MTT, wound healing, colony and transwell, expression of signal transducer and activator of transcription 3 (STAT3) and epithelial-mesenchymal transition (EMT) related factors through western-blot. RESULTS HOXB8 knockdown inhibited cellular proliferation and invasion in vitro as well as carcinogenesis and metastasis in vivo. HOXB8 also induced EMT, which is characterized by the down-regulation of E-cadherin and the up-regulation of Vimentin, N-cadherin, Twist, Zeb1 and Zeb2. Moreover, HOXB8 activated STAT3, which is known to play an oncogenic role in diverse human malignancies. CONCLUSIONS Our results indicate that HOXB8 may be an independent prognostic factor in CRC. Therefore, deserved a deeper research.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feiyan Lin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuecheng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruibo Mao
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Shenyue Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjing Shang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruichun Bi
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengying Lu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaotang Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
30
|
Wu Y, Peng J. RETRACTED: miR-27b Targets HOXB8 to Inhibit Malignant Behaviors of Osteosarcoma. Technol Cancer Res Treat 2019; 18:1533033819870791. [PMID: 34486446 PMCID: PMC6732855 DOI: 10.1177/1533033819870791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs function as either tumor suppressor or oncogene in human cancers. This study aimed to explore the role of miR-27b in osteosarcoma. Expression of miR-27b or homeobox B8 in osteosarcoma cell lines was analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Luciferase activity reporter assay and Western blot were conducted to explore the association between miR-27b and homeobox B8. Cell Counting Kit-8, colony formation assay, and wound-healing assay were performed to investigate the role of miR-27b or homeobox B8 on cell proliferation, colony formation, and cell migration. Expression of miR-27b was significantly reduced, while homeobox B8 was increased in osteosarcoma cell lines. In addition, homeobox B8 was validated as a direct target of homeobox B8. Moreover, miR-27b regulates osteosarcoma cell proliferation, colony formation, and migration through targeting homeobox B8. Taken together, our study provides novel insight into the progression of osteosarcoma, and the miR-27b–homeobox B8 axis identified may be developed as therapeutic targets against hepatocellular carcinoma in the future.
Collapse
Affiliation(s)
- Yingyong Wu
- Orthopaedic Eight Disease Area, Mindong Hospital, Ningde, People’s Republic
of China
| | - Jinyun Peng
- Mindong Hospital, Ningde, People’s Republic of China
| |
Collapse
|
31
|
Zhang Y, Lin S, Chen Y, Yang F, Liu S. LDH-Apromotes epithelial-mesenchymal transition by upregulating ZEB2 in intestinal-type gastric cancer. Onco Targets Ther 2018; 11:2363-2373. [PMID: 29740212 PMCID: PMC5931238 DOI: 10.2147/ott.s163570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction Epithelial-mesenchymal transition (EMT) is regarded as a crucial process of invasion and metastasis, which contribute greatly to cancer-related relapse and death. Based on research results that hypoxia can trigger gastric cancer EMT and decreasing lactate production can selectively kill hypoxic cancer cells, we infer that lactate dehydrogenase A (LDH-A) transforming pyruvate into lactate is at least in part responsible for poor prognosis of gastric cancer. Materials and methods We used siRNA to knock down LDH-A in intestinal-type gastric cancer (ITGC) cell lines SGC7901 and BGC823. Western blot and RT-PCR were applied to detect mRNA and protein expression of EMT-related genes, respectively. Transwell invasion assay and migration assay were applied to study invasive and migratory abilities, respectively. Survival analysis was used to evaluate prognostic values. Results and conclusion The results of in vitro experiment demonstrated that LDH-A facilitates ITGC cells’ invasion and migration by upregulating ZEB2. The positive correlation between LDH-A and ZEB2 was verified in 371 ITGC specimens. Survival analysis indicated that co-expression of LDH-A/ZEB2 had synergetic power to predict overall survival. Thus, we conclude that the close relationship between LDH-A and ZEB2 may offer a potential therapeutic strategy for ITGC.
Collapse
Affiliation(s)
- Yongjie Zhang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Sen Lin
- Clinical Laboratory, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Yan Chen
- Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Fei Yang
- Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Shenlin Liu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Liang L, Zeng M, Pan H, Liu H, He Y. Nicotinamide N-methyltransferase promotes epithelial-mesenchymal transition in gastric cancer cells by activating transforming growth factor-β1 expression. Oncol Lett 2018; 15:4592-4598. [PMID: 29541230 PMCID: PMC5835905 DOI: 10.3892/ol.2018.7885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that nicotinamide N-methyltransferase (NNMT) is aberrantly expressed in a number of tumors. In the present study, it was demonstrated that the gene and protein levels of NNMT were significantly increased in gastric cancer cells. Furthermore, upregulation of NNMT significantly increased the expression of mesenchymal markers, including α-smooth muscle actin (SMA), vimentin and fibronectin, but decreased the levels of epithelial cadherin. Since transforming growth factor (TGF)-β1 may serve a key function in epithelial-mesenchymal transition (EMT), the effects of NNMT on the expression of TGF-β1 were investigated in BGC-823 cells. The results demonstrated that overexpression of NNMT significantly induced the expression of TGF-β1. However, knockdown of NNMT inhibited the expression of TGF-β1, mothers against decapentaplegic homolog (Smad)2 and α-SMA. Additionally, pre-incubation with TGF-β1 partially eliminated NNMT-mediated changes in EMT. Collectively, the results demonstrated that upregulation of NNMT in gastric cancer cells may increase the expression of TGF-β1, therefore activating TGF-β1/Smad signaling, which in turn promotes EMT.
Collapse
Affiliation(s)
- Liang Liang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Ming Zeng
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Haixia Pan
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Hao Liu
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Yangke He
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| |
Collapse
|