1
|
Lou Y, Wang Y, Lu J, Chen X. MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects. Nanomedicine (Lond) 2025; 20:1181-1194. [PMID: 40231694 DOI: 10.1080/17435889.2025.2492542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
Recently, the regulatory effects of microRNAs (miRNAs) on gene expression have been exploited for applications in the diagnosis and treatment of cancer, neurological diseases, and cardiovascular diseases. However, the susceptibility of miRNAs to degradation during somatic circulation and the challenges associated with their delivery to target tissues and cells have limited the clinical application of miRNAs. For application in tumor therapy, it is essential for miRNAs to specifically target cancer cells. Therefore, various novel miRNA delivery systems that protect miRNA against the activity of serum nuclease and deliver miRNA to target cells have been developed and optimized. This review introduces the passive and active targeting strategies of nanoparticles, summarizes the recent progress of miRNA nanocarriers with tumor-targeting ability, and discusses various nanoparticle delivery systems and their antitumor applications. Additionally, this review focuses on the translational challenges and potential strategies for advancing miRNA-based therapies into the clinic.
Collapse
Affiliation(s)
- Yang Lou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yutian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2025; 480:1431-1448. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
3
|
Nele V, Campani V, Alia Moosavian S, De Rosa G. Lipid nanoparticles for RNA delivery: Self-assembling vs driven-assembling strategies. Adv Drug Deliv Rev 2024; 208:115291. [PMID: 38514018 DOI: 10.1016/j.addr.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Among non-viral vectors, lipid nanovectors are considered the gold standard for the delivery of RNA therapeutics. The success of lipid nanoparticles for RNA delivery, with three products approved for human use, has stimulated further investigation into RNA therapeutics for different pathologies. This requires decoding the pathological intracellular processes and tailoring the delivery system to the target tissue and cells. The complexity of the lipid nanovectors morphology originates from the assembling of the lipidic components, which can be elicited by various methods able to drive the formation of nanoparticles with the desired organization. In other cases, pre-formed nanoparticles can be mixed with RNA to induce self-assembly and structural reorganization into RNA-loaded nanoparticles. In this review, the most relevant lipid nanovectors and their potentialities for RNA delivery are described on the basis of the assembling mechanism and of the particle architecture.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Seyedeh Alia Moosavian
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy.
| |
Collapse
|
4
|
Wu Y, Zhang J, Zhao J, Wang B. Folate-modified liposomes mediate the co-delivery of cisplatin with miR-219a-5p for the targeted treatment of cisplatin-resistant lung cancer. BMC Pulm Med 2024; 24:159. [PMID: 38561695 PMCID: PMC10986081 DOI: 10.1186/s12890-024-02938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cisplatin (DDP) resistance, often leading to first-line chemotherapy failure in non-small cell lung cancer (NSCLC), poses a significant challenge. MiR-219a-5p has been reported to enhance the sensitivity of human NSCLC to DDP. However, free miR-219a-5p is prone to degradation by nucleases in the bloodstream, rendering it unstable. In light of this, our study developed an efficient nanodrug delivery system that achieved targeted delivery of DDP and miR-219a-5p by modifying liposomes with folate (FA). Based on the results of material characterization, we successfully constructed a well-dispersed and uniformly sized (approximately 135.8 nm) Lipo@DDP@miR-219a-5p@FA nanodrug. Agarose gel electrophoresis experiments demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited good stability in serum, effectively protecting miR-219a-5p from degradation. Immunofluorescence and flow cytometry experiments revealed that, due to FA modification, Lipo@DDP@miR-219a-5p@FA could specifically bind to FA receptors on the surface of tumor cells (A549), thus enhancing drug internalization efficiency. Safety evaluations conducted in vitro demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited no significant toxicity to non-cancer cells (BEAS-2B) and displayed excellent blood compatibility. Cellular functional experiments, apoptosis assays, and western blot demonstrated that Lipo@DDP@miR-219a-5p@FA effectively reversed DDP resistance in A549 cells, inhibited cell proliferation and migration, and further promoted apoptosis. In summary, the Lipo@DDP@miR-219a-5p@FA nanodrug, through specific targeting of cancer cells and reducing their resistance to DDP, significantly enhanced the anti-NSCLC effects of DDP in vitro, providing a promising therapeutic option for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Jiandong Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Junjun Zhao
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Bin Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
5
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Gilyazova I, Gimalova G, Nizamova A, Galimova E, Ishbulatova E, Pavlov V, Khusnutdinova E. Non-Coding RNAs as Key Regulators in Lung Cancer. Int J Mol Sci 2023; 25:560. [PMID: 38203731 PMCID: PMC10778604 DOI: 10.3390/ijms25010560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
For several decades, most lung cancer investigations have focused on the search for mutations in candidate genes; however, in the last decade, due to the fact that most of the human genome is occupied by sequences that do not code for proteins, much attention has been paid to non-coding RNAs (ncRNAs) that perform regulatory functions. In this review, we principally focused on recent studies of the function, regulatory mechanisms, and therapeutic potential of ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA) in different types of lung cancer.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Aigul Nizamova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
| | - Elmira Galimova
- Department of Pathological Physiology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina Ishbulatova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
7
|
Gareev I, Beylerli O, Tamrazov R, Ilyasova T, Shumadalova A, Du W, Yang B. Methods of miRNA delivery and possibilities of their application in neuro-oncology. Noncoding RNA Res 2023; 8:661-674. [PMID: 37860265 PMCID: PMC10582311 DOI: 10.1016/j.ncrna.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
In the current phase of medical progress, practical neuro-oncology faces critical challenges. These include the quest for and development of innovative methodological approaches, as well as the enhancement of conventional therapies to boost their efficacy in treating brain tumors, especially the malignant varieties. Recent strides in molecular and cellular biology, molecular genetics, and immunology have charted the primary research pathways in the development of new anti-cancer medications, with a particular focus on microRNA (miRNA)-based therapy. MiRNAs possess the ability to function as suppressors of tumor growth while also having the potential to act as oncogenes. MiRNAs wield control over numerous processes within the human body, encompassing tumor growth, proliferation, invasion, metastasis, apoptosis, angiogenesis, and immune responses. A significant impediment to enhancing the efficacy of brain tumor treatment lies in the unresolved challenge of traversing the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to deliver therapeutic agents directly to the tumor tissue. Presently, there is a worldwide effort to conduct intricate research and design endeavors aimed at creating miRNA-based dosage forms and delivery systems that can effectively target various structures within the central nervous system (CNS). MiRNA-based therapy stands out as one of the most promising domains in neuro-oncology. Hence, the development of efficient and safe methods for delivering miRNA agents to the specific target cells within brain tumors is of paramount importance. In this study, we will delve into recent findings regarding various methods for delivering miRNA agents to brain tumor cells. We will explore the advantages and disadvantages of different delivery systems and consider some clinical aspects of miRNA-based therapy for brain tumors.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Rasim Tamrazov
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| |
Collapse
|
8
|
dos Santos SN, Junior DSG, Pereira JPM, Iadocicco NM, Silva AH, do Nascimento T, Dias LAP, de Oliveira Silva FR, Ricci-Junior E, Santos-Oliveira R, Bernardes ES. Development of glycan-targeted nanoparticles as a novel therapeutic opportunity for gastric cancer treatment. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
AbstractChemotherapy resistance remains a major cause of therapeutic failure in gastric cancer. The combination of genetic material such as interference RNAs (iRNAs) to silence cancer-associated genes with chemotherapeutics has become a novel approach for cancer treatment. However, finding the right target genes and developing non-toxic, highly selective nanocarrier systems remains a challenge. Here we developed a novel sialyl-Tn-targeted polylactic acid—didodecyldimethylammonium bromide nanoparticle (PLA-DDAB) nanoparticles (NPs) loaded with dsRNA targeting ST6GalNac-I and/or galectin-3 genes. Using single photon emission computed tomography (SPECT), we have demonstrated that 99mtechnetium radiolabeled sialyl-Tn-targeted nanoparticles can reach the tumor site and downregulate ST6GalNAc-I and galectin-3 RNA expression levels when injected intravenously. Furthermore, using an in vivo gastric tumor model, these nanoparticles increased the effectiveness of 5-FU in reducing tumor growth. Our findings indicate that cancer-associated glycan-targeted NPs loaded with dsRNA targeting ST6GalNAc-I and/or galectin-3 in combination with standard chemotherapy, have the potential to become a novel therapeutic tool for gastric cancer.
Collapse
|
9
|
Min SH, Lei W, Jun CJ, Yan ZS, Guang YX, Tong Z, Yong ZP, Hui LZ, Xing H. Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy. Expert Opin Investig Drugs 2023; 32:723-739. [PMID: 37668152 DOI: 10.1080/13543784.2023.2254683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Lung cancer is one of the cancer types with the highest mortality rate, exploring a more effective treatment modality that improves therapeutic efficacy while mitigating side effects is now an urgent requirement. Designing multifunctional nanoparticles can be used to overcome the limitations of drugs and conventional drug delivery systems. Nanotechnology has been widely researched, and through different needs, suitable nanocarriers can be selected to load anti-cancer drugs to improve the therapeutic effect. It is foreseeable that with the rapid development of nanotechnology, more and more lung cancer patients will benefit from nanotechnology. This paper reviews the merits of various multifunctional nanoparticles in the treatment of lung cancer to provide novel ideas for lung cancer treatment. AREAS COVERED This review focuses on summarizing various nanoparticles for targeted lung cancer therapy and their advantages and disadvantages, using nanoparticles loaded with anti-cancer drugs, delivered to lung cancer sites, enhancing drug half-life, improving anti-cancer drug efficacy and reducing side effects. EXPERT OPINION The delivery mode of nanoparticles with superior pharmacokinetic properties in the in vivo circulation enhances the half-life of the drug, and provides tissue-targeted selectivity and the ability to overcome biological barriers, bringing a revolution in the field of oncology.
Collapse
Affiliation(s)
- Shen Hui Min
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Jia Jun
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Shao Yan
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Xu Guang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Tong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Pei Yong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhen Hui
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huang Xing
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
YÜKSEL A, DAĞLIOĞLU Y. Kanser Tedavisi İçin MikroRNA’ların Çok İşlevli Nano-taşıyıcılar İle Dağıtımı. ARŞIV KAYNAK TARAMA DERGISI 2023. [DOI: 10.17827/aktd.1181394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Hücre proliferasyonu ve apoptozis gibi kanserden sorumlu biyolojik süreçlerde etkili olan miRNA’lar, farklı kanser türleri ve evrelerinin teşhis ve tedavisinde yeni biyobelirteçler olarak işlev görür. Bunun yanı sıra bazı miRNA’ların onkogen ve tümör baskılayıcı özelliği nanoteknoloji ile entegre edilmesiyle kanser oluşumunu engeller. Son yıllarda miRNA’ların kanser tedavisinde kullanılmasını sağlayan diğer bir yaklaşım ise nano-taşıyıcılardır. İlaçlar, peptitler veya genler gibi aktif bileşikleri taşımak için geliştirilen bu nano-taşıyıcıların kanser tedavisinde kullanımları umut vadetmektedir. Bu derleme, miRNA dağıtımında kullanılan nano-taşıyıcı türleri hakkında kısa bir bilgi sunmaktadır. Ayrıca nanoteknolojideki gelişmelerle birlikte miRNA’ların kanser teşhis ve tedavisinde kullanımın yanısıra gen susturma mekanizması olan RNA interferansından kısaca bahsedilmektedir.
Collapse
|
11
|
Kiełbowski K, Ptaszyński K, Wójcik J, Wojtyś ME. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv Med Sci 2023; 68:121-137. [PMID: 36933328 DOI: 10.1016/j.advms.2023.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Lung cancer is the second most frequently diagnosed cancer worldwide and a leading cause of cancer-related deaths. Non-small cell lung carcinoma (NSCLC) represents 85% of all cases. Accumulating evidence highlights the outstanding role of non-coding RNA (ncRNA) in regulating the tumorigenesis process by modulating crucial signaling pathways. Micro RNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are either up- or downregulated in lung cancer patients and can promote or suppress the progression of the disease. These molecules interact with messenger RNA (mRNA) and with each other to regulate gene expression and stimulate proto-oncogenes or silence tumor suppressors. NcRNAs provide a new strategy to diagnose or treat lung cancer patients and multiple molecules have already been identified as potential biomarkers or therapeutic targets. The aim of this review is to summarize the current evidence on the roles of miRNA, lncRNA and circRNA in NSCLC biology and present their clinical potential.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
12
|
Murugan D, Rangasamy L. A perspective to weaponize microRNAs against lung cancer. Noncoding RNA Res 2023; 8:18-32. [PMID: 36262424 PMCID: PMC9556932 DOI: 10.1016/j.ncrna.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
microRNAs are regulatory RNAs that silence specific mRNA by binding to it, inducing translational repression. Over the recent decades since the discovery of RNA interference, the field of microRNA therapeutics has expanded tremendously. The role of miRNAs in disease development has attracted researchers to investigate their potential in therapeutics. In lung cancer, multiple miRNAs are deregulated, and their involvement is observed in cell proliferation, immunomodulation, angiogenesis, and epithelial-mesenchymal transition. Thus, synthetic oligonucleotides are developed to downregulate the overexpressed miRNA or to upregulate the repressed miRNA. However, their clinical efficiency is limited due to the requirement for an effective delivery strategy. Advances in the current understanding of nanotechnology, biomaterial science, and disease molecular pathology have increased the chances of overcoming the limitations of miRNA-based therapy. This review enlists downregulated and upregulated miRNAs in lung cancer. This review also highlights the major contributions to miRNA-based therapeutics for lung cancer and strategies to overcome endosomal barriers. It also attempts to understand the nuances between current advancements in delivery methods, advantages, disadvantages, and practical issues for the large-scale development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
13
|
Zhou X, Chen B, Zhang Z, Huang Y, Li J, Wei Q, Cao D, Ai J. Crosstalk between Tumor-Associated Macrophages and MicroRNAs: A Key Role in Tumor Microenvironment. Int J Mol Sci 2022; 23:13258. [PMID: 36362044 PMCID: PMC9653885 DOI: 10.3390/ijms232113258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
As an in-depth understanding of immunotherapy continues to grow, current anticancer therapy research is increasingly focused on the tumor microenvironment (TME). MicroRNAs (miRNAs) play crucial roles in the regulation of genetic information and expression and mediate interactions between tumor cells and components in the TME, such as tumor-associated macrophages (macrophages). Macrophages are abundant in the TME, and their different polarization directions can promote or inhibit tumor growth and progression. By regulating biological behaviors, such as macrophage recruitment, infiltration, and polarization, miRNAs can affect various molecular pathways to regulate tumor progression and treatment response. In this review, we discuss in detail the effects of macrophages on tumors and the multifaceted effects of miRNAs on macrophages. We also discuss the potential clinical applications and prospects of targeted therapy based on miRNAs, novel clinical biomarkers, and drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehong Cao
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Yan H, Tang S, Tang S, Zhang J, Guo H, Qin C, Hu H, Zhong C, Yang L, Zhu Y, Zhou H. miRNAs in anti-cancer drug resistance of non-small cell lung cancer: Recent advances and future potential. Front Pharmacol 2022; 13:949566. [PMID: 36386184 PMCID: PMC9640411 DOI: 10.3389/fphar.2022.949566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Clinical success is suboptimal owing to late diagnosis, limited treatment options, high recurrence rates, and the development of drug resistance. MicroRNAs (miRNAs), a range of small endogenous non-coding RNAs that are 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence has revealed the pivotal roles of miRNAs in regulating cell proliferation, migration, invasion, and metastasis in NSCLC. Recently, several studies have demonstrated that miRNAs are strongly associated with resistance to anti-cancer drugs, ranging from traditional chemotherapeutic and immunotherapy drugs to anti-vascular drugs, and even during radiotherapy. In this review, we briefly introduce the mechanism of miRNA dysregulation and resistance to anti-tumor therapy in NSCLC, and summarize the role of miRNAs in the malignant process of NSCLC. We then discuss studies of resistance-related miRNAs in chemotherapy, radiotherapy, targeted therapy, immunotherapy, and anti-vascular therapy in NSCLC. Finally, we will explore the application prospects of miRNA, an emerging small molecule, for future anti-tumor therapy. This review is the first to summarize the latest research progress on miRNAs in anti-cancer drug resistance based on drug classification, and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Chuan Zhong
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Yunhe Zhu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| |
Collapse
|
15
|
Wang C, Han J, Liu M, Huang Y, Zhou T, Jiang N, Hui H, Xu K. RNA-sequencing of human aortic valves identifies that miR-629-3p and TAGLN miRNA-mRNA pair involving in calcified aortic valve disease. J Physiol Biochem 2022; 78:819-831. [PMID: 35776288 DOI: 10.1007/s13105-022-00905-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/11/2022] [Indexed: 12/20/2022]
Abstract
This study aimed to uncover the microRNA and messenger RNA (miRNA/mRNA) interactions in the pathophysiological process of calcified aortic valve disease (CAVD) of the human aortic valve. RNA sequencing of six selected samples (3 healthy control samples vs. 3 CAVD samples) was performed to obtain mRNA and miRNA sequences, and differential expression (DE) analysis of miRNA and mRNAs was performed. To build a CAVD-specific miRNA-mRNA interactome, the upregulated mRNAs and downregulated miRNAs were selected, followed by the establishment of inverse DE of mRNA-miRNA co-expression network based on Pearson's correlation coefficient using miRanda in the R language software. Subsequently, pathway enrichment analysis was performed to elucidate CAVD-related pathways that were likely mediated by miRNA regulatory mechanisms. In addition, miRNAs with an mRNA correlation greater than 0.9 in the co-expression network were selected for anti-calcification verification in a CAVD cellular model. We identified 216 mRNAs (99 downregulated and 117 upregulated) and 602 miRNAs (371 downregulated and 231 upregulated) that were differentially expressed between CAVD and healthy aortic valves. After applying Pearson's correlation toward miRNA-mRNA targets, a regulatory network of 67 miRNAs targeting 76 mRNAs was created. The subsequent pathway enrichment analysis of these targeted mRNAs elucidated that genes within the focal adhesion pathway are likely mediated by miRNA regulatory mechanisms. The selected hsa-miR-629-3p and TAGLN pair exhibited anti-calcification effects on osteogenic differentiation-induced human aortic valve interstitial cells (hVICs). On integrating the miRNA and mRNA sequencing data for healthy aortic valves and those with CAVD, the CAVD-associated miRNA-mRNA interactome and related pathways were elucidated. Additional cell function data demonstrated anti-calcification effects of the selected hsa-miR-629-3p targeting TAGLN, validating that it is a potential therapeutic target for inhibiting CAVD.
Collapse
Affiliation(s)
- Chunli Wang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Juanjuan Han
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuming Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan Jiang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Haipeng Hui
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
16
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
17
|
MicroRNA-143 act as a tumor suppressor microRNA in human lung cancer cells by inhibiting cell proliferation, invasion, and migration. Mol Biol Rep 2022; 49:7637-7647. [PMID: 35717476 DOI: 10.1007/s11033-022-07580-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/AIM MicroRNAs play crucial roles in controlling cellular biological processes. miR-143 expression is usually downregulated in different cancers. In this study, we focused on exploring the role of miR143 in NSCLC development. METHODS Bioinformatics analyses were used to detect the expression level of miR-143 in lung tumors. The cells were transfected by pCMV-miR-143 vectors. The efficacy of transfection was verified by Flow cytometry. The influence of miR-143 replacement on NSCLC cells migration, proliferation, and apoptosis was detected using wound-healing assay, MTT assay, and DAPI staining, respectively. RESULTS MTT assay revealed that overexpression of miR143 inhibited cell growth and proliferation. Scratch assay results demonstrated that restoration of miR143 suppressed cell migration. The qRT-PCR assay was further used to detect the assumed relationship between miR143 and apoptotic and metastatic-related genes. CONCLUSION The findings showed that miR-143 could reduce cell proliferation, invasion, and migration by reducing CXCR4, Vimentin, MMP-1, Snail-1, C-myc expression level, and increasing E-cadherin expression levels in lung cancer cells and might be a potential target in NSCLC's targeted therapy.
Collapse
|
18
|
Zhou G, Hu T, Du Q, Huang W, Yao C. Nanoparticle-Delivered microRNA-153-3p Alleviates Myocardial Infarction-Induced Myocardial Injury in a Rat Model. ACS Biomater Sci Eng 2022; 8:1696-1705. [PMID: 35255686 DOI: 10.1021/acsbiomaterials.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although microRNA-153-3p (miR-153-3p) has been demonstrated to confer protective roles in ischemia/reperfusion injury, its potential role in myocardial infarction (MI) remains undefined. Small-molecule modifiers and nanoparticles loaded with microRNAs (miRNAs) have emerged as potential therapeutic reagents for MI treatment. In this study, we prepared liposome nanoparticles, hyaluronic acid (HA)-cationic liposomes (CLPs) complex, for the delivery of miR-153-3p and delineated the mechanistic actions of miR-153-3p modified by nHA-CLPs in MI-induced injury. Our data suggested that nHA-CLPs-loaded miR-153-3p protected cardiomyocytes against MI-induced cardiomyocyte apoptosis and myocardial injury. miR-153-3p was bioinformatically predicted and experimentally verified to bind to Krüppel-like factor 5 (KLF5) 3'UTR and negatively regulate its expression. Hypoxia was adopted to stimulate MI-induced injury to cardiomyocytes in vitro, in which miR-153-3p presented anti-apoptotic potential. However, restoration of KLF5 reversed this anti-apoptotic effect of miR-153-3p. Furthermore, KLF5 was demonstrated to be an activator of the NF-κB pathway. KLF5 enhanced cardiomyocyte apoptosis and inflammation under hypoxic conditions through NF-κB pathway activation, while nHA-CLPs-loaded miR-153-3p suppressed inflammation by blocking the NF-κB pathway. Collectively, our findings suggested the cardioprotective role of miR-153-3p against MI and the successful delivery of miR-153-3p by nHA-CLPs. The identification of KLF5-mediated activation of NF-κB pathway as an apoptotic and inflammatory mechanism aids in better understanding of the biology of MI and development of novel therapeutic strategies for MI.
Collapse
Affiliation(s)
- Guozhong Zhou
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Ting Hu
- Department of Hematology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Qian Du
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Wenjun Huang
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Chang Yao
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| |
Collapse
|
19
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Tietz KT, Dehm SM. Androgen receptor variants: RNA-based mechanisms and therapeutic targets. Hum Mol Genet 2021; 29:R19-R26. [PMID: 32412639 DOI: 10.1093/hmg/ddaa089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is the second leading cause of male cancer death in the United States. The androgen receptor (AR) transcription factor is a master regulator of normal glandular homeostasis in the prostate, as well as growth and survival of prostate cancer cells. Therefore, AR-targeted therapies are effective for improving overall survival of patients with advanced prostate cancer that is incurable by surgery or radiation. However, prostate cancer will inevitably progress on AR-targeted therapies to a castration-resistant prostate cancer (CRPC) phenotype that accounts for virtually all prostate cancer-specific death. mRNA transcript variants of the AR gene are expressed in CRPC cells and can be translated to produce AR variant (AR-V) proteins that function as ligand-independent, constitutively active transcription factors. AR-Vs are able to support growth of CRPC cells by promoting expression of AR target genes that are normally suppressed by AR-targeted therapies. Knowledge of mechanisms that govern expression of AR-Vs is incomplete. Studies have shown genomic rearrangements of the AR gene underlie expression of diverse AR-Vs in certain CRPC tumors, but post-transcriptional processes represent a broader regulatory mechanism for expression of AR-Vs in CRPC. This review focuses on alternative splicing, 3' end processing, miRNA-mediated mRNA repression, of AR and AR-V expression and the potential these mechanisms hold as therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Kiel T Tietz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Han F, Chen G, Guo Y, Li B, Sun Y, Qi X, Tian H, Zhao X, Zhang H. MicroRNA-4491 enhances cell proliferation and inhibits cell apoptosis in non-small cell lung cancer via targeting TRIM7. Oncol Lett 2021; 22:591. [PMID: 34149902 PMCID: PMC8200940 DOI: 10.3892/ol.2021.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of non-small cell lung cancer (NSCLC). However, the biological roles of several aberrantly expressed miRNAs have not been explored yet. In the present study, miR-4491 was identified as a novel upregulated miRNA in NSCLC tissues and cell lines. Downregulation of miR-4491 by a miR-4491 inhibitor inhibited the proliferation and triggered the apoptosis of NSCLC cells. Tripartite motif containing 7 (TRIM7), a tumor suppressor gene expressed in NSCLC, was demonstrated in the present study to be directly targeted by miR-4491. This finding was verified by bioinformatics analysis, reverse transcription-quantitative PCR, western blotting and dual luciferase reporter assays. Furthermore, downregulation of miR-4491 inactivated nuclear factor-κB signaling via induction of TRIM7. In addition, TRIM7 silencing attenuated the effect of miR-4491 inhibitor in NSCLC cells. The decreased TRIM7 level in NSCLC tissues was negatively correlated with miR-4491 expression in NSCLC tissues. In conclusion, the findings from this study demonstrated that miR-4491 expression was upregulated in NSCLC tissues and cells and that miR-4491 may promote NSCLC progression via targeting TRIM7.
Collapse
Affiliation(s)
- Fei Han
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Gang Chen
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Yi Guo
- Department of Respiratory Diseases, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Bo Li
- Department of Thoracic Radiotherapy, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Yanlong Sun
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Xiangqian Qi
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Hanji Tian
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Xinfei Zhao
- Taiyuan Jinyu Clinical Laboratory, Taiyuan, Shanxi 030013, P.R. China
| | - Hongguang Zhang
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
22
|
Tian P, Wei JX, Li J, Ren JK, Yang JJ. LncRNA SNHG1 regulates immune escape of renal cell carcinoma by targeting miR-129-3p to activate STAT3 and PD-L1. Cell Biol Int 2021; 45:1546-1560. [PMID: 33739543 DOI: 10.1002/cbin.11595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/03/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Immune escape of renal cell carcinoma (RCC) impacts patient survival. However, the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in RCC immune escape remains unclear. Quantitative real-time PCR and western blotting results revealed that the expression of lncRNA SNHG1 and STAT3 were upregulated in RCC tissues and cells and that the expression of miR-129-3p was downregulated. Enzyme-linked immunosorbent assay results revealed the increased levels of immune-related factors (interferon-γ, tumour necrosis factor α, and interleukin-2) in RCC tissues. SNHG1 knockdown or miR-129-3p overexpression inhibited the proliferation and invasion of A498 and 786-O cells, while the proliferation and cytotoxicity of CD8+ T cells increased, which promoted the secretion of immune-related factors. STAT3 overexpression decreased the protective effect of miR-129-3p overexpression on RCC cell immune escape. In addition, miR-129-3p knockdown and STAT3 overexpression decreased the protective effect of lncRNA SNHG1 knockdown on RCC cell immune escape. In addition, PD-L1 expression was downregulated after lncRNA SNHG1 knockdown but upregulated after miR-129-3p knockdown and STAT3 overexpression. Dual-luciferase assays showed that lncRNA SNHG1 targets miR-129-3p, and miR-129-3p targets STAT3. RNA pull-down and RNA immunoprecipitation assays verified the regulatory relationship between SNHG1 and STAT3. In vivo, shSNHG1 prolonged the overall survival of RCC tumour model mice and inhibited RCC tumour growth and immune escape but increased CD8+ T cell infiltration in mice. Our findings provide an experimental basis for elucidating the molecular mechanisms of immune escape by RCC and reveal a novel target to treat this disease.
Collapse
Affiliation(s)
- Pei Tian
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin-Xing Wei
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Li
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Kai Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin-Jian Yang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Kimna C, Lieleg O. Molecular micromanagement: DNA nanotechnology establishes spatio-temporal control for precision medicine. BIOPHYSICS REVIEWS 2020; 1:011305. [PMID: 38505628 PMCID: PMC10903406 DOI: 10.1063/5.0033378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 03/21/2024]
Abstract
Current advances in DNA nanotechnology pinpoint exciting perspectives for the design of customized, patient-specific treatments. This advance is made possible by the exceptionally high precision and specificity that are typical for DNA base pairing on the one hand and our growing ability to harness those features in synthetic, DNA-based constructs on the other hand. Modern medicine may soon benefit from recent developments in this field, especially regarding the targeted delivery of drugs and the rational interference of synthetic DNA strands with cellular oligonucleotides. In this Review, we summarize selected examples from the area of DNA nanotechnology, where the development of precisely controlled, advanced functional mechanisms was achieved. To demonstrate the high versatility of these rationally designed structures, we categorize the dynamic DNA-based materials suggested for precision medicine according to four fundamental tasks: "hold & release," "heal," "detect & measure," as well as "guide & direct." In all the biomedical applications we highlight, DNA strands not only constitute structural building blocks but allow for creating stimuli-responsive objects, serve as an active cargo, or act as molecular control/guidance tools. Moreover, we discuss several issues that need to be considered when DNA-based structures are designed for applications in the field of precision medicine. Even though the majority of DNA-based objects have not been used in clinical settings yet, recent progress regarding the stability, specificity, and control over the dynamic behavior of synthetic DNA structures has advanced greatly. Thus, medical applications of those nanoscopic objects should be feasible in the near future.
Collapse
|
24
|
Du Y, Zhang J, Meng Y, Huang M, Yan W, Wu Z. MicroRNA-143 targets MAPK3 to regulate the proliferation and bone metastasis of human breast cancer cells. AMB Express 2020; 10:134. [PMID: 32737620 PMCID: PMC7394972 DOI: 10.1186/s13568-020-01072-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) have shown tremendous potential to act as therapeutic targets for cancer treatment. In this context, the present study was designed to investigate the potential of miR-143 in the treatment of breast cancer. Results showed that miR-143 to be significantly (P < 0.05) downregulated in breast cancer tissues and cell lines. The miR-143 has inhibitory effect on CAMA-1cell growth which was manifested as significant (P < 0.05) decline in loss of viability of cancer cells. The loss of cell viability was revealed to be due to the induction of apoptotic cell death as evident from acridine orange/ethidium bromide (AO/EB) and 4',6-diamidino-2-phenylindole (DAPI) staining assays. The apoptotic cell percentage was found to be 35.7% in miR-143 mimics transfected in comparison to 6.4% in miR-NC transfected cells. The western blot analysis showed that miR-143 caused enhancement in Bax and suppression in Bcl-2 expression in CAMA-1 cells. The miR-143 also suppressed the bone metastasis of the CAMA-1 cells by suppressing the expression of Jag1 and deactivation of the Rho-signalling pathway. The transwell assays also showed considerable anti-metastatic effects of miR-143 on CAMA-1 cells. Taken together, miR-143 has growth inhibitory anti-metastatic effect on breast cancer and thus may prove beneficial in breast cancer treatment.
Collapse
Affiliation(s)
- Yiqun Du
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yanchun Meng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingzhu Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wangjun Yan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
| | - Zhiqiang Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
25
|
Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Front Immunol 2020; 11:1167. [PMID: 32595638 PMCID: PMC7300210 DOI: 10.3389/fimmu.2020.01167] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment consists of cancer cells and various stromal cells such as endothelial cells, cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), neutrophils, macrophages, and other innate and adaptive immune cells. Of these innate immune cells, macrophages are an extremely heterogeneous population, and display both pro-inflammatory and anti-inflammatory functions. While M1 macrophages (classically activated macrophages) display anti-tumoral and pro-inflammatory functions, M2 macrophages display pro-tumoral and anti-inflammatory functions. Cellular interactions and molecular factors in the tumor microenvironment affect the polarization of macrophages. We review molecules and immune cells that influence the polarization status of macrophages. Tumor-associated macrophages (TAMs) generally express M2 phenotype, and mediate many processes that include tumor initiation, angiogenesis, and metastasis. A high number of TAMs has been associated with the poor prognosis of cancers. MicroRNAs (miRNAs) have been known to regulate cellular interactions that involve cancer cells and macrophages. Tumor-derived exosomes play critical roles in inducing the M1 or M2-like polarization of macrophages. The roles of exosomal miRNAs from tumor cells in the polarization of macrophages are also discussed and the targets of these miRNAs are presented. We review the effects of exosomal miRNAs from TAMs on cancer cell invasion, growth, and anti-cancer drug resistance. The relevance of exosomal microRNAs (miRNAs) as targets for the development of anti-cancer drugs is discussed. We review recent progress in the development of miRNA therapeutics aimed at elevating or decreasing levels of miRNAs.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
26
|
Solé C, Lawrie CH. MicroRNAs and Metastasis. Cancers (Basel) 2019; 12:cancers12010096. [PMID: 31906022 PMCID: PMC7016783 DOI: 10.3390/cancers12010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis, the development of secondary malignant growths at a distance from the primary site of a cancer, is associated with almost 90% of all cancer deaths, and half of all cancer patients present with some form of metastasis at the time of diagnosis. Consequently, there is a clear clinical need for a better understanding of metastasis. The role of miRNAs in the metastatic process is beginning to be explored. However, much is still to be understood. In this review, we present the accumulating evidence for the importance of miRNAs in metastasis as key regulators of this hallmark of cancer.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Correspondence: or ; Tel.: +34-943-006138
| |
Collapse
|