1
|
Wang Z, Xie X, Xue Y, Chen Y. Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases. BIOLOGY 2025; 14:295. [PMID: 40136551 PMCID: PMC11939885 DOI: 10.3390/biology14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Tryptophan (Trp) is an essential amino acid that must be acquired exclusively through dietary intake. The metabolism of tryptophan plays a critical role in maintaining immune homeostasis and tolerance, as well as in preventing excessive inflammatory responses. Tryptophan-2,3-dioxygenase (TDO2) is a tetrameric heme protein and serves as one of the pivotal rate-limiting enzymes in the first step of tryptophan metabolism. Dysregulation of TDO2 expression has been observed in various digestive system diseases, encompassing those related to the oral cavity, esophagus, liver, stomach, pancreas, and colon and rectum. Digestive system diseases are the most common clinical diseases, with complex clinical manifestations and interrelated symptoms, and have become a research hotspot in the field of medicine. Studies have demonstrated that aberrant TDO2 expression is closely associated with various clinical manifestations and disease outcomes in patients with digestive system disorders. Consequently, TDO2 has garnered increasing recognition as a promising therapeutic target for digestive system diseases in recent years, attracting growing attention. This article provides a brief overview of the role of TDO2 in the tryptophan pathway, emphasizing its significant involvement in diseases of the digestive system. Strategies targeting TDO2 through specific inhibitors suggest considerable promise in enhancing therapeutic outcomes for digestive diseases. Thus, this review concludes by discussing recent advancements in the development of TDO2 inhibitors. We believe that targeted inhibition of TDO2 combined with immunotherapy, the screening of a large number of natural products, and the assistance of artificial intelligence in drug design will be important directions for developing more effective TDO2 inhibitors and improving treatment outcomes in the future.
Collapse
Affiliation(s)
| | | | | | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
2
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
3
|
Cecchi M, Anceschi C, Silvano A, Coniglio ML, Chinnici A, Magnelli L, Lapucci A, Laurenzana A, Parenti A. Unveiling the Role of Tryptophan 2,3-Dioxygenase in the Angiogenic Process. Pharmaceuticals (Basel) 2024; 17:558. [PMID: 38794128 PMCID: PMC11124529 DOI: 10.3390/ph17050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). METHODS qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. RESULTS HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. CONCLUSIONS HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50134 Florence, Italy;
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Aurora Chinnici
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
4
|
Yu L, Lu J, Du W. Tryptophan metabolism in digestive system tumors: unraveling the pathways and implications. Cell Commun Signal 2024; 22:174. [PMID: 38462620 PMCID: PMC10926624 DOI: 10.1186/s12964-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a crucial role in influencing the development of digestive system tumors. Dysregulation of Trp and its metabolites has been identified in various digestive system cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers. Aberrantly expressed Trp metabolites are associated with diverse clinical features in digestive system tumors. Moreover, the levels of these metabolites can serve as prognostic indicators and predictors of recurrence risk in patients with digestive system tumors. Trp metabolites exert their influence on tumor growth and metastasis through multiple mechanisms, including immune evasion, angiogenesis promotion, and drug resistance enhancement. Suppressing the expression of key enzymes in Trp metabolism can reduce the accumulation of these metabolites, effectively impacting their role in the promotion of tumor progression and metastasis. Strategies targeting Trp metabolism through specific enzyme inhibitors or tailored drugs exhibit considerable promise in enhancing therapeutic outcomes for digestive system tumors. In addition, integrating these approaches with immunotherapy holds the potential to further enhance treatment efficacy.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Weibo Du
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
5
|
León-Letelier RA, Dou R, Vykoukal J, Sater AHA, Ostrin E, Hanash S, Fahrmann JF. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Front Oncol 2023; 13:1256769. [PMID: 37876966 PMCID: PMC10591110 DOI: 10.3389/fonc.2023.1256769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression. These advancements in our understanding of the tumor promotive role of the KP have led to the conception of novel therapeutic strategies to target the KP pathway for anti-cancer effects and reversal of immune escape. This review aims to 1) highlight the known biological functions of key enzymes in the KP, and 2) provide a comprehensive overview of existing and emerging therapies aimed at targeting discrete enzymes in the KP for anti-cancer treatment.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Hussein Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Hu Y, Liu Z, Tang H. Tryptophan 2,3-dioxygenase may be a potential prognostic biomarker and immunotherapy target in cancer: A meta-analysis and bioinformatics analysis. Front Oncol 2022; 12:977640. [PMID: 36263228 PMCID: PMC9574363 DOI: 10.3389/fonc.2022.977640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tryptophan 2,3-dioxygenase (TDO2) is one of the emerging immune checkpoints. Meanwhile, TDO2 is also a key enzyme in the tryptophan (Trp)–kynurenine (Kyn) signaling pathway. Many studies have evaluated that TDO2 is highly expressed in various malignant tumor patients and plays a prognostic role. However, the sample size of a single prognostic study was small, and the results were still controversial. Methods We used Stata software and referenced the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement to conduct a meta-analysis on TDO2 and its clinical features and prognosis. We searched the PubMed, Cochrane Library, and Web of Science databases to find publications concerning TDO2 expression in malignant tumor patients up to June 2021. We used the Newcastle–Ottawa Scale (NOS) to evaluate the bias risk of the included literature. Risk ratios (RRs) and hazard ratios (HRs) were used for clinical outcomes, specifically overall survival (OS) and progression-free survival (PFS). In addition, we used data from The Cancer Genome Atlas (TCGA) to verify our conclusions. Results Nine studies including 667 patients with malignant tumors were identified. Our results suggested that overexpression of TDO2 was statistically correlated with poor OS and poor PFS (HR = 2.58, 95% CI = 1.52–4.40, p = 0.0005; HR = 2.38, 95% CI = 0.99–5.73, p = 0.05). In terms of clinicopathological characteristics, the overexpression level of TDO2 was statistically correlated with TNM (tumor–node–metastasis) stage (RR = 0.65, 95% CI = 0.48–0.89, p = 0.002) and regional lymph node metastasis (RR = 0.76, 95% CI = 0.59–0.99, p = 0.04). Subgroup analysis revealed the potential sources of heterogeneity. In addition, bioinformatics studies suggested that the level of TDO2 was high in malignant tumors and higher in cancer tissue than in matched paracarcinoma tissue. Gene enrichment analysis showed that TDO2 was closely related to immune response. Conclusion Overall, TDO2 may be a biomarker for the survival and prognosis of patients with malignant tumors and a potential therapeutic target in the future. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=260442, identifier (CRD42021260442)
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Hui Tang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Hui Tang,
| |
Collapse
|
7
|
Qian M, Xia Y, Zhang G, Yu H, Cui Y. Research progress on microRNA-1258 in the development of human cancer. Front Oncol 2022; 12:1024234. [PMID: 36249037 PMCID: PMC9556982 DOI: 10.3389/fonc.2022.1024234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
microRNAs (miRNAs) are small endogenous RNAs composed of 20-22 nucleotides that do not encode proteins, which regulate the expression of downstream genes by targeting the 3' untranslated region of mRNA. Plentiful research has demonstrated that miRNAs participate in the initiation and development of diverse diseases and malignant tumors. miR-1258 exerts great influence on tumors, including tumor growth, distant metastasis, migration, invasion, chemosensitivity, cell glycolysis, apoptosis, and stemness. Interestingly, miR-1258 is a miRNA with explicit functions and has been investigated to act as a tumor suppressor in studies on various types of tumors. With accumulating research on miR-1258, it has been found to be used as a biomarker in the early diagnosis and prognosis prediction of tumor patients. In this review, we outline the development of miR-1258 research, describe its regulatory network, and discuss its roles in cancer. Additionally, we generalize the potential clinical applications of miR-1258. This review offers emerging perspectives and orientations for further comprehending the function of miR-1258 as a diagnostic and prognostic biomarker and potent therapeutic target in cancer.
Collapse
|
8
|
Ai Y, Luo S, Wang B, Xiao S, Wang Y. MiR-126-5p Promotes Tumor Cell Proliferation, Metastasis and Invasion by Targeting TDO2 in Hepatocellular Carcinoma. Molecules 2022; 27:443. [PMID: 35056756 PMCID: PMC8779717 DOI: 10.3390/molecules27020443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
TDO2 is a key enzyme in the kynurenine metabolic pathway, which is the most important pathway of tryptophan metabolism. It has been shown that miRNAs are involved in cell metastasis through interaction with target mRNAs. In this study, we found 645 miRNAs that could be immunoprecipitated with TDO2 through the RNA-immunoprecipitation experiment. miR-126-5p was selected as the research target, which was also confirmed by dual-luciferase reporter assay. Through qRT-PCR analysis, it was verified that the overexpression of miR-126-5p promoted the expression of TDO2, PI3K/AKT and WNT1. Meanwhile, it was verified that overexpression of miR-126-5p can promote intracellular tryptophan metabolism by HPLC. We also verified the effects of miR-126-5p on cell proliferation, migration, and invasion by cck-8, cell colony formation and trans-well assay in both HCCLM3 cells and HepG2 cells. In vivo experiments were also conducted to verify that miR-126-5p promoted tumor formation and growth via immunohistochemical detection of cell infiltration and proliferation to generate markers Ki-67, BAX, and VEGF. In conclusion, our results suggest that miR-126-5p is a biomarker and a potential new treatment target in the progression of HCC via promoting the expression of TDO2.
Collapse
Affiliation(s)
| | | | | | | | - Yefu Wang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 299 BaYi Road, Wuhan 430065, China; (Y.A.); (S.L.); (B.W.); (S.X.)
| |
Collapse
|
9
|
Meireson A, Ferdinande L, Haspeslagh M, Hennart B, Allorge D, Ost P, Sundahl N, Spaas M, Demeyer A, Brochez L. Clinical Relevance of Serum Kyn/Trp Ratio and Basal and IFNγ-Upregulated IDO1 Expression in Peripheral Monocytes in Early Stage Melanoma. Front Immunol 2021; 12:736498. [PMID: 34557196 PMCID: PMC8453201 DOI: 10.3389/fimmu.2021.736498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/19/2021] [Indexed: 01/15/2023] Open
Abstract
Immune escape is an early phenomenon in cancer development/progression. Indoleamine 2,3-dioxygenase 1 (IDO1) is a normal endogenous mechanism of acquired peripheral immune tolerance and may therefore be tumor-promoting. This study investigated the clinical relevance of IDO1 expression by immune cells in the lymph nodes and blood and of the serum kynurenine/tryptophan (Kyn/Trp) ratio in 65 systemic treatment naïve stage I-III melanoma patients. Blood samples were collected within the first year of diagnosis. Patients had a median follow-up of 61 months. High basal IDO1 expression in peripheral monocytes and low IFNγ-induced IDO1 upregulation correlated with worse outcome independent from disease stage. Interestingly studied factors were not interrelated. During follow-up, the risk of relapse was 9% (2/22) in the subgroup with high IFNγ-induced IDO1 upregulation in monocytes. In contrast, if IDO1 upregulation was low, relapse occurred in 30% (3/10) of patients with low basal IDO1 expression in monocytes and in 61.5% (8/13) in the subgroup with high basal IDO1 expression in monocytes (Log-Rank test, p=0.008). This study reveals some immune features in the blood of early stage melanoma that may be of relevance for disease outcome. These may offer a target for sub-stratification and early intervention.
Collapse
Affiliation(s)
- Annabel Meireson
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium
| | | | - Marc Haspeslagh
- Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium.,Dermpat, Ghent, Belgium
| | - Benjamin Hennart
- Le Centre Hospitalier Universitaire de Lille (CHU), Unité Fonctionnelle de Toxicologie, Lille, France.,Université de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Lille, France
| | - Delphine Allorge
- Le Centre Hospitalier Universitaire de Lille (CHU), Unité Fonctionnelle de Toxicologie, Lille, France.,Université de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Lille, France
| | - Piet Ost
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Nora Sundahl
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Mathieu Spaas
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Annelies Demeyer
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Dermatology Research Unit, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Silvano A, Seravalli V, Strambi N, Cecchi M, Tartarotti E, Parenti A, Di Tommaso M. Tryptophan metabolism and immune regulation in the human placenta. J Reprod Immunol 2021; 147:103361. [PMID: 34365162 DOI: 10.1016/j.jri.2021.103361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
The placenta represents the maternal-fetal vascular interface. It is capable of supplying the bioenergetic needs of the developing conceptus. It is composed of different cell types that engage in highly varied functions, ranging from attachment, invasion and vascular remodeling to cell fusion, hormone production, and nutrient transport. A deep knowledge of the immunological mechanisms responsible for maintaining an active tolerance towards an allogeneic fetus and the anti-inflammatory properties of the placenta can be useful to clarify the pathogenesis of adverse events in pregnancy. While the systemic mechanisms of this immunological regulation in pregnancy have been well studied, the metabolic processes involved in the placental immune response are still poorly understood. The aim of this review is to summarize the most important information concerning the immune regulation in pregnancy, focusing on the role of tryptophan (Trp) catabolism performed by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) in the placenta.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Enrico Tartarotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy; Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| |
Collapse
|
11
|
Pham QT, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, Sakamoto N, Sentani K, Oue N, Yasui W. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer 2021; 21:737. [PMID: 34174844 PMCID: PMC8236178 DOI: 10.1186/s12885-021-08477-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Tryptophan 2,3-dioxygenase (TDO2) is the primary enzyme catabolizing tryptophan. Several lines of evidence revealed that overexpression of TDO2 is involved in anoikis resistance, spheroid formation, proliferation, and invasion and correlates with poor prognosis in some cancers. The aim of this research was to uncover the expression and biofunction of TDO2 in renal cell carcinoma (RCC). METHODS To show the expression of TDO2 in RCC, we performed qRT-PCR and immunohistochemistry in integration with TCGA data analysis. The interaction of TDO2 with PD-L1, CD44, PTEN, and TDO2 expression was evaluated. We explored proliferation, colony formation, and invasion in RCC cells line affected by knockdown of TDO2. RESULTS RNA-Seq and immunohistochemical analysis showed that TDO2 expression was upregulated in RCC tissues and was associated with advanced disease and poor survival of RCC patients. Furthermore, TDO2 was co-expressed with PD-L1 and CD44. In silico analysis and in vitro knockout of PTEN in RCC cell lines revealed the ability of PTEN to regulate the expression of TDO2. Knockdown of TDO2 suppressed the proliferation and invasion of RCC cells. CONCLUSION Our results suggest that TDO2 might have an important role in disease progression and could be a promising marker for targeted therapy in RCC. (199 words).
Collapse
Affiliation(s)
- Quoc Thang Pham
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Daiki Taniyama
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yohei Sekino
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shintaro Akabane
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takashi Babasaki
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Go Kobayashi
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
12
|
Chuang TD, Quintanilla D, Boos D, Khorram O. Tryptophan catabolism is dysregulated in leiomyomas. Fertil Steril 2021; 116:1160-1171. [PMID: 34116832 DOI: 10.1016/j.fertnstert.2021.05.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine the expression and functional roles of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) in leiomyoma. DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S) Women undergoing hysterectomy for leiomyoma. INTERVENTION(S) Blockade of IDO1 and TDO2. MAIN OUTCOME MEASURE(S) Expression of IDO1 and TDO2 in leiomyoma and the effects of their inhibitors on the extracellular matrix. RESULT(S) Leiomyoma expressed significantly higher levels of IDO1 and TDO2 messenger ribonucleic acid (mRNA; 60.3%, 35/58 pairs and 98.3%, 57/58 pairs, respectively) and protein (54%, 27/50 pairs and 92%, 46/50 pairs, respectively) as well as the enzyme activity marker kynurenine (78.3%, 36/46 pairs for IDO1/TDO2) compared with levels in matched myometrium. The expression of TDO2 but not IDO1 mRNA was significantly higher in fibroids from African American compared with that in Caucasian and Hispanic patients. The TDO2 but not the IDO1 protein and mRNA levels were more abundant in fibroids bearing the MED12 mutation compared with results in wild-type leiomyomas. Treatment of leiomyoma smooth muscle cell and myometrial smooth muscle cell spheroids with the TDO2 inhibitor 680C91 but not the IDO1 inhibitor epacadostat significantly repressed cell proliferation and the expression of collagen type I (COL1A1) and type III (COL3A1) in a dose-dependent manner; these effects were more pronounced in leiomyoma smooth muscle cells compared with myometrial smooth muscle cell spheroids. CONCLUSION(S) These results underscore the physiological significance of the tryptophan degradation pathway in the pathogenesis of leiomyomas and the potential utility of anti-TDO2 drugs for treatment of leiomyomas.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California
| | - Derek Quintanilla
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California
| | - Drake Boos
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California.
| |
Collapse
|
13
|
Cecchi M, Paccosi S, Silvano A, Eid AH, Parenti A. Dexamethasone Induces the Expression and Function of Tryptophan-2-3-Dioxygenase in SK-MEL-28 Melanoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14030211. [PMID: 33806305 PMCID: PMC7998133 DOI: 10.3390/ph14030211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Tryptophan-2,3-dioxygenase (TDO) is one of the key tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. Contrary to expectation, clinical trials showed that inhibitors of the ubiquitously expressed enzyme, indoleamine-2,3-dioxygenase-1 (IDO1), do not provide benefits in melanoma patients. This prompted the hypothesis that TDO may be a more attractive target. Because the promoter of TDO harbors glucocorticoid response elements (GREs), we aimed to assess whether dexamethasone (dex), a commonly used glucocorticoid, modulates TDO expression by means of RT-PCR and immunofluorescence and function by assessing cell proliferation and migration as well as metalloproteinase activity. Our results show that, in SK-Mel-28 melanoma cells, dex up-regulated TDO and its downstream effector aryl hydrocarbon receptor (AHR) but not IDO1. Furthermore, dex stimulated cellular proliferation and migration and potentiated MMP2 activity. These effects were inhibited by the selective TDO inhibitor 680C91 and enhanced by IDO1 inhibitors. Taken together, our results demonstrate that the metastatic melanoma cell line SK-Mel-28 possesses a functional TDO which can also modulate cancer cell phenotype directly rather than through immune suppression. Thus, TDO appears to be a promising, tractable target in the management or the treatment of melanoma progression.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.C.); (S.P.); (A.S.)
- Correspondence: (A.H.E.); (A.P.); Tel.: +974-4403-7893 (A.H.E.)
| |
Collapse
|