1
|
Kersting D, Krüger M, Sattler JM, Mueller AK, Kaiser A. A suggested vital function for eIF-5A and dhs genes during murine malaria blood-stage infection. FEBS Open Bio 2016; 6:860-72. [PMID: 27516964 PMCID: PMC4971841 DOI: 10.1002/2211-5463.12093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/07/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022] Open
Abstract
The biological function of the post-translational modification hypusine in the eukaryotic initiation factor 5A (EIF-5A) in eukaryotes is still not understood. Hypusine is formed by two sequential enzymatic steps at a specific lysine residue in the precursor protein EIF-5A. One important biological function of EIF-5A which was recently identified is the translation of polyproline-rich mRNA, suggesting its biological relevance in a variety of biological processes. Hypusinated eIF-5A controls the proliferation of cancer cells and inflammatory processes in malaria. It was shown that pharmacological inhibition of the enzymes involved in this pathway, deoxyhypusine synthase (DHS) and the deoxyhypusine hydroxylase (DOHH), arrested the growth of malaria parasites. Down-regulation of both the malarial eIF-5A and dhs genes by in vitro and in vivo silencing led to decreased transcript levels and protein expression and, in turn, to low parasitemia, confirming a critical role of hypusination in eIF-5A for proliferation in Plasmodium. To further investigate whether eIF-5A and the activating enzyme DHS are essential for Plasmodium erythrocytic stages, targeted gene disruption was performed in the rodent malaria parasite Plasmodium berghei. Full disruption of both genes was not successful; instead parasites harboring the episome for eIF-5A and dhs genes were obtained, suggesting that these genes may perform vital functions during the pathogenic blood cell stage. Next, a knock-in strategy was pursued for both endogenous genes eIF-5A and dhs from P. berghei. The latter resulted in viable recombinant parasites, strengthening the observation that they might be essential for proliferation during asexual development of the malaria parasite.
Collapse
Affiliation(s)
- David Kersting
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| | - Mirko Krüger
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| | - Julia M Sattler
- Parasitology Unit Centre for Infectious Diseases University Hospital Heidelberg Germany; Centre for Infectious Diseases, Integrative Parasitology University Hospital Heidelberg Germany
| | - Ann-Kristin Mueller
- Parasitology Unit Centre for Infectious Diseases University Hospital Heidelberg Germany; German Center for Infectious Diseases Heidelberg Germany
| | - Annette Kaiser
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| |
Collapse
|
2
|
Systemic overexpression of antizyme 1 in mouse reduces ornithine decarboxylase activity without major changes in tissue polyamine homeostasis. Transgenic Res 2013; 23:153-63. [DOI: 10.1007/s11248-013-9763-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
|
3
|
Schwentke A, Krepstakies M, Mueller AK, Hammerschmidt-Kamper C, Motaal BA, Bernhard T, Hauber J, Kaiser A. In vitro and in vivo silencing of plasmodial dhs and eIf-5a genes in a putative, non-canonical RNAi-related pathway. BMC Microbiol 2012; 12:107. [PMID: 22694849 PMCID: PMC3438091 DOI: 10.1186/1471-2180-12-107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 05/31/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Deoxyhypusine synthase (DHS) catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A (eIF-5A) in Plasmodium falciparum. Target evaluation of parasitic DHS has recently been performed with CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease. CNI-1493 prevented infected mice from experimental cerebral malaria by decreasing the levels in hypusinated eIF-5A and serum TNF, implicating a link between cytokine signaling and the hypusine pathway.Therefore we addressed the question whether either DHS itself or eIF-5A is required for the outcome of severe malaria. In a first set of experiments we performed an in vitro knockdown of the plasmodial eIF-5A and DHS proteins by RNA interference (RNAi) in 293 T cells. Secondly, transfection of siRNA constructs into murine Plasmodium schizonts was performed which, in turn, were used for infection. RESULTS 293 T cells treated with plasmodial DHS- and eIF-5A specific siRNAs or control siRNAs were analyzed by RT-PCR to determine endogenous dhs -and eIF-5A mRNA levels. The expressed DHS-shRNA and EIF-5A-shRNA clearly downregulated the corresponding transcript in these cells. Interestingly, mice infected with transgenic schizonts expressing either the eIF-5A or dhs shRNA showed an elevated parasitemia within the first two days post infection which then decreased intermittently. These results were obtained without drug selection. Blood samples, which were taken from the infected mice at day 5 post infection with either the expressed EIF-5A-shRNA or the DHS-shRNA were analyzed by RT-PCR and Western blot techniques, demonstrating the absence of either the hypusinated form of eIF-5A or DHS. CONCLUSIONS Infection of NMRI mice with schizonts from the lethal P. berghei ANKA wildtype strain transgenic for plasmodial eIF-5A-specific shRNA or DHS-specific shRNA resulted in low parasitemia 2-9 days post infection before animals succumbed to hyperparasitemia similar to infections with the related but non-lethal phenotype P. berghei strain NK65. RT-PCR and Western blot experiments performed with blood from the transfected erythrocytic stages showed that both genes are important for the proliferation of the parasite. Moreover, these experiments clearly demonstrate that the hypusine pathway in Plasmodium is linked to human iNos induction.
Collapse
Affiliation(s)
- Andreas Schwentke
- University Duisburg-Essen, Medical Research Centre, Institute of Pharmacogenetics, Hufelandstrasse 55, 45147, Essen, Germany
| | - Marcel Krepstakies
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Ann-Kristin Mueller
- Department of Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Christiane Hammerschmidt-Kamper
- Department of Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Basma A Motaal
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Tina Bernhard
- University Duisburg-Essen, Medical Research Centre, Institute of Pharmacogenetics, Hufelandstrasse 55, 45147, Essen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Annette Kaiser
- University Duisburg-Essen, Medical Research Centre, Institute of Pharmacogenetics, Hufelandstrasse 55, 45147, Essen, Germany
| |
Collapse
|
4
|
Carvajal-Gamez BI, Arroyo R, Camacho-Nuez M, Lira R, Martínez-Benitez M, Alvarez-Sánchez ME. Putrescine is required for the expression of eif-5a in Trichomonas vaginalis. Mol Biochem Parasitol 2011; 180:8-16. [PMID: 21801756 DOI: 10.1016/j.molbiopara.2011.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 07/04/2011] [Accepted: 07/09/2011] [Indexed: 11/21/2022]
Abstract
Recently, we found that Trichomonas vaginalis contains a eukaryotic translation initiation factor 5A (TveIF-5A) with unknown function in this parasite. eIF-5A is the only cellular protein dependent of polyamines to form a hypusine residue, an unusual basic amino acid that is post-translationally formed by modification of a single specific lysine residue in an eIF-5A precursor protein. The purpose of this study was to determine the effect of a putrescine analogue, 1,4-diamino-2-butanone (DAB), on tveif-5a mRNA and TveIF-5A protein expression. TveIF-5A protein expression was reduced by inhibition of putrescine biosynthesis, and tveif-5a mRNA levels were reduced ∼90%, as shown by western blot and immunofluorescence assays. Cycloheximide treatment reduced the amount of mature TveIF-5A protein at 4h and decreased the tveif-5a transcript level at 2h, according to western blot, RT-PCR and qRT-PCR analyses. Actinomycin D treatment showed that the tveif-5a mRNA had half-life of ∼2.5h in DAB-treated parasites. The half-life of tveif-5a mRNA was ∼4.5h under exogenous putrescine conditions. These results suggest that putrescine is required for tveif-5a mRNA stability, and it is necessary for the expression, stability and maturation of TveIF-5A protein.
Collapse
|
5
|
In Vitro and In Vivo Antimalarial Activity Assays of Seeds from Balanites aegyptiaca: Compounds of the Extract Show Growth Inhibition and Activity against Plasmodial Aminopeptidase. J Parasitol Res 2011; 2011:368692. [PMID: 21687598 PMCID: PMC3112518 DOI: 10.1155/2011/368692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/25/2011] [Accepted: 03/20/2011] [Indexed: 11/17/2022] Open
Abstract
Balanites aegyptiaca (Balanitaceae) is a widely grown desert plant with multiuse potential. In the present paper, a crude extract from B. aegyptiaca seeds equivalent to a ratio of 1 : 2000 seeds to the extract was screened for antiplasmodial activity. The determined IC(50) value for the chloroquine-susceptible Plasmodium falciparum NF54 strain was 68.26 μg/μL ± 3.5. Analysis of the extract by gas chromatography-mass spectrometry detected 6-phenyl-2(H)-1,2,4-triazin-5-one oxime, an inhibitor of the parasitic M18 Aspartyl Aminopeptidase as one of the compounds which is responsible for the in vitro antiplasmodial activity. The crude plant extract had a K(i) of 2.35 μg/μL and showed a dose-dependent response. After depletion of the compound, a significantly lower inhibition was determined with a K(i) of 4.8 μg/μL. Moreover, two phenolic compounds, that is, 2,6-di-tert-butyl-phenol and 2,4-di-tert-butyl-phenol, with determined IC(50) values of 50.29 μM ± 3 and 47.82 μM ± 2.5, respectively, were detected. These compounds may contribute to the in vitro antimalarial activity due to their antioxidative properties. In an in vivo experiment, treatment of BALB/c mice with the aqueous Balanite extract did not lead to eradication of the parasites, although a reduced parasitemia at day 12 p.i. was observed.
Collapse
|
6
|
Becker JVW, Mtwisha L, Crampton BG, Stoychev S, van Brummelen AC, Reeksting S, Louw AI, Birkholtz LM, Mancama DT. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels. BMC Genomics 2010; 11:235. [PMID: 20385001 PMCID: PMC2867828 DOI: 10.1186/1471-2164-11-235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level. Results Morphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.
Collapse
|
7
|
Blavid R, Kusch P, Hauber J, Eschweiler U, Sarite SR, Specht S, Deininger S, Hoerauf A, Kaiser A. Down-regulation of hypusine biosynthesis in Plasmodium by inhibition of S-adenosyl-methionine-decarboxylase. Amino Acids 2010; 38:461-9. [PMID: 19949824 DOI: 10.1007/s00726-009-0405-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/10/2009] [Indexed: 11/26/2022]
Abstract
An important issue facing global health today is the need for new, effective and affordable drugs against malaria, particularly in resource-poor countries. Moreover, the currently available antimalarials are limited by factors ranging from parasite resistance to safety, compliance, cost and the current lack of innovations in medicinal chemistry. Depletion of polyamines in the intraerythrocytic phase of P. falciparum is a promising strategy for the development of new antimalarials since intracellular levels of putrescine, spermidine and spermine are increased during cell proliferation. S-adenosyl-methionine-decarboxylase (AdoMETDC) is a key enzyme in the biosynthesis of spermidine. The AdoMETDC inhibitor CGP 48664A, known as SAM486A, inhibited the separately expressed plasmodial AdoMETDC domain with a Km( i ) of 3 microM resulting in depletion of spermidine. Spermidine is an important precursor in the biosynthesis of hypusine. This prompted us to investigate a downstream effect on hypusine biosynthesis after inhibition of AdoMETDC. Extracts from P. falciparum in vitro cultures that were treated with 10 microM SAM 486A showed suppression of eukaryotic initiation factor 5A (eIF-5A) in comparison to the untreated control in two-dimensional gel electrophoresis. Depletion of eIF-5A was also observed in Western blot analysis with crude protein extracts from the parasite after treatment with 10 microM SAM486A. A determination of the intracellular polyamine levels revealed an approximately 27% reduction of spemidine and a 75% decrease of spermine while putrescine levels increased to 36%. These data suggest that inhibition of AdoMetDc provides a novel strategy for eIF-5A suppression and the design of new antimalarials.
Collapse
Affiliation(s)
- Robert Blavid
- Hochschule Bonn-Rhein-Sieg, Von Liebig Strasse 20, 53359, Rheinbach, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum. Amino Acids 2009; 38:633-44. [DOI: 10.1007/s00726-009-0424-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 12/24/2022]
|
9
|
Assessment of deoxyhypusine hydroxylase as a putative, novel drug target. Amino Acids 2009; 38:471-7. [DOI: 10.1007/s00726-009-0406-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
10
|
Frommholz D, Kusch P, Blavid R, Scheer H, Tu JM, Marcus K, Zhao KH, Atemnkeng V, Marciniak J, Kaiser AE. Completing the hypusine pathway in Plasmodium. FEBS J 2009; 276:5881-91. [DOI: 10.1111/j.1742-4658.2009.07272.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Grébaut P, Chuchana P, Brizard JP, Demettre E, Seveno M, Bossard G, Jouin P, Vincendeau P, Bengaly Z, Boulangé A, Cuny G, Holzmuller P. Identification of total and differentially expressed excreted-secreted proteins from Trypanosoma congolense strains exhibiting different virulence and pathogenicity. Int J Parasitol 2009; 39:1137-50. [PMID: 19285981 DOI: 10.1016/j.ijpara.2009.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 12/31/2022]
Abstract
Animal trypanosomosis is a major constraint to livestock productivity in the tropics and has a significant impact on the life of millions of people globally (mainly in Africa, South America and south-east Asia). In Africa, the disease in livestock is caused mainly by Trypanosoma congolense, Trypanosoma vivax, Trypanosoma evansi and Trypanosoma brucei brucei. The extracellular position of trypanosomes in the bloodstream of their host requires consideration of both the parasite and its naturally excreted-secreted factors (secretome) in the course of pathophysiological processes. We therefore developed and standardised a method to produce purified proteomes and secretomes of African trypanosomes. In this study, two strains of T. congolense exhibiting opposite properties of both virulence and pathogenicity were further investigated through their secretome expression and its involvement in host-parasite interactions. We used a combined proteomic approach (one-dimensional SDS-PAGE and two-dimensional differential in-gel electrophoresis coupled to mass spectrometry) to characterise the whole and differentially expressed protein contents of secretomes. The molecular identification of differentially expressed trypanosome molecules and their correlation with either the virulence process or pathogenicity are discussed with regard to their potential as new diagnostic or therapeutic tools against animal trypanosomosis.
Collapse
Affiliation(s)
- Pascal Grébaut
- CIRAD UMR 17 Trypanosomes (UMR 177 IRD-CIRAD Interactions Hôtes-Vecteurs-Parasites dans les Trypanosomoses), TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clark K, Dhoogra M, Louw AI, Birkholtz LM. Transcriptional responses of Plasmodium falciparum to alpha-difluoromethylornithine-induced polyamine depletion. Biol Chem 2008; 389:111-25. [PMID: 18163886 DOI: 10.1515/bc.2008.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract Polyamines are essential polycationic molecules involved in multiple cellular events, including cell differentiation, division and death. Inhibition of polyamine biosynthesis has been considered in diverse therapeutic strategies ranging from tumour suppressors to anti-parasitic agents. In the human malaria parasite, Plasmodium falciparum, inhibition of ornithine decarboxylase (ODC) results in the arrest of schizogony due to polyamine depletion. However, the exact physiological role of the polyamines in the parasite is unknown. Here, we present results of the depletion of polyamines in the malaria parasite by alpha-difluoromethylornithine inhibition of ODC, as observed with differential transcriptome profiling. Upon depletion of their endogenous polyamines, the up- and downregulated parasite transcripts were selected with suppression subtractive hybridisation and differences were detected using blots or DNA microarrays. A direct linkage between polyamine depletion and the differential expression of two distinct transcripts was observed, indicating the existence of a transcriptional feedback response in the P. falciparum transcriptome upon drug challenge. The data presented provide input into the role of the polyamines in the cellular biology of P. falciparum and contribute towards the validation of polyamine biosynthesis as an antimalarial target.
Collapse
Affiliation(s)
- Katherine Clark
- Department of Biochemistry, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | |
Collapse
|
13
|
Jacobsson M, Gäredal M, Schultz J, Karlén A. Identification of Plasmodium falciparum Spermidine Synthase Active Site Binders through Structure-Based Virtual Screening. J Med Chem 2008; 51:2777-86. [DOI: 10.1021/jm7016144] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Micael Jacobsson
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Magnus Gäredal
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Schultz
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Karlén
- iNovacia AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden, Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
14
|
Specht S, Sarite SR, Hauber I, Hauber J, Görbig UF, Meier C, Bevec D, Hoerauf A, Kaiser A. The guanylhydrazone CNI-1493: an inhibitor with dual activity against malaria-inhibition of host cell pro-inflammatory cytokine release and parasitic deoxyhypusine synthase. Parasitol Res 2008; 102:1177-84. [PMID: 18256853 DOI: 10.1007/s00436-008-0891-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
Malaria is still a major cause of death in the tropics. There is an urgent need for new anti-malarial drugs because drug-resistant plasmodia frequently occur. Over recent years, we elucidated the biosynthesis of hypusine, a novel amino acid contained in eukaryotic initiation factor 5A (eIF-5A) in Plasmodium. Hypusine biosynthesis involves catalysis of deoxyhypusine synthase (DHS) in the first step of post-translational modification. In a screen for new inhibitors of purified plasmodium DHS, CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease, inhibited the enzyme of the parasite 3-fold at a concentration of 2 microM. In vitro experiments with 200 microM CNI-1493 in Plasmodium-infected erythrocytes, which lack nuclei and DHS protein, showed a parasite clearance within 2 days. This can presumably be attributed to an anti-proliferating effect because of the inhibition of DHS by the parasite. The determined IC50 of CNI-1493 was 135.79 microM after 72 h. In vivo application of this substance in Plasmodium berghei ANKA-infected C57BL/6 mice significantly reduced parasitemia after dosage of 1 mg/kg or 4 mg/kg/body weight and prevented death of mice with cerebral malaria. This effect was paralleled by a decrease in serum TNF levels of the mice. We suggest that the new mechanism of CNI-1493 is caused by a decrease in modified eIF-5A biosynthesis with a downstream effect on the TNF synthesis of the host. From the current data, we consider CNI-1493 to be a promising drug for anti-malarial therapy because of its combined action, i.e., the decrease in eIF-5A biosynthesis of the parasite and host cell TNF biosynthesis.
Collapse
Affiliation(s)
- Sabine Specht
- Institute for Medical Microbiolgy, Immunology and Parasitology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaiser A, Hammels I, Gottwald A, Nassar M, Zaghloul MS, Motaal BA, Hauber J, Hoerauf A. Modification of eukaryotic initiation factor 5A from Plasmodium vivax by a truncated deoxyhypusine synthase from Plasmodium falciparum: An enzyme with dual enzymatic properties. Bioorg Med Chem 2007; 15:6200-7. [PMID: 17591443 DOI: 10.1016/j.bmc.2007.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
The increasing resistance of the malaria parasites enforces alternative directions in finding new drug targets. Present findings from the malaria parasite Plasmodium vivax, causing tertiary malaria, suggest eukaryotic initiation factor 5A (eIF-5A) to be a promising target for the treatment of malaria. Previously we presented the 162 amino acid sequence of eukaryotic initiation factor 5A (eIF-5A) from Plasmodium vivax. In the present study, we have expressed and purified the 20kDa protein performed by one-step Nickel chelate chromatography. In Western blot experiments eIF-5A from P. vivax crossreacts with a polyclonal anti-eIF-5A antiserum from the plant Nicotiana plumbaginifolia (Solanaceae). Transcription of eIF-5A can be observed in both different developmental stages of the parasite being prominent in trophozoites. We recently published the nucleic acid sequence from a genomic clone of P. falciparum strain NF54 encoding a putative deoxyhypusine synthase (DHS), an enzyme that catalyzes the post-translational modification of eIF-5A. After removal of 22 amino acids DHS was expressed as a Histidin fusion protein and purified by Nickel affinity chromatography. Truncated DHS from P. falciparum modifies eIF-5A from P. vivax. DHS from P. falciparum NF54 is a bi-functional protein with dual enzymatic specificities, that is, DHS activity and homospermidine synthase activity (HSS) (0.047 pkatal/mg protein) like in other eukaryotes. Inhibition of DHS from P. falciparum resulted in a K(i) of 0.1 microM for the inhibitor GC7 being 2000-fold less than the nonguanylated derivative 1,7-diaminoheptane. Dhs transcription occurs in both develomental stages suggesting its necessity in cell proliferation.
Collapse
Affiliation(s)
- Annette Kaiser
- Institute for Medical Parasitology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Burger PB, Birkholtz LM, Joubert F, Haider N, Walter RD, Louw AI. Structural and mechanistic insights into the action of Plasmodium falciparum spermidine synthase. Bioorg Med Chem 2007; 15:1628-37. [PMID: 17196392 DOI: 10.1016/j.bmc.2006.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/01/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Spermidine synthase is currently considered as a promising drug target in the malaria parasite, Plasmodium falciparum, due to the vital role of spermidine in the activation of the eukaryotic translation initiation factor (eIF5A) and cell proliferation. However, very limited information was available regarding the structure and mechanism of action of the protein at the start of this study. Structural and mechanistic insights of the P. falciparum spermidine synthase (PfSpdSyn) were obtained utilizing molecular dynamics simulations of a homology model based on the crystal structures of the Arabidopsis thaliana and Thermotoga maritima homologues. Our data are supported by in vitro site-directed mutagenesis of essential residues as well as by a crystal structure of the protein that became available recently. We provide, for the first time, dynamic evidence for the mechanism of the aminopropyltransferase action of PfSpdSyn. This characterization of the structural and mechanistic properties of the PfSpdSyn as well as the elucidation of the active site residues involved in substrate, product, and inhibitor interactions paves the way toward inhibitor selection or design of parasite-specific inhibitors.
Collapse
Affiliation(s)
- Pieter B Burger
- Bioinformatics and Computational Biology Unit, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | |
Collapse
|
17
|
Cloning, expression and functional activity of deoxyhypusine synthase from Plasmodium vivax. BMC Microbiol 2006; 6:91. [PMID: 17042947 PMCID: PMC1654163 DOI: 10.1186/1471-2180-6-91] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/16/2006] [Indexed: 11/28/2022] Open
Abstract
Background Plasmodium vivax is the most widespread human malaria parasite. However, genetic information about its pathogenesis is limited at present, due to the lack of a reproducible in vitro cultivation method. Sequencing of the Plasmodium vivax genome suggested the presence of a homolog of deoxyhypusine synthase (DHS) from P. falciparum, the key regulatory enzyme in the first committed step of hypusine biosynthesis. DHS is involved in cell proliferation, and thus a valuable drug target for the human malaria parasite P. falciparum. A comparison of the enzymatic properties of the DHS enzymes between the benign and severe Plasmodium species should contribute to our understanding of the differences in pathogenicity and phylogeny of both malaria parasites. Results We describe the cloning of a 1368 bp putative deoxyhypusine synthase gene (dhs) sequence from genomic DNA of P. vivax PEST strain Salvador I (Accession number AJ549098) after touchdown PCR. The corresponding protein was expressed and functionally characterized as deoxyhypusine synthase by determination of its specific activity and cross-reactivity to human DHS on a Western blot. The putative DHS protein from P. vivax displays a FASTA score of 75 relative to DHS from rodent malaria parasite, P. yoelii, and 74 relative to that from the human parasite, P. falciparum strain 3D7. The ORF encoding 456 amino acids was expressed under control of IPTG-inducible T7 promoter, and expressed as a protein of approximately 50 kDa (theoretically 52.7 kDa) in E. coli BL21 DE3 cells. The N-terminal histidine-tagged protein was purified by Nickel-chelate affinity chromatography under denaturing conditions. DHS with a theoretical pI of 6.0 was present in both eluate fractions. The specific enzymatic activity of DHS was determined as 1268 U/mg protein. The inhibitor, N-guanyl-1, 7-diaminoheptane (GC7), suppressed specific activity by 36-fold. Western blot analysis performed with a polyclonal anti-human DHS antibody revealed cross-reactivity to DHS from P. vivax, despite an amino acid identity of 44% between the proteins. Conclusion We identify a novel DHS protein in the more benign malaria parasite,P. vivax, on the basis of specific enzymatic activity, cross-reactivity with a polyclonal antibody against human DHS, and amino acid identity with DHS homologs from the rodent malaria parasite, P. yoelii, and human P. falciparum strains.
Collapse
|
18
|
Abstract
Every year, forty percent of the world population is at risk of contracting malaria. Hopes for the erradication of this disease during the 20th century were dashed by the ability of Plasmodium falciparum, its most deadly causative agent, to develop resistance to available drugs. Efforts to produce an effective vaccine have so far been unsuccessful, enhancing the need to develop novel antimalarial drugs. In this review, we summarize our knowledge concerning existing antimalarials, mechanisms of drug-resistance development, the use of drug combination strategies and the quest for novel anti-plasmodial compounds. We emphasize the potential role of host genes and molecules as novel targets for newly developed drugs. Recent results from our laboratory have shown Hepatocyte Growth Factor/MET signaling to be essential for the establishment of infection in hepatocytes. We discuss the potential use of this pathway in the prophylaxis of malaria infection.
Collapse
|
19
|
Saeftel M, Sarite RS, Njuguna T, Holzgrabe U, Ulmer D, Hoerauf A, Kaiser A. Piperidones with activity against Plasmodium falciparum. Parasitol Res 2006; 99:281-6. [PMID: 16550432 DOI: 10.1007/s00436-006-0173-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
The increasing resistance of the malaria parasites has enforced new strategies of finding new drug targets. We have isolated two genes involved in spermidine metabolism, encoding deoxyhypusine synthase (DHS) and eukaryotic initiation factor 5A (eIF-5A) in the malaria parasites. eIF-5A is activated by the formation of the unusual amino acid hypusine. This process occurs in two steps. DHS transfers an aminobutyl moiety from the triamine spermidine to a specific lysine residue in the eIF-5A precursor protein to form deoxyhypusine. In a second step, deoxyhypusine hydroxylase (DHH), completes hypusine biosynthesis. We used DHH inhibitors, being effective in mammalian cells, to study an antiplasmodicidal effect in Plasmodium falciparum. Experiments with the antifungal drug ciclopiroxolamine, an alpha-hydroxypyridone, and the plant amino acid L: -mimosine, a 4-pyridone, resulted in an antiplasmodial effect in vitro. Using mimosine as a lead structure, alkyl 4-oxo-piperidine 3-carboxylates were found to have the most efficient antiplasmodial effects in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Saeftel
- Institute for Medical Microbiology, Immunology and Parasitology, D-53105, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee MJ, Huang CY, Sun YJ, Huang H. Cloning and characterization of spermidine synthase and its implication in polyamine biosynthesis in Helicobacter pylori strain 26695. Protein Expr Purif 2005; 43:140-8. [PMID: 16009566 DOI: 10.1016/j.pep.2005.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 04/22/2005] [Accepted: 04/24/2005] [Indexed: 11/24/2022]
Abstract
The HP0832 (speE) gene of Helicobacter pylori strain 26695 codes for a putative spermidine synthase, which belongs to the polyamine biosynthetic pathway. Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), which serves as an aminopropyl donor. The deduced amino acid sequence of the HP0832 gene shares less than 20% sequence identity with most spermidine synthases from mammalian cells, plants and other bacteria. In this study, the HP0832 open reading frame (786 bp) was cloned into the pQE30 vector and overexpressed in Escherichia coli strain SG13009. The resulting N-terminally 6xHis-tagged HP0832 protein (31.9 kDa) was purified by Ni-NTA affinity chromatography at a yield of 15 mg/L of bacteria culture. Spermidine synthase activity of the recombinant protein was confirmed by the appearance of spermidine after incubating the enzyme with putrescine and dcSAM. Substrate specificity studies have shown that spermidine could not replace putrescine as the aminopropyl acceptor. Endogenous spermidine synthase of H. pylori was detected with an antiserum raised against the recombinant HP0832 protein. H. pylori strain 26695 contains putrescine and spermidine at a molar ratio of 1:3, but no detectable spermine or norspermidine was observed, suggesting that the spermidine biosynthetic pathway may provide the main polyamines in H. pylori strain 26695.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
21
|
Abstract
With the sequencing of the Plasmodium falciparum genome now complete, increasing attention is turning to the function of gene products and to cell-regulatory processes. The combination of in silico analyses with modern molecular and biophysical methods is leading to rapid advances in our understanding of the mechanisms underlying the biochemistry and physiology of the parasite and its host cell. In this brief review, we present a "snap shot" of recent work in this area, with particular emphasis on aspects relevant to the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Katja Becker
- Department of Biochemistry, Interdisciplinary Research Center, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|