1
|
Luo X, Zeng X, Gong L, Ye Y, Sun C, Chen T, Zhang Z, Tao Y, Zeng H, Zou Q, Yang Y, Li J, Sun H. Nanomaterials in tuberculosis DNA vaccine delivery: historical perspective and current landscape. Drug Deliv 2022; 29:2912-2924. [PMID: 36081335 PMCID: PMC9467597 DOI: 10.1080/10717544.2022.2120565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vaccinations, especially DNA vaccines that promote host immunity, are the most effective interventions for tuberculosis (TB) control. However, the vaccine delivery system exhibits a significant impact on the protective effects of the vaccine. Recently, effective nanomaterial-based delivery systems (including nanoparticles, nanogold, nanoliposomes, virus-like particles, and virus carriers) have been developed for DNA vaccines to control TB. This review highlights the historical development of various nanomaterial-based delivery systems for TB DNA vaccines, along with the emerging technologies. Nanomaterial-based vaccine delivery systems could enhance the efficacy of TB vaccination; therefore, this summary could guide nanomaterial selection for optimal and safe vaccine delivery, facilitating the design and development of highly effective TB vaccines.
Collapse
Affiliation(s)
- Xing Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoqiang Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Ye
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cun Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting Chen
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zelong Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yikun Tao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jieping Li
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Department of Hematology, Changsha Central Hospital, Changsha, China
| | - Hongwu Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
2
|
Silva CL, Malardo T, Tahyra ASC. Immunotherapeutic Activities of a DNA Plasmid Carrying the Mycobacterial hsp65 Gene (DNAhsp65). FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:603690. [PMID: 35047886 PMCID: PMC8757890 DOI: 10.3389/fmedt.2020.603690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
DNA vaccines have become relevant subject matter, and efforts for their development have been increasing due to their potential as technology platforms applicable for prophylactic and therapeutic approaches for infectious diseases and for cancer treatment, allergies, and autoimmune diseases. This review aimed to summarize current knowledge about the plasmid DNA vaccine carrying the mycobacterial hsp65 gene (DNAhsp65), which demonstrates immunomodulatory and immunoregulatory properties of both the innate and adaptive immune systems. The possible mechanisms associated with the modulation and regulatory role of DNAhsp65 in the control of various conditions is also discussed.
Collapse
Affiliation(s)
- Celio Lopes Silva
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Farmacore Biotecnologia Ltda, Ribeirão Preto, Brazil
- *Correspondence: Celio Lopes Silva
| | | | - Aline Seiko Carvalho Tahyra
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Martins VT, Duarte MC, Lage DP, Costa LE, Carvalho AMRS, Mendes TAO, Roatt BM, Menezes-Souza D, Soto M, Coelho EAF. A recombinant chimeric protein composed of human and mice-specific CD4+and CD8+T-cell epitopes protects against visceral leishmaniasis. Parasite Immunol 2016; 39. [DOI: 10.1111/pim.12359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 12/28/2022]
Affiliation(s)
- V. T. Martins
- Departamento de Bioquímica e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - M. C. Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - D. P. Lage
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - L. E. Costa
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - A. M. R. S. Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - T. A. O. Mendes
- Departamento de Bioquímica e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - B. M. Roatt
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - D. Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - M. Soto
- Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa; CSIC-UAM; Universidad Autónoma de Madrid; Madrid Spain
| | - E. A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
4
|
Martins VT, Duarte MC, Chávez-Fumagalli MA, Menezes-Souza D, Coelho CSP, de Magalhães-Soares DF, Fernandes AP, Soto M, Tavares CAP, Coelho EAF. A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasit Vectors 2015; 8:363. [PMID: 26160291 PMCID: PMC4501199 DOI: 10.1186/s13071-015-0964-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LiHyV is an antigenic hypothetical protein present in both promastigote and amastigote stages of Leishmania infantum, which was recently identified by an immunoproteomic approach. A recombinant version of this protein (rLiHyV) was evaluated as a diagnostic marker for canine VL (CVL). In addition, the prophylactic efficacy of the rLiHyV protein, and two of its CD8(+) T cell epitopes, has been analyzed in a murine model of visceral leishmaniasis (VL). METHODS Initially, the rLiHyV protein was evaluated by an ELISA technique for the serodiagnosis of CVL. Secondly, vaccines composed of the recombinant protein and both chemically synthesized peptides, combined with saponin as an adjuvant; were administered subcutaneously into BALB/c mice. The cellular and humoral responses generated by vaccination were evaluated. In addition, the parasite burden and immune response were studied 10 weeks after L. infantum infection. RESULTS The rLiHyV protein was recognized by antibodies of VL dogs. No cross-reactivity was obtained with sera from dogs vaccinated with a Brazilian commercial vaccine, with sera from animals infected with Trypanosoma cruzi, Babesia canis and Ehrlichia canis, or those from non-infected animals living in an endemic area for leishmaniasis. After challenge with L. infantum, spleen cells of BALB/c mice vaccinated with rLiHyV/saponin stimulated with parasite antigens showed a higher production of IFN-γ, IL-12 and GM-CSF, than the same cells obtained from mice vaccinated with the individual peptides, or mice from control (inoculated with saline or saponin) groups. This Th1-type cellular response observed in rLiHyV/saponin vaccinated mice was accompanied by the induction of parasite-specific IgG2a isotype antibodies. Animals immunized with rLiHyV/saponin showed significant reductions in the parasite burden in the liver, spleen, bone marrow and in the lymph nodes draining the paws relative to control mice. CONCLUSIONS The present study showed for the first time that the L. infantum LiHyV protein could be considered as a vaccine candidate against L. infantum infection, as well as a diagnostic marker for CVL.
Collapse
Affiliation(s)
- Vivian T Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Danielle F de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Laboratório de Biotecnologia Aplicada ao Estudo das Leishmanioses, Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Development of novel carrier(s) mediated tuberculosis vaccine: more than a tour de force. Eur J Pharm Sci 2014; 62:227-242. [PMID: 24909731 DOI: 10.1016/j.ejps.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/05/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite worldwide availability of the vaccines against most of the infectious diseases, BCG and various programs such as Directly Observed Treatment Short course (DOTS) to prevent tuberculosis still remains one of the most deadly forms of the disease affecting millions of people globally. The evolution of multi drug resistant strains (MDR) has increased the complexity further. Although currently available marketed BCG vaccine has shown sufficient protection against childhood tuberculosis, it has failed to prevent the most common form of disease i.e., pulmonary tuberculosis in adults. However, various vaccine candidates have already entered phase I clinical trials and have shown promising outcomes. The most prominent amongst them is the heterologous prime-boost approach, which shows a great promise towards designing and development of a new efficacious tuberculosis vaccine. It has also been shown that the use of various viral and non-viral vectors as carriers for the potential vaccine candidates will further boost their effect on subsequent immunization. In this review, we briefly summarize the potential of a few novel nano-carriers for developing effective vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India.
| | - Priya Dwivedi
- Department of Biotechnology, TRS College, Rewa 486001, MP, India
| | - Ashay Jain
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India
| | - Shikha Tyagi
- Department of Biotechnology, IMS Engineering College, Ghaziabad, UP Technical University, UP, India
| | - Tejram Sahu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, TW3/3W15, 12735 Twinbrook Pkwy, Rockville, MD, USA
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
6
|
Espíndola MS, Frantz FG, Soares LS, Masson AP, Tefé-Silva C, Bitencourt CS, Oliveira SC, Rodrigues V, Ramos SG, Silva CL, Faccioli LH. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection. BMC Infect Dis 2014; 14:263. [PMID: 24886395 PMCID: PMC4031977 DOI: 10.1186/1471-2334-14-263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is one of the most important neglected diseases found in developing countries and affects 249 million people worldwide. The development of an efficient vaccination strategy is essential for the control of this disease. Previous work showed partial protection induced by DNA-Sm14 against Schistosoma mansoni infection, whereas DNA-Hsp65 showed immunostimulatory properties against infectious diseases, autoimmune diseases, cancer and antifibrotic properties in an egg-induced granuloma model. METHODS C57BL/6 mice received 4 doses of DNA-Sm14 (100 μg/dose) and DNA-Hsp65 (100 μg/dose), simultaneously administrated, or DNA-Sm14 alone, once a week, during four weeks. Three groups were included: 1- Control (no immunization); 2- DNA-Sm14; 3- DNA-Sm14/DNA-Hsp65. Two weeks following last immunization, animals were challenged subcutaneously with 30 cercariae. Fifteen, 48 and 69 days after infection splenocytes were collected to evaluate the number of CD8+ memory T cells (CD44(high)CD62(low)) using flow cytometry. Forty-eight days after challenge adult worms were collected by portal veins perfusion and intestines were collected to analyze the intestinal egg viability. Histological, immunohistochemical and soluble quantification of collagen and α-SMA accumulation were performed on the liver. RESULTS In the current work, we tested a new vaccination strategy using DNA-Sm14 with DNA-Hsp65 to potentiate the protection against schistosomiasis. Combined vaccination increased the number of CD8+ memory T cells and decreased egg viability on the intestinal wall of infected mice. In addition, simultaneous vaccination with DNA-Sm14/DNA-Hsp65 reduced collagen and α-SMA accumulation during the chronic phase of granuloma formation. CONCLUSION Simultaneous vaccination with DNA-Sm14/DNA-Hsp65 showed an immunostimulatory potential and antifibrotic property that is associated with the reduction of tissue damage on Schistosoma mansoni experimental infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av, do Café s/n 14040-903 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Tabatabaie F, Mahdavi M, Faezi S, Dalimi A, Sharifi Z, Akhlaghi L, Ghaffarifar F. Th1 Platform Immune Responses Against Leishmania major Induced by Thiol-Specific Antioxidant-Based DNA Vaccines. Jundishapur J Microbiol 2014; 7:e8974. [PMID: 25147675 PMCID: PMC4138682 DOI: 10.5812/jjm.8974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Thiol-specific antioxidant (TSA) is an antigen of Leishmania major which is believed to be the most promising molecule as a vaccine candidate against leishmaniasis. OBJECTIVES In this study, we investigated the protective efficacy of TSA-based DNA vaccine against L. major infection. MATERIALS AND METHODS Recombinant plasmid construction TSA (pcTSA) was prepared and transfected into eukaryotic cells and expression was confirmed with western blot and RT-PCR. The mice were assigned to six different groups and DNA immunization was performed with 100 µg intramuscular recombinant plasmid with a two-week interval. Cytokines and lymphocyte proliferation assay, antibody responses and determination of parasite burden were performed following immunization and the challenging infection with L. major. RESULTS The antibody and IFN-γ titers were higher in pcTSA + AlPO4 group the immunized mice with pcTSA alone, but there was no statistically significant difference between the two groups. Additionally the IL-4 titer was not statistically different between the groups following immunization and challenge. After infection with L. major promastigotes, the immunized mice with pcTSA and the one immunized with both pcTSA + AlPO4 presented a considerable reduction in diameter of lesion but there was no statistical difference between the two groups. The immunized mice had significantly lower parasite loads. No significant differences were observed between the two vaccinated groups. However the highest reduction in parasite burden was observed in the group immunized with pcDNA + AlPO4. No significant differences were observed in survival rate of the immunized mice after the challenge with L. major. CONCLUSIONS In conclusion, TSA-based DNA vaccine induced Th1 platform immune response and aluminum phosphate could improve the efficacy of these vaccines with induction of humoral and cellular immune responses against L. major infection. There were no significant differences observed between pcTSA and pcTSA + AlPO4 groups.
Collapse
Affiliation(s)
- Fatemeh Tabatabaie
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, IR Iran
| | - Mehdi Mahdavi
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Sobhan Faezi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR Iran
| | - Lame Akhlaghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, IR Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Fatemeh Ghaffarifar, Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 14115-331, Tehran, IR Iran, E-mail:
| |
Collapse
|
8
|
Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Am J Cancer Res 2014; 4:240-55. [PMID: 24505233 PMCID: PMC3915088 DOI: 10.7150/thno.6914] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022] Open
Abstract
Gene transfer methods are promising in the field of gene therapy. Current methods for gene transfer include three major groups: viral, physical and chemical methods. This review mainly summarizes development of several types of chemical methods for gene transfer in vitro and in vivo by means of nano-carriers like; calcium phosphates, lipids, and cationic polymers including chitosan, polyethylenimine, polyamidoamine dendrimers, and poly(lactide-co-glycolide). This review also briefly introduces applications of these chemical methods for gene delivery.
Collapse
|
9
|
Hezarjaribi HZ, Ghaffarifar F, Dalimi A, Sharifi Z, Jorjani O. Effect of IL-22 on DNA vaccine encoding LACK gene of Leishmania major in BALB/c mice. Exp Parasitol 2013; 134:341-8. [PMID: 23541883 DOI: 10.1016/j.exppara.2013.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 02/05/2023]
Abstract
In the present study, the effect of IL-22 together with the plasmid encoding LACK (Leishmania homolog of receptors for activated C-kinase) gene of Leishmania major on the trend of leishmaniasis in BALB/c mice was evaluated. Evaluation of the cellular and humoral immunity was performed by measurement of IL-4 and IFN-γ, culture of splenocytes and MTT assay, and measurement of total IgG, IgG1, and IgG2a in the control and immunized groups. Clinical evaluations were also carried out by measurement of the lesion size, survival rate, and body weight of mice. Comparison of the mean size of lesions in the LACK and LACK+IL-22 groups demonstrated that the mean size of lesions of the two groups was significantly different from week four (p<0.05). The survival rate at day 170 after challenge for the PBS, pcDNA3 (empty plasmid), pcLACK (pcDNA3 containing LACK gene), and pcLACK+IL-22 groups were 20%, 40%, 60%, and 80%, respectively. According to the results of IFN-γ, IL-4, total IgG, IgG1, and IgG2a measurement and the MTT assay, IL-22 obviously caused an increase in IFN-γ production and a decrease in IL-4 production before and after the challenge (p<0.05). The results showed the effectiveness of IL-22 in DNA vaccine. It showed that IL-22 brought about Th1 cytokine responses and high survival rate of mice.
Collapse
Affiliation(s)
- Hajar Ziaee Hezarjaribi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
10
|
DNA-hsp65 vaccine as therapeutic strategy to treat experimental chromoblastomycosis caused by Fonsecaea pedrosoi. Mycopathologia 2012. [PMID: 23179449 DOI: 10.1007/s11046-012-9599-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis, caused by several dimorphic, pigmented dematiaceous fungi. Patients with the disease are still considered a therapeutic challenge, mainly due to its recalcitrant nature. There is no "gold standard" treatment for this neglected mycosis, but rather there are several treatment options. Chemotherapy alternatives include 5-flucytosine, itraconazole, terbinafine, fluconazole, thiabendazole, ketoconazole and amphotericin B, although the healing of severe cases is still uncommon. However, several studies have reported the DNA vaccine to be promising in the treatment for fungal infections; this vaccine allows the host to restore depressed cellular immunity, minimizing the toxic effects from conventional antifungal therapies. This work was therefore carried out aiming to establish a suitable model for experimental CBM, suggesting also new therapies, including DNA-hsp65 vaccine. By analyzing the morphometrical and histopathological aspects and by quantifying the fungal burden, the results showed the establishment of a chronic, although transitory, experimental CBM model with lesions similar to those presented in humans. A treatment regimen using intralesional itraconazole or amphotericin B was effective in treating experimental CBM, as was a therapy using naked DNA-hsp65 vaccine. It has also been shown that chemotherapy associated with DNA-hsp65 vaccine is promising in the treatment for CBM.
Collapse
|
11
|
Abstract
Mycobacterium tuberculosis was one of the first human pathogens to be identified as the cause of a specific disease – TB. TB was also one of the first specific diseases for which immunotherapy was attempted. In more than a century since, multiple different immunotherapies have been attempted, alongside vaccination and antibiotic treatment, with varying degrees of success. Despite this, TB remains a major worldwide health problem that causes nearly 2 million deaths annually and has infected an estimated 2 billion people. A major reason for this is that M. tuberculosis is an ancient human pathogen that has evolved complex strategies for persistence in the human host. It has thus been long understood that, to effectively control TB, we will need to address the ability of the pathogen to establish a persistent, latent infection in most infected individuals. This review discusses what is presently known about the interaction of M. tuberculosis with the immune system, and how this knowledge has been used to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- T Mark Doherty
- Medical Affairs, GlaxoSmithKline, Brøndby, DK-2605, Copenhagen, Denmark
| |
Collapse
|
12
|
Tang J, Chen JY, Liu J, Luo M, Wang YJ, Wei XW, Gao X, Wang BL, Liu YB, Yi T, Tong AP, Song XR, Xie YM, Zhao Y, Xiang M, Huang Y, Zheng Y. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency. Int J Pharm 2012; 431:210-21. [PMID: 22561795 DOI: 10.1016/j.ijpharm.2012.04.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/27/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
In the purpose of increasing incorporation efficiency and improving the release kinetics of plasmid DNA (pDNA) from poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles, a facile method for the fabrication of calcium phosphate (CaPi) embedded PLGA nanoparticles (CaPi-pDNA-PLGA-NPs) was developed. The effect of several preparation factors on the particle size, incorporation efficiency, pDNA release and transfection efficiency in vitro was studied by Single Factor Screening Method. These preparation factors included the molecular weight (MW), hydrolysis degree (HD) of polyvinyl alcohol (PVA), sonication power and time, composition of organic phase, initial concentration of calcium phosphate and calcium (Ca) to phosphate ion (P) ratio (Ca/P ratio), etc. The CaPi-pDNA-PLGA-NPs made according to the optimal formulation were spherical in shape observed by transmission electron microscopy (TEM) with a mean particle size of 207±5 nm and an entrapment efficiency of 95.7±0.8%. Differential scanning calorimetry (DSC) suggested that there existed interaction between the DNA-calcium-phosphate (CaPi-pDNA) complexes and the polymeric matrices of PLGA. X-ray diffractometry (XRD) further proved the conclusion and indicated that the CaPi-pDNA was in weak crystallization form inside the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area measurement demonstrated that the CaPi-pDNA-PLGA-NPs are mesoporous with specific surface area of 57.5m(2)/g and an average pore size of 96.5 Å. The transfection efficiency of the CaPi-pDNA-PLGA-NPs on human embryonic kidney 293 (HEK 293) cells in vitro was 22.4±1.2%, which was much higher than those of both the pDNA loaded PLGA nanoparticles (pDNA-PLGA-NPs) and the CaPi-pDNA embedded PLGA microparticles (CaPi-pDNA-PLGA-MPs). The CaPi-pDNA-PLGA-NPs are promising vectors for gene delivery.
Collapse
Affiliation(s)
- Jie Tang
- College of Pharmacy, State Key Laboratory of Biotherapy, Sichuan University, No. 17, Section 3, Renmin Nan Road, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tafaghodi M, Eskandari M, Khamesipour A, Jaafari MR. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis. Exp Parasitol 2011; 129:107-14. [PMID: 21767536 DOI: 10.1016/j.exppara.2011.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/02/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
A suitable adjuvant and delivery system are needed to enhance efficacy of vaccines against leishmaniasis. In this study, alginate microspheres as an antigen delivery system and CpG-ODN as an immunoadjuvant were used to enhance immune response and induce protection against an experimental autoclaved Leishmania major (ALM) vaccine. Alginate microspheres were prepared by an emulsification technique and the characteristics of the preparation such as size, encapsulation efficiency and release profile of encapsulates were studied. Mean diameter of microspheres was determined using SEM (Scanning Electron Microscopy) and particle size analyzer. The encapsulation efficiency was determined using Lowry protein assay method. The integrity of ALM antigens was assessed using SDS-PAGE. Mean diameter of microspheres was 1.8±1.0μm. BALB/c mice were immunized three times in 3-weeks intervals with ALM+CpG-ODN loaded microspheres [(ALM+CpG)(ALG)], ALM encapsulated alginate microspheres [(ALM)(ALG)], (ALM)(ALG)+CpG, ALM+CpG, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection was observed in group of mice immunized with (ALM+CpG)(ALG). The groups of mice received (ALM+CpG)(ALG), (ALM)(ALG)+CpG, (ALM)(ALG) and ALM+CpG were also showed a significantly (P<0.05) smaller footpad swelling compared with the group that received either ALM alone or PBS. The mice immunized with (ALM+CpG)(ALG) or ALM+CpG showed the significantly (P<0.05) highest IgG2a/IgG1 ratio. The IFN-γ level was significantly (P<0.0001) highest in group of mice immunized with either (ALM)(ALG)+CpG or ALM+CpG. It is concluded that alginate microspheres and CpG-ODN adjuvant when are used simultaneously induced protection and enhanced immune response against ALM antigen.
Collapse
Affiliation(s)
- Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | |
Collapse
|
14
|
Frantz FG, Ito T, Cavassani KA, Hogaboam CM, Lopes Silva C, Kunkel SL, Faccioli LH. Therapeutic DNA vaccine reduces schistosoma mansoni-induced tissue damage through cytokine balance and decreased migration of myofibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:223-9. [PMID: 21703404 PMCID: PMC3123877 DOI: 10.1016/j.ajpath.2011.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/04/2011] [Accepted: 03/15/2011] [Indexed: 01/11/2023]
Abstract
Helminths are known to elicit a wide range of immunomodulation characterized by dominant Th2-type immune responses. Our group previously showed that a DNA vaccine encoding the mycobacterial 65-kDa heat shock protein (DNA-hsp65) showed immunomodulatory properties. We also showed, using a helminth-tuberculosis (TB) co-infection model, that the DNA-hsp65 vaccine protected mice against TB. We next investigated the mechanistic role of the vaccine during helminth-TB co-infection. Clinically, helminth infection causes type 2 granulomas in the lung. Mice were immunized with DNA-hsp65 while they were submitted to the type 2 granuloma induction protocol by Schistosoma mansoni eggs infusion. In this work we investigated the effects of DNA-hsp65 on the pathology and immune response during the development of type 2 granuloma induced by S. mansoni eggs. Histologic analyses of lung parenchyma showed that the DNA-hsp65 vaccine protected mice against exacerbated fibrosis induced by Schistosoma eggs, and decreased the size of the granulomas. These changes were correlated with a reduction in the number of T cells specific for the egg antigens in the lung and also with modulation of Th2 cytokine expression. Taken together, our results showed that the adjuvant properties of the DNA-hsp65 vaccine regulated the immune response in this Th2 model, and resulted in a preserved lung parenchyma.
Collapse
Affiliation(s)
- Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Bromatologics, Ribeirão Preto College of Pharmaceutical Sciences, University of São Paulo—Ribeirão Preto, São Paulo, Brazil
| | - Toshihiro Ito
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Cory M. Hogaboam
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Célio Lopes Silva
- Department of Biochemistry and Immunology, Ribeirão Preto College of Medicine, University of São Paulo—Ribeirão Preto, São Paulo, Brazil
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lúcia H. Faccioli
- Department of Clinical Analyses, Toxicology and Bromatologics, Ribeirão Preto College of Pharmaceutical Sciences, University of São Paulo—Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
15
|
Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol Res 2010; 108:1265-73. [PMID: 21125294 DOI: 10.1007/s00436-010-2176-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Various adjuvants and delivery systems have been evaluated for increasing the protective immune responses against leishmaniasis and mostly have been shown not to be effective enough. In this study, poly(D,L-lactide-co-glycolide) (PLGA) nanospheres as an antigen delivery system and CpG-ODN as an immunoadjuvant have been used for the first time to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter of ALM + CpG-ODN-loaded nanospheres was 300 ± 128 nm. BALB/c mice were immunized three times in 3-week intervals using ALM plus CpG-ODN-loaded nanospheres [(ALM + CpG-ODN)(PLGA)], ALM encapsulated PLGA nanospheres [(ALM)(PLGA)], (ALM)(PLGA) + CpG, ALM + CpG, ALM alone, or phosphate buffer solution (PBS). The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P<0.05) smaller footpad, was observed in mice immunized with (ALM + CpG-ODN)(PLGA). The (ALM)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG were also showed a significantly (P<0.05) smaller footpad swelling compared to the groups received either PBS or ALM alone. The mice immunized with (ALM + CpG-ODN)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG showed the highest IgG2a/IgG1 ratio, interferon-γ production, and lowest interleukin-4 production compared to the other groups. It is concluded that when both PLGA nanospheres and CpG-ODN adjuvants were used simultaneously, it induce stronger immune response and enhance protection rate against Leishmania infection.
Collapse
|
16
|
Frantz FG, Rosada RS, Peres-Buzalaf C, Perusso FRT, Rodrigues V, Ramos SG, Kunkel SL, Silva CL, Faccioli LH. Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl Trop Dis 2010; 4:e700. [PMID: 20544012 PMCID: PMC2882318 DOI: 10.1371/journal.pntd.0000700] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/08/2010] [Indexed: 11/29/2022] Open
Abstract
Background Helminthiasis and tuberculosis (TB) coincide geographically and there is much interest in exploring how concurrent worm infections might alter immune responses against bacilli and might necessitate altered therapeutic approaches. A DNA vaccine that codifies heat shock protein Hsp65 from M. leprae (DNAhsp65) has been used in therapy during experimental tuberculosis. This study focused on the impact of the co-existence of worms and TB on the therapeutic effects of DNAhsp65. Methodology/Principal Findings Mice were infected with Toxocara canis or with Schistosoma mansoni, followed by coinfection with M. tuberculosis and treatment with DNAhsp65. While T. canis infection did not increase vulnerability to pulmonary TB, S. mansoni enhanced susceptibility to TB as shown by higher numbers of bacteria in the lungs and spleen, which was associated with an increase in Th2 and regulatory cytokines. However, in coinfected mice, the therapeutic effect of DNAhsp65 was not abrogated, as indicated by colony forming units and analysis of histopathological changes. In vitro studies indicated that Hsp65-specific IFN-γ production was correlated with vaccine-induced protection in coinfected mice. Moreover, in S. mansoni-coinfected mice, DNA treatment inhibited in vivo TGF-β and IL-10 production, which could be associated with long-term protection. Conclusions/Significance We have demonstrated that the therapeutic effects of DNAhsp65 in experimental TB infection are persistent in the presence of an unrelated Th2 immune response induced by helminth infections. From 14 diseases considered by WHO as Neglected Tropical Diseases, four involve helminth infections, such as schistosomiasis and soil-transmitted helminthiasis. Toxocariasis is a soil-transmitted worm highly prevalent in many developing countries, while schistosomiasis causes an annual mortality of 14,000 deaths per year, with 200–300 million infected people and 10% at risk of infection worldwide. Additionally, tuberculosis (TB) remains one of the leading causes of morbidity and mortality in many settings, particularly in the world's poorest countries. Mycobacteria and helminths are co-endemic and induce opposing patterns of immune responses in the host, recognized as Th1 and Th2 respectively. These co-existing patterns could be associated with the failure of TB vaccines. In this sense, we investigated the inflammatory and immune response in a coinfection model with T. canis or S. mansoni and M. tuberculosis analyzing the effects of an immunotherapy that has previously shown efficacy in experimental TB. This immunotherapy is based on a DNA vaccine that codifies a mycobacterial heat shock protein (hsp65), which can prevent TB in a prophylactic and also therapeutic setting. In this work, we show that helminth coinfection does not abrogate the therapeutic effects of DNAhsp65 vaccine against TB.
Collapse
Affiliation(s)
- Fabiani G Frantz
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ribeiro AM, Bocca AL, Amaral AC, Souza ACC, Faccioli LH, Coelho-Castelo AA, Figueiredo F, Silva CL, Felipe MSS. HSP65 DNA as therapeutic strategy to treat experimental paracoccidioidomycosis. Vaccine 2010; 28:1528-34. [DOI: 10.1016/j.vaccine.2009.11.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 11/16/2022]
|
18
|
Christensen D, Agger EM, Andreasen LV, Kirby D, Andersen P, Perrie Y. Liposome-based cationic adjuvant formulations (CAF): Past, present, and future. J Liposome Res 2009; 19:2-11. [DOI: 10.1080/08982100902726820] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
DNAhsp65 vaccination induces protection in mice against Paracoccidioides brasiliensis infection. Vaccine 2009; 27:606-13. [DOI: 10.1016/j.vaccine.2008.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 11/23/2022]
|
20
|
Rosada RS, de la Torre LG, Frantz FG, Trombone APF, Zárate-Bladés CR, Fonseca DM, Souza PRM, Brandão IT, Masson AP, Soares EG, Ramos SG, Faccioli LH, Silva CL, Santana MHA, Coelho-Castelo AAM. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol 2008; 9:38. [PMID: 18647414 PMCID: PMC2500095 DOI: 10.1186/1471-2172-9-38] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 07/22/2008] [Indexed: 02/19/2023] Open
Abstract
Background The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg). Conclusion Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.
Collapse
Affiliation(s)
- Rogério S Rosada
- Núcleo de Pesquisas em Tuberculose, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blum JS, Saltzman WM. High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J Control Release 2008; 129:66-72. [PMID: 18511145 PMCID: PMC2494593 DOI: 10.1016/j.jconrel.2008.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/31/2008] [Accepted: 04/09/2008] [Indexed: 02/07/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles have been widely explored as vehicles for delivery of plasmid DNA to mammalian cells both in vitro and in vivo. Achieving high incorporation efficiencies and control over release kinetics are significant challenges in encapsulating hydrophilic molecules such as DNA within submicron particles fabricated from PLGA. This study explored two modifications in the preparation of submicron particles to specifically address these challenges. Firstly, we compared homogenization and sonication as energy sources for emulsification. It was demonstrated that particles prepared with homogenization resulted in higher encapsulation efficiency and a linear release profile of DNA as compared to particles prepared with sonication, which exhibited lower encapsulation efficiency and a burst release. Also investigated was conjugation of poly-L-lysine to PLGA (PLGA-PLL) to create an electrostatically favorable interaction between the carrier material and the DNA. Particles fabricated with high weight percentages of PLGA-PLL/PLGA resulted in remarkably increased loading (>90%). Additionally, the release profile could be dictated by the quantity of PLGA-PLL incorporated into the particles. Particles incubated in vitro on COS-7 cells were able to transfect cells. These results demonstrated that DNA encapsulation and release were modulated by the method of fabrication.
Collapse
Affiliation(s)
- Jeremy S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT
| |
Collapse
|
22
|
Christensen D, Korsholm KS, Rosenkrands I, Lindenstrøm T, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 2007; 6:785-96. [PMID: 17931158 DOI: 10.1586/14760584.6.5.785] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cationic liposomes are lipid-bilayer vesicles with a positive surface charge that have re-emerged as a promising new adjuvant technology. Although there is some evidence that cationic liposomes themselves can improve the immune response against coadministered vaccine antigens, their main functions are to protect the antigens from clearance in the body and deliver the antigens to professional antigen-presenting cells. In addition, cationic liposomes can be used to introduce immunomodulators to enhance and modulate the immune response in a desirable direction and, thereby, represent an efficient tool when designing tailor-made adjuvants for specific disease targets. In this article we review the recent progress on cationic liposomes as vehicles, enhancing the effect of immunomodulators and the presentation of vaccine antigens.
Collapse
Affiliation(s)
- Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 81/306, DK-2300 Copenhagen S, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
23
|
Kai M, Fujita Y, Maeda Y, Nakata N, Izumi S, Yano I, Makino M. Identification of trehalose dimycolate (cord factor) in Mycobacterium leprae. FEBS Lett 2007; 581:3345-50. [PMID: 17601578 DOI: 10.1016/j.febslet.2007.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/11/2007] [Accepted: 06/13/2007] [Indexed: 11/19/2022]
Abstract
Glycolipids of Mycobacterium leprae obtained from armadillo tissue nodules infected with the bacteria were analyzed. Mass spectrometric analysis of the glycolipids indicated the presence of trehalose 6,6'-dimycolate (TDM) together with trehalose 6-monomycolate (TMM) and phenolic glycolipid-I (PGL-I). The analysis showed that M. leprae-derived TDM and TMM possessed both alpha- and keto-mycolates centering at C78 in the former and at C81 or 83 in the latter subclasses, respectively. For the first time, MALDI-TOF mass analyses showed the presence of TDM in M. leprae.
Collapse
Affiliation(s)
- Masanori Kai
- Department of Microbiology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama-shi, Tokyo 189-0002, Japan.
| | | | | | | | | | | | | |
Collapse
|