1
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
2
|
Dick CF, Alcantara CL, Carvalho-Kelly LF, Lacerda-Abreu MA, Cunha-E-Silva NL, Meyer-Fernandes JR, Vieyra A. Iron Uptake Controls Trypanosoma cruzi Metabolic Shift and Cell Proliferation. Antioxidants (Basel) 2023; 12:antiox12050984. [PMID: 37237850 DOI: 10.3390/antiox12050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Ionic transport in Trypanosoma cruzi is the object of intense studies. T. cruzi expresses a Fe-reductase (TcFR) and a Fe transporter (TcIT). We investigated the effect of Fe depletion and Fe supplementation on different structures and functions of T. cruzi epimastigotes in culture. (2) Methods: We investigated growth and metacyclogenesis, variations of intracellular Fe, endocytosis of transferrin, hemoglobin, and albumin by cell cytometry, structural changes of organelles by transmission electron microscopy, O2 consumption by oximetry, mitochondrial membrane potential measuring JC-1 fluorescence at different wavelengths, intracellular ATP by bioluminescence, succinate-cytochrome c oxidoreductase following reduction of ferricytochrome c, production of H2O2 following oxidation of the Amplex® red probe, superoxide dismutase (SOD) activity following the reduction of nitroblue tetrazolium, expression of SOD, elements of the protein kinase A (PKA) signaling, TcFR and TcIT by quantitative PCR, PKA activity by luminescence, glyceraldehyde-3-phosphate dehydrogenase abundance and activity by Western blotting and NAD+ reduction, and glucokinase activity recording NADP+ reduction. (3) Results: Fe depletion increased oxidative stress, inhibited mitochondrial function and ATP formation, increased lipid accumulation in the reservosomes, and inhibited differentiation toward trypomastigotes, with the simultaneous metabolic shift from respiration to glycolysis. (4) Conclusion: The processes modulated for ionic Fe provide energy for the T. cruzi life cycle and the propagation of Chagas disease.
Collapse
Affiliation(s)
- Claudia F Dick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luiz F Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Adalberto Vieyra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional /BIOTRANS, Universidade do Grande Rio, Duque de Caxias 25071-202, RJ, Brazil
| |
Collapse
|
3
|
Moreira FF, Portes JDA, Barros Azeredo NF, Fernandes C, Horn A, Santiago CP, Segat BB, Caramori GF, Madureira LMP, Candela DRS, Marques MM, Lamounier Camargos Resende JA, de Souza W, DaMatta RA, Seabra SH. Development of new dinuclear Fe(III) coordination compounds with in vitro nanomolar antitrypanosomal activity. Dalton Trans 2021; 50:12242-12264. [PMID: 34519725 DOI: 10.1039/d1dt01048d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan pathogen Trypanosoma cruzi. The disease is a major public health problem affecting about 6 to 7 million people worldwide, mostly in Latin America. The available therapy for this disease is based on two drugs, nifurtimox and benznidazole, which exhibit severe side effects, including resistance, severe cytotoxicity, variable efficacy and inefficiency in the chronic phase. Therefore, new drugs are urgently needed. Coordination compounds may be an interesting alternative for antiparasite therapy against Leishmania spp., Toxoplasma gondii and T. cruzi. Herein, we tested the in vitro effect on T. cruzi epimastigotes (Y strain) of two new μ-oxo Fe(III) dinuclear complexes: [(HL1)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·(CH3CH2OH)2·H2O (1) and [(HL2)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·H2O (2) where HL1 and HL2 are ligands which contain two pyridines, amine and alcohol moieties with a naphthyl pendant unit yielding a N3O coordination environment. Complexes (1) and (2), which are isomers, were completely characterized, including X-ray diffraction studies for complex (1). Parasites were treated with the complexes and the outcome was analyzed. Complex (1) exhibited the lowest IC50 values, which were 99 ± 3, 97 ± 2 and 110 ± 39 nM, after 48, 72 and 120 h of treatment, respectively. Complex (2) showed IC50 values of 118 ± 5, 122 ± 6 and 104 ± 29 nM for the same treatment times. Low cytotoxicity to the host cell LLC-MK2 was found for both complexes, resulting in impressive selectivity indexes of 106 for complex (1) and 178 for (2), after 120 h of treatment. Treatment with both complexes reduced the mitochondrial membrane potential of the parasite. Ultrastructural analysis of the parasite after treatment with complexes showed that the mitochondria outer membrane presented swelling and abnormal disposition around the kinetoplast; in addition, reservosomes presented anomalous spicules and rupture. The complexes showed low nanomolar IC50 values affecting mitochondria and reservosomes, essential organelles for the survival of the parasite. The low IC50 and the high selectivity index show that both complexes act as a new prototype of drugs against T. cruzi and may be used for further development in drug discovery to treat Chagas disease.
Collapse
Affiliation(s)
- Felipe Figueirôa Moreira
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Juliana de Araujo Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Nathália Florência Barros Azeredo
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Cristina Pinheiro Santiago
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Bruna Barriquel Segat
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | | | | | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sergio Henrique Seabra
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
4
|
de Oliveira Santos J, Zuma AA, de Souza W, Motta MCM. Tubastatin A, a deacetylase inhibitor, as a tool to study the division, cell cycle and microtubule cytoskeleton of trypanosomatids. Eur J Protistol 2021; 80:125821. [PMID: 34144311 DOI: 10.1016/j.ejop.2021.125821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
Trypanosoma cruzi is a protozoan of great medical interest since it is the causative agent of Chagas disease, an endemic condition in Latin America. This parasite undergoes epigenetic events, such as phosphorylation, methylation and acetylation, which play a role in several cellular processes including replication, transcription and gene expression. Histone deacetylases (HDAC) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. Tubastatin A (TST) is a specific HDAC6 inhibitor that affects cell growth and promotes structural modifications in cancer cells and parasites. In the present study, we demonstrated that T. cruzi epimastigote cell proliferation and viability are reduced after 72 h of TST treatment. The results obtained through different microscopy methodologies suggest that this inhibitor impairs the polymerization dynamics of cytoskeleton microtubules, generating protozoa displaying atypical morphology and cellular patterns that include polynucleated parasites. Furthermore, the microtubules of treated protozoa were more intensely acetylated, especially at the anterior portion of the cell body. A cell cycle analysis demonstrated an increase in the number of trypanosomatids in the G2/M phase. Together, our results suggest that TST should be explored as a tool to study trypanosomatid cell biology, including microtubule cytoskeleton dynamics, and as an antiparasitic drug.
Collapse
Affiliation(s)
- Jean de Oliveira Santos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil.
| |
Collapse
|
5
|
The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins. Cells 2021; 10:cells10051258. [PMID: 34069694 PMCID: PMC8161075 DOI: 10.3390/cells10051258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs and the diversity of their functions in various lineages is an important challenge for understanding the evolutionary background of autophagy.
Collapse
|
6
|
Characterization of the RNA-Binding Protein TcSgn1 in Trypanosoma cruzi. Microorganisms 2021; 9:microorganisms9050986. [PMID: 34063193 PMCID: PMC8147501 DOI: 10.3390/microorganisms9050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
RNA-binding proteins (RBPs) participate in several steps of post-transcriptional regulation of gene expression, such as splicing, messenger RNA transport, mRNA localization, and translation. Gene-expression regulation in trypanosomatids occurs primarily at the post-transcriptional level, and RBPs play important roles in the process. Here, we characterized the RBP TcSgn1, which contains one RNA recognition motif (RRM). TcSgn1 is a close ortholog of yeast Saccharomyces cerevisiae protein ScSgn1, which plays a role in translational regulation in the cytoplasm. We found that TcSgn1 in Trypanosoma cruzi is localized in the nucleus in exponentially growing epimastigotes. By performing immunoprecipitation assays of TcSgn1, we identified hundreds of mRNAs associated with the protein, a significant fraction of them coding for nucleic acids binding, transcription, and endocytosis proteins. In addition, we show that TcSgn1 is capable of interacting directly with the poly(A) tail of the mRNAs. The study of parasites under nutritional stress showed that TcSgn1 was localized in cytoplasmic granules in addition to localizing in the nucleus. Similar to ScSgn1, we observed that TcSgn1 also interacts with the PABP1 protein, suggesting that this protein may play a role in regulating gene expression in T. cruzi. Taken together, our results show that RNA-binding protein TcSgn1 is part of ribonucleoprotein complexes associated with nuclear functions, stress response, and RNA metabolism.
Collapse
|
7
|
Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Králová J, Yurchenko V, Kostygov AY. If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus. PLoS One 2020; 15:e0227832. [PMID: 31945116 PMCID: PMC6964863 DOI: 10.1371/journal.pone.0227832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end).
Collapse
Affiliation(s)
- Alexander O. Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina N. Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I. Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktoria V. Spodareva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jana Králová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexei Y. Kostygov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Wang Z, Wheeler RJ, Sunter JD. Lysosome assembly and disassembly changes endocytosis rate through the Leishmania cell cycle. Microbiologyopen 2019; 9:e969. [PMID: 31743959 PMCID: PMC7002101 DOI: 10.1002/mbo3.969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Leishmania lysosome has an atypical structure, consisting of an elongated vesicle‐filled tubule running along the anterior–posterior axis of the cell, which is termed the multivesicular tubule (MVT) lysosome. Alongside, the MVT lysosome is one or more microtubules, the lysosomal microtubule(s). Previous work indicated there were cell cycle‐related changes in MVT lysosome organization; however, these only provided snapshots and did not connect the changes in the lysosomal microtubule(s) or lysosomal function. Using mNeonGreen tagged cysteine peptidase A and SPEF1 as markers of the MVT lysosome and lysosomal microtubule(s), we examined the dynamics of these structures through the cell cycle. Both the MVT lysosome and lysosomal microtubule(s) elongated at the beginning of the cell cycle before plateauing and then disassembling in late G2 before cytokinesis. Moreover, the endocytic rate in cells where the MVT lysosome and lysosomal microtubule(s) had disassembled was extremely low. The dynamic nature of the MVT lysosome and lysosomal microtubule(s) parallels that of the Trypanosoma cruzi cytostome/cytopharynx, which also has a similar membrane tubule structure with associated microtubules. As the cytostome/cytopharynx is an ancestral feature of the kinetoplastids, this suggests that the Leishmania MVT lysosome and lysosomal microtubule(s) are a reduced cytostome/cytopharynx‐like feature.
Collapse
Affiliation(s)
- Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Richard J Wheeler
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
9
|
Sayé M, Reigada C, Gauna L, Valera-Vera EA, Pereira CA, Miranda MR. Amino Acid and Polyamine Membrane Transporters in Trypanosoma cruzi: Biological Function and Evaluation as Drug Targets. Curr Med Chem 2019; 26:6636-6651. [PMID: 31218951 DOI: 10.2174/0929867326666190620094710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/12/2018] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Amino acids and polyamines are involved in relevant processes for the parasite Trypanosoma cruzi, like protein synthesis, stress resistance, life cycle progression, infection establishment and redox balance, among others. In addition to the biosynthetic routes of amino acids, T. cruzi possesses transport systems that allow the active uptake from the extracellular medium; and in the case of polyamines, the uptake is the unique way to obtain these compounds. The TcAAAP protein family is absent in mammals and its members are responsible for amino acid and derivative uptake, thus the TcAAAP permeases are not only interesting and promising therapeutic targets but could also be used to direct the entry of toxic compounds into the parasite. Although there is a treatment available for Chagas disease, its limited efficacy in the chronic stage of the disease, as well as the side effects reported, highlight the urgent need to develop new therapies. Discovery of new drugs is a slow and cost-consuming process, and even during clinical trials the drugs can fail. In this context, drug repositioning is an interesting and recommended strategy by the World Health Organization since costs and time are significantly reduced. In this article, amino acids and polyamines transport and their potential as therapeutic targets will be revised, including examples of synthetic drugs and drug repurposing.
Collapse
Affiliation(s)
- Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Lucrecia Gauna
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward A Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
10
|
Moreira CMDN, Batista CM, Fernandes JC, Kessler RL, Soares MJ, Fragoso SP. Knockout of the gamma subunit of the AP-1 adaptor complex in the human parasite Trypanosoma cruzi impairs infectivity and differentiation and prevents the maturation and targeting of the major protease cruzipain. PLoS One 2017; 12:e0179615. [PMID: 28759609 PMCID: PMC5536268 DOI: 10.1371/journal.pone.0179615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022] Open
Abstract
The AP-1 Adaptor Complex assists clathrin-coated vesicle assembly in the trans-Golgi network (TGN) of eukaryotic cells. However, the role of AP-1 in the protozoan Trypanosoma cruzi-the Chagas disease parasite-has not been addressed. Here, we studied the function and localization of AP-1 in different T. cruzi life cycle forms, by generating a gene knockout of the large AP-1 subunit gamma adaptin (TcAP1-γ), and raising a monoclonal antibody against TcAP1-γ. Co-localization with a Golgi marker and with the clathrin light chain showed that TcAP1-γ is located in the Golgi, and it may interact with clathrin in vivo, at the TGN. Epimastigote (insect form) parasites lacking TcAP1-γ (TcγKO) have reduced proliferation and differentiation into infective metacyclic trypomastigotes (compared with wild-type parasites). TcγKO parasites have also displayed significantly reduced infectivity towards mammalian cells. Importantly, TcAP1-γ knockout impaired maturation and transport to lysosome-related organelles (reservosomes) of a key cargo-the major cysteine protease cruzipain, which is important for parasite nutrition, differentiation and infection. In conclusion, the defective processing and transport of cruzipain upon AP-1 ablation may underlie the phenotype of TcγKO parasites.
Collapse
Affiliation(s)
| | | | | | - Rafael Luis Kessler
- Laboratory of Functional Genomics. Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| | - Maurilio José Soares
- Laboratory of Cell Biology, Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| | - Stenio Perdigão Fragoso
- Laboratory of Molecular Biology of Trypanosomatids, Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| |
Collapse
|
11
|
Lechuga GC, Borges JC, Calvet CM, de Araújo HP, Zuma AA, do Nascimento SB, Motta MCM, Bernardino AMR, Pereira MCDS, Bourguignon SC. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist 2016; 6:154-164. [PMID: 27490082 PMCID: PMC4971285 DOI: 10.1016/j.ijpddr.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.
Collapse
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Júlio Cesar Borges
- Departamento de Química Orgânica, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis, 26530-060, RJ, Brazil
| | - Claudia Magalhães Calvet
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| | - Humberto Pinheiro de Araújo
- Departamento de Imunologia, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373-bloco G. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Samara Braga do Nascimento
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373-bloco G. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Saulo Cabral Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, 24020-141, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 2016; 7:78-87. [PMID: 26981197 PMCID: PMC4768126 DOI: 10.4331/wjbc.v7.i1.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.
Collapse
|
13
|
Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion. Acta Trop 2014; 137:161-73. [PMID: 24879929 DOI: 10.1016/j.actatropica.2014.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi.
Collapse
|
14
|
mAb CZP-315.D9: an antirecombinant cruzipain monoclonal antibody that specifically labels the reservosomes of Trypanosoma cruzi epimastigotes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:714749. [PMID: 24587988 PMCID: PMC3920967 DOI: 10.1155/2014/714749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 11/17/2022]
Abstract
Reservosomes are large round vesicles located at the posterior end of epimastigote forms of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. They are the specific end organelles of the endocytosis pathway of T. cruzi, and they play key roles in nutrient uptake and cell differentiation. These lysosome-like organelles accumulate ingested macromolecules and contain large amounts of a major cysteine proteinase (cruzipain or GP57/51 protein). Aim of this study was to produce a monoclonal antibody (mAb) against a recombinant T. cruzi cruzipain (TcCruzipain) that specifically labels the reservosomes. BALB/c mice were immunized with purified recombinant TcCruzipain to obtain the mAb. After fusion of isolated splenocytes with myeloma cells and screening, a mAb was obtained by limiting dilution and characterized by capture ELISA. We report here the production of a kappa-positive monoclonal IgG antibody (mAb CZP-315.D9) that recognizes recombinant TcCruzipain. This mAb binds preferentially to a protein with a molecular weight of about 50 kDa on western blots and specifically labels reservosomes by immunofluorescence and transmission electron microscopy. The monoclonal CZP-315.D9 constitutes a potentially powerful marker for use in studies on the function of reservosomes of T. cruzi.
Collapse
|
15
|
Rodrigues JCF, Godinho JLP, de Souza W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. Subcell Biochem 2014; 74:1-42. [PMID: 24264239 DOI: 10.1007/978-94-007-7305-9_1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leishmania and Trypanosoma belong to the Trypanosomatidae family and cause important human infections such as leishmaniasis, Chagas disease, and sleeping sickness. Leishmaniasis, caused by protozoa belonging to Leishmania, affects about 12 million people worldwide and can present different clinical manifestations, i.e., visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), and post-kala-azar dermal leishmaniasis (PKDL). Chagas disease, also known as American trypanosomiasis, is caused by Trypanosoma cruzi and is mainly prevalent in Latin America but is increasingly occurring in the United States, Canada, and Europe. Sleeping sickness or human African trypanosomiasis (HAT), caused by two sub-species of Trypanosoma brucei (i.e., T. b. rhodesiense and T. b. gambiense), occurs only in sub-Saharan Africa countries. These pathogenic trypanosomatids alternate between invertebrate and vertebrate hosts throughout their lifecycles, and different developmental stages can live inside the host cells and circulate in the bloodstream or in the insect gut. Trypanosomatids have a classical eukaryotic ultrastructural organization with some of the same main organelles found in mammalian host cells, while also containing special structures and organelles that are absent in other eukaryotic organisms. For example, the mitochondrion is ramified and contains a region known as the kinetoplast, which houses the mitochondrial DNA. Also, the glycosomes are specialized peroxisomes containing glycolytic pathway enzymes. Moreover, a layer of subpellicular microtubules confers mechanic rigidity to the cell. Some of these structures have been investigated to determine their function and identify potential enzymes and metabolic pathways that may constitute targets for new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | | | | |
Collapse
|
16
|
Oliveira MPDC, Ramos TCP, Pinheiro AMVN, Bertini S, Takahashi HK, Straus AH, Haapalainen EF. Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii. Acta Trop 2013; 128:548-56. [PMID: 23933185 DOI: 10.1016/j.actatropica.2013.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
Trypanosoma (Schizotrypanum) dionisii is a non-pathogenic bat trypanosome closely related to Trypanosoma cruzi, the etiological agent of Chaga's disease. Both kinetoplastids present similar morphological stages and are able to infect mammalian cells in culture. In the present study we examined 3D ultrastructure aspects of the two species by serial sectioning epimastigote and trypomastigote forms, and identified common carbohydrate epitopes expressed in T. dionisii, T. cruzi and Leishmania major. A major difference in 3D morphology was that T. dionisii epimastigote forms present larger multivesicular structures, restricted to the parasite posterior region. These structures could be related to T. cruzi reservosomes and are also rich in cruzipain, the major cysteine-proteinase of T. cruzi. We analyzed the reactivity of two monoclonal antibodies: MEST-1 directed to galactofuranose residues of glycolipids purified from Paracoccidioides brasiliensis, and BST-1 directed to glycolipids purified from T. cruzi epimastigotes. Both antibodies were reactive with T. dionisii epimastigotes by indirect immunofluorescense, but we noted differences in the location and intensity of the epitopes, when compared to T. cruzi. In summary, despite similar features in cellular structure and life cycle of T. dionisii and T. cruzi, we observed a unique morphological characteristic in T. dionisii that deserves to be explored.
Collapse
Affiliation(s)
- Miriam Pires de Castro Oliveira
- Departamento de Biologia Estrutural e Funcional, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, SP, 04023-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
17
|
Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells. Parasitol Res 2013; 113:285-304. [DOI: 10.1007/s00436-013-3655-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
|
18
|
Bayer-Santos E, Cunha-e-Silva NL, Yoshida N, Franco da Silveira J. Expression and cellular trafficking of GP82 and GP90 glycoproteins during Trypanosoma cruzi metacyclogenesis. Parasit Vectors 2013; 6:127. [PMID: 23634710 PMCID: PMC3652755 DOI: 10.1186/1756-3305-6-127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background The transformation of noninfective epimastigotes into infective metacyclic trypomastigotes (metacyclogenesis) is a fundamental step in the life cycle of Trypanosoma cruzi, comprising several morphological and biochemical changes. GP82 and GP90 are glycoproteins expressed at the surface of metacyclic trypomastigote, with opposite roles in mammalian cell invasion. GP82 is an adhesin that promotes cell invasion, while GP90 acts as a negative regulator of parasite internalization. Our understanding of the synthesis and intracellular trafficking of GP82 and GP90 during metacyclogenesis is still limited. Therefore, we decided to determine whether GP82 and GP90 are expressed only in fully differentiated metacyclic forms or they start to be expressed in intermediate forms undergoing differentiation. Methods Parasite populations enriched in intermediate forms undergoing differentiation were analyzed by quantitative real-time PCR, Western blot, flow cytometry and immunofluorescence to assess GP82 and GP90 expression. Results We found that GP82 and GP90 mRNAs and proteins are expressed in intermediate forms and reach higher levels in fully differentiated metacyclic forms. Surprisingly, GP82 and GP90 presented distinct cellular localizations in intermediate forms compared to metacyclic trypomastigotes. In intermediate forms, GP82 is localized in organelles at the posterior region and colocalizes with cruzipain, while GP90 is localized at the flagellar pocket region. Conclusions This study discloses new aspects of protein expression and trafficking during T. cruzi differentiation by showing that the machinery involved in GP82 and GP90 gene expression starts to operate early in the differentiation process and that different secretion pathways are responsible for delivering these glycoproteins toward the cell surface.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | | | | | | |
Collapse
|
19
|
Kessler RL, Soares MJ, Probst CM, Krieger MA. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLoS One 2013; 8:e55497. [PMID: 23383204 PMCID: PMC3561218 DOI: 10.1371/journal.pone.0055497] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/23/2012] [Indexed: 12/22/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs) ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50)/72 h) or killing all cells within 24 hours (EC(100)/24 h). Incubation with inhibitors at the EC(50)/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50)/72 h. By contrast, treatment with SBIs at the EC(100)/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP), culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.
Collapse
|
20
|
Lima L, Silva FMD, Neves L, Attias M, Takata CS, Campaner M, de Souza W, Hamilton PB, Teixeira MM. Evolutionary Insights from Bat Trypanosomes: Morphological, Developmental and Phylogenetic Evidence of a New Species, Trypanosoma (Schizotrypanum) erneyi sp. nov., in African Bats Closely Related to Trypanosoma (Schizotrypanum) cruzi and Allied Species. Protist 2012; 163:856-72. [DOI: 10.1016/j.protis.2011.12.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/11/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
|
21
|
Brennand A, Rico E, Michels PAM. Autophagy in trypanosomatids. Cells 2012; 1:346-71. [PMID: 24710480 PMCID: PMC3901119 DOI: 10.3390/cells1030346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG) proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments. Autophagy plays a major role during these transformations. Since inhibition of autophagy affects the transformation, survival and/or virulence of the parasites, the ATGs offer promise for development of drugs against tropical diseases. Furthermore, various trypanocidal drugs have been shown to trigger autophagy-like processes in the parasites. It is inferred that autophagy is used by the parasites in an-not always successful-attempt to cope with the stress caused by the toxic compounds.
Collapse
Affiliation(s)
- Ana Brennand
- Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, postal box B1.74.01, B-1200 Brussels, Belgium.
| | - Eva Rico
- Department of Biochemistry and Molecular Biology, University Campus, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain.
| | - Paul A M Michels
- Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, postal box B1.74.01, B-1200 Brussels, Belgium.
| |
Collapse
|
22
|
Cloning, localization and differential expression of the Trypanosoma cruzi TcOGNT-2 glycosyl transferase. Gene 2012; 498:147-54. [PMID: 22387207 DOI: 10.1016/j.gene.2012.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 01/02/2023]
Abstract
The surface of Trypanosoma cruzi is covered by a dense glycocalix which is characteristic of each stage of the life cycle. Its composition and complexity depend mainly on mucin-like proteins. A remarkable feature of O-glycan biosynthesis in trypanosomes is that it initiates with the addition of a GlcNAc instead of the GalNAc residue that is commonly used in vertebrate mucins. The fact that the interplay between trans-sialidase and mucin is crucial for pathogenesis, and both families have stage-specific members is also remarkable. Recently the enzyme that transfers the first GlcNAc from UDP-GlcNAc to a serine or threonine residue was kinetically characterized. The relevance of this enzyme is evidenced by its role as catalyzer of the first step in O-glycosylation. In this paper we describe how this gene is expressed differentially along the life cycle with a pattern that is very similar to that of trans-sialidases. Its localization was determined, showing that the protein predicted to be in the Golgi apparatus is also present in reservosomes. Finally our results indicate that this enzyme, when overexpressed, enhances T. cruzi infectivity.
Collapse
|
23
|
Study ofTrypanosoma cruziepimastigote cell death by NMR-visible mobile lipid analysis. Parasitology 2012; 139:506-15. [DOI: 10.1017/s0031182011002150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYCell death mechanisms inTrypanosoma cruzihave not been disclosed in detail though different conventional techniques have been used in the classification of parasite-cell death type. Nuclear magnetic resonance (NMR) has successfully been used as a tool to evaluate the onset of apoptosis in a number of higher eukaryote-cell models analysing the ratio of CH2/CH3integration from the visible mobile lipids (VML). Surprisingly, this versatile non-invasive spectroscopy technique has never been employed with this purpose inT. cruzi. In the present study it is shown that under different parasite death-conditions the ratio CH2/CH3varied drastically. Thus,T. cruziepimastigotes in apoptotic conditions increase significantly this ratio while in necrotic as well as in autophagic situations the parasites maintain the VML, CH2/CH3ratio, in normal values. Additionally, other VML markers commonly used in these studies, such as the change in the region of methyl-choline moiety, -N+(CH3)3, exhibited different particular patterns according to the type of cell death. Our results suggest that the1H NMR-VML technique is an adequate tool to discriminate differentT. cruzideath pathways.
Collapse
|
24
|
Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid inclusions. PLoS One 2011; 6:e22359. [PMID: 21818313 PMCID: PMC3144899 DOI: 10.1371/journal.pone.0022359] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 06/26/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol crystals in foam cells. METHODOLOGY/PRINCIPAL FINDINGS Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy, we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped ones. CONCLUSIONS/SIGNIFICANCE Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation.
Collapse
|
25
|
Ramos TCP, Freymüller-Haapalainen E, Schenkman S. Three-dimensional reconstruction of Trypanosoma cruzi epimastigotes and organelle distribution along the cell division cycle. Cytometry A 2011; 79:538-44. [PMID: 21567937 DOI: 10.1002/cyto.a.21077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/14/2011] [Accepted: 04/12/2011] [Indexed: 11/08/2022]
Abstract
Trypanosoma cruzi is the protozoan that causes Chagas disease. It divides in the insect vector gut or in the cytosol of an infected mammalian cell. T. cruzi has one mitochondrion, one Golgi complex, one flagellum, and one cytostome. Here, we provide three-dimensional (3D) models of this protozoan based on images obtained from serial sections on electron microscopy at different stages of the cell cycle. Ultrathin serial sections were obtained from Epon™ embedded parasites, photographed in a transmission electron microscope, and 3D models were generated using Reconstruct and Blender 3D modeling softwares. The localization and distribution of organelles was evaluated and attributed to specific morphological patterns and deduced by distribution of specific markers by immunofluorescence analysis. The new features found in the 3D reconstructions are (1) the electron-dense chromatin is interconnected leaving an internal space for a centrally located nucleolus; (2) The kinetoplast is accommodated within a separated branch of the tubular and single mitochondrion; (3) The disk shaped kinetoplast, which is the mitochondrial DNA, duplicates from the interior in G2 phase; (4) The mitochondrion faces the external membrane and shrinks to accommodate an enlarged number of cytosolic vesicles from G1 to G2; (5) The cytostome progress from the parasite surface toward the posterior end contouring the kinetoplast and nucleus and retracts during cell cycle. These new observations might help understanding how organelles are formed and distributed in early divergent eukaryotic cells and provides a useful method to understand the organelle distribution in small eukaryotic cells.
Collapse
Affiliation(s)
- Thiago Cesar Prata Ramos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Brazil
| | | | | |
Collapse
|
26
|
Ennes-Vidal V, Menna-Barreto RFS, Santos ALS, Branquinha MH, d'Avila-Levy CM. MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut. PLoS One 2011; 6:e18371. [PMID: 21483751 PMCID: PMC3070728 DOI: 10.1371/journal.pone.0018371] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 03/06/2011] [Indexed: 11/18/2022] Open
Abstract
Background Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. Methodology/Principal Findings In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption. Conclusions/Significance The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of these molecules on the interaction with both invertebrate and vertebrate hosts, it is interesting to improve knowledge on these molecules in T. cruzi.
Collapse
Affiliation(s)
- Vítor Ennes-Vidal
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
27
|
Salomão K, de Souza EM, Henriques-Pons A, Barbosa HS, de Castro SL. Brazilian Green Propolis: Effects In Vitro and In Vivo on Trypanosoma cruzi. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:185918. [PMID: 19213854 PMCID: PMC3094871 DOI: 10.1093/ecam/nep014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/16/2009] [Indexed: 11/12/2022]
Abstract
The composition of a Brazilian green propolis ethanolic extract (Et-Bra) and its effect on Trypanosoma cruzi trypomastigotes and other pathogenic microorganisms have already been reported. Here, we further investigated Et-Bra targets in T. cruzi and its effect on experimental infection of mice. The IC(50)/4 days for inhibition of amastigote proliferation was 8.5 ± 1.8 μg mL(-1), with no damage to the host cells. In epimastigotes Et-Bra induced alterations in reservosomes, Golgi complex and mitochondrion. These effects were confirmed by flow cytometry analysis. In trypomastigotes, Et-Bra led to the loss of plasma membrane integrity. The in vitro studies indicate that Et-Bra interferes in the functionality of the plasma membrane in trypomastigotes and of reservosomes and mitochondrion in epimastigotes. Acutely infected mice were treated orally with Et-Bra and the parasitemia, mortality and GPT, GOT, CK and urea levels were monitored. The extract (25-300 mg kg(-1) body weight/day for 10 days) reduced the parasitemia, although not at significant levels; increased the survival of the animals and did not induce any hepatic, muscular lesion or renal toxicity. Since Et-Bra was not toxic to the animals, it could be assayed in combination with other drugs. Et-Bra could be a potential metacyclogenesis blocker, considering its effect on reservosomes, which are an important energy source during parasite differentiation.
Collapse
Affiliation(s)
- Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
28
|
Izumi E, Ueda-Nakamura T, Dias Filho BP, Veiga Júnior VF, Nakamura CV. Natural products and Chagas' disease: a review of plant compounds studied for activity against Trypanosoma cruzi. Nat Prod Rep 2011; 28:809-23. [PMID: 21290079 DOI: 10.1039/c0np00069h] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we review studies that have investigated the activity of plant-derived compounds against Trypanosoma cruzi, the etiologic agent of Chagas’ disease. In the last decade, more than 300 species belonging to almost 100 families have been evaluated for activity, and here we describe the compounds isolated; 85 references are cited.
Collapse
Affiliation(s)
- Erika Izumi
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid s/n, 86051-990, Londrina-PR, Brazil
| | | | | | | | | |
Collapse
|
29
|
Attachment of flagellum to the cell body is important to the kinetics of transferrin uptake by Trypanosoma cruzi. Parasitol Int 2010; 59:629-33. [DOI: 10.1016/j.parint.2010.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/21/2022]
|
30
|
Abstract
Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation.
Collapse
Affiliation(s)
- Jan A K W Kiel
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, 9750 Haren, The Netherlands.
| |
Collapse
|
31
|
Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics 2010; 73:845-67. [PMID: 20056176 DOI: 10.1016/j.jprot.2009.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 12/18/2009] [Indexed: 12/31/2022]
Abstract
Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei are protozoan parasites that cause a spectrum of fatal human diseases around the world. Recent completion of the genomic sequencing of these parasites has enormous relevance to the study of their biology and the pathogenesis of the diseases they cause because it opens the door to high-throughput proteomic technologies. This review encompasses studies using diverse proteomic approaches with these organisms to describe and catalogue global protein profiles, reveal changes in protein expression during development, elucidate the subcellular localisation of gene products, and evaluate host-parasite interactions.
Collapse
Affiliation(s)
- Patricia Cuervo
- Laboratorio de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
32
|
Cordero EM, Nakayasu ES, Gentil LG, Yoshida N, Almeida IC, da Silveira JF. Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J Proteome Res 2009; 8:3642-52. [PMID: 19374451 DOI: 10.1021/pr800887u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell surface of Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These molecules are involved in a variety of interactions between this parasite and its mammalian and insect hosts. Here, using the neutral detergent Triton X-114, we obtained fractions rich in GPI-anchored and other membrane proteins from insect developmental stages of T. cruzi. These fractions were analyzed by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS), resulting in the identification of 98 proteins of metacyclic trypomastigotes and 280 of epimastigotes. Of those, approximately 65% (n=245) had predicted lipid post-translational modification sites (i.e., GPI-anchor, myristoylation, or prenylation), signal-anchor sequence, or transmembrane domains that could explain their solubility in detergent solution. The identification of some of these modified proteins was also validated by immunoblotting. We also present evidence that, in contrast to the noninfective proliferative epimastigote forms, the infective nonproliferative metacyclic trypomastigote forms express a large repertoire of surface glycoproteins, such as GP90 and GP82, which are involved in adhesion and invasion of host cells. Taken together, our results unequivocally show stage-specific protein profiles that appear to be related to the biology of each T. cruzi insect-derived developmental form.
Collapse
Affiliation(s)
- Esteban M Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023-062, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Sant'Anna C, Nakayasu ES, Pereira MG, Lourenço D, de Souza W, Almeida IC, Cunha-E-Silva NL. Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics 2009; 9:1782-94. [PMID: 19288526 DOI: 10.1002/pmic.200800730] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reservosomes are the endpoint of the endocytic pathway in Trypanosoma cruzi epimastigotes. These organelles have the particular ability to concentrate proteins and lipids obtained from medium together with the main proteolytic enzymes originated from the secretory pathway, being at the same time a storage organelle and the main site of protein degradation. Subcellular proteomics have been extensively used for profiling organelles in different cell types. Here, we combine cell fractionation and LC-MS/MS analysis to identify reservosome-resident proteins. Starting from a purified reservosome fraction, we established a protocol to isolate reservosome membranes. Transmission electron microscopy was applied to confirm the purity of the fractions. To achieve a better coverage of identified proteins we analyzed the fractions separately and combined the results. LC-MS/MS analysis identified in total 709 T. cruzi-specific proteins; of these, 456 had predicted function and 253 were classified as hypothetical proteins. We could confirm the presence of most of the proteins validated by previous work and identify new proteins from different classes such as enzymes, proton pumps, transport proteins, and others. The definition of the reservosome protein profile is a good tool to assess their molecular signature, identify molecular markers, and understand their relationship with different organelles.
Collapse
Affiliation(s)
- Celso Sant'Anna
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Glucose uptake in the mammalian stages of Trypanosoma cruzi. Mol Biochem Parasitol 2009; 168:102-8. [PMID: 19631694 DOI: 10.1016/j.molbiopara.2009.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of Chagas' disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T. cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T. cruzi. The infective trypomastigotes showed the highest transport activity (V(max)=5.34+/-0.54 nmol/min per mg of protein; K(m)=0.38+/-0.01 mM) when compared to intracellular epimastigotes (V(max)=2.18+/-0.20 nmol/min per mg of protein; K(m)=0.39+/-0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T. cruzi.
Collapse
|
35
|
Roberts SB, Robichaux JL, Chavali AK, Manque PA, Lee V, Lara AM, Papin JA, Buck GA. Proteomic and network analysis characterize stage-specific metabolism in Trypanosoma cruzi. BMC SYSTEMS BIOLOGY 2009; 3:52. [PMID: 19445715 PMCID: PMC2701929 DOI: 10.1186/1752-0509-3-52] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/16/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND Trypanosoma cruzi is a Kinetoplastid parasite of humans and is the cause of Chagas disease, a potentially lethal condition affecting the cardiovascular, gastrointestinal, and nervous systems of the human host. Constraint-based modeling has emerged in the last decade as a useful approach to integrating genomic and other high-throughput data sets with more traditional, experimental data acquired through decades of research and published in the literature. RESULTS We present a validated, constraint-based model of the core metabolism of Trypanosoma cruzi strain CL Brener. The model includes four compartments (extracellular space, cytosol, mitochondrion, glycosome), 51 transport reactions, and 93 metabolic reactions covering carbohydrate, amino acid, and energy metabolism. In addition, we make use of several replicate high-throughput proteomic data sets to specifically examine metabolism of the morphological form of T. cruzi in the insect gut (epimastigote stage). CONCLUSION This work demonstrates the utility of constraint-based models for integrating various sources of data (e.g., genomics, primary biochemical literature, proteomics) to generate testable hypotheses. This model represents an approach for the systematic study of T. cruzi metabolism under a wide range of conditions and perturbations, and should eventually aid in the identification of urgently needed novel chemotherapeutic targets.
Collapse
Affiliation(s)
- Seth B Roberts
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Jennifer L Robichaux
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Arvind K Chavali
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Patricio A Manque
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Vladimir Lee
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ana M Lara
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
36
|
de Souza W, Sant'Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. ACTA ACUST UNITED AC 2009; 44:67-124. [PMID: 19410686 DOI: 10.1016/j.proghi.2009.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocytosis is essential for eukaryotic cell survival and has been well characterized in mammal and yeast cells. Among protozoa it is also important for evading from host immune defenses and to support intense proliferation characteristic of some life cycle stages. Here we focused on the contribution of morphological and cytochemical studies to the understanding of endocytosis in Trichomonas, Giardia, Entamoeba, Plasmodium, and trypanosomatids, mainly Trypanosoma cruzi, and also Trypanosoma brucei and Leishmania.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| | | | | |
Collapse
|
37
|
Proline racemases are conserved mitogens: characterization of a Trypanosoma vivax proline racemase. Mol Biochem Parasitol 2009; 165:170-9. [PMID: 19428664 DOI: 10.1016/j.molbiopara.2009.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 01/24/2009] [Accepted: 02/02/2009] [Indexed: 11/22/2022]
Abstract
Trypanosoma cruzi proline racemases (TcPRAC) are the only eukaryotic proline racemases described so far. Except their role in the interconversion of free L- and D-proline enantiomers, parasite TcPRACs are involved in major T. cruzi biological pathways. These essential enzymes are implicated in the process of parasite differentiation and the acquisition of virulence during metacyclogenesis and are currently considered as key targets for drug development against Chagas' disease. In this study, we searched for the presence of TcPRAC gene homologues among other trypanosomatid genomes. Despite the high degree of gene synteny observed in Kinetoplastidae genomes, PRAC genes are missing in Trypanosoma brucei, Trypanosoma congolense and Leishmania spp. genomes. Interestingly, we identified a hypothetical PRAC gene in Trypanosoma vivax that is the major hemoparasite responsible for livestock trypanosomiasis, a serious economical impact for most of African and South American countries. We report here that the product of this T. vivax gene is bona fide a proline racemase with an activity comparable to the one we described previously for TcPRAC. Inhibition studies using the pyrrole-2-carboxylic acid confirmed that this compound is a competitive inhibitor for both TcPRAC and TvPRAC enzymes. Similarly to TcPRAC and all members of the racemase family studied so far in other pathogenic and nosocomial bacteria, our results show that TvPRAC is a T-cell-independent B-cell mitogen. Therefore the product of the novel TvPRAC gene identified in T. vivax and reported herein has the potential to be used as a drug target for this parasite-based trypanosomiasis.
Collapse
|
38
|
Effect of 3,4-ethylenedioxy-extension of thiophene core on the DNA/RNA binding properties and biological activity of bisbenzimidazole amidines. Bioorg Med Chem 2009; 17:2544-54. [PMID: 19231203 DOI: 10.1016/j.bmc.2009.01.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 11/22/2022]
Abstract
Novel bisbenzimidazoles (4-6), characterized by 3,4-ethylenedioxy-extension of thiophene core, revealed pronounced affinity and strong thermal stabilization effect toward ds-DNA. They interact within ds-DNA grooves as dimmers or even oligomers and agglomerate along ds-RNA. Compounds 4-6 have shown moderate to strong antiproliferative effect toward panel of eight carcinoma cell lines. Compound 5 displayed the best inhibitory potential and in equitoxic concentration (IC(50)=1 x 10(-6)M) induced accumulation of cells in G2/M phase after 48 h of incubation. Fluorescence microscopy showed that 5 entered into live HeLa cells within 30 min, but did not accumulate in nuclei even after 2.5h. Compound 5 inhibited the growth of Trypanosome cruzi epimastigotes (IC(50)=4.3 x 10(-6)M).
Collapse
|
39
|
Sant'Anna C, Pereira MG, Lemgruber L, de Souza W, Cunha e Silva NL. New insights into the morphology of Trypanosoma cruzi reservosome. Microsc Res Tech 2008; 71:599-605. [PMID: 18452191 DOI: 10.1002/jemt.20592] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reservosomes are late endosomes present only in members of the Schizotrypanum subgenus of the Trypanosoma genus and are defined as the site of storage of endocytosed macromolecules and lysosomal enzymes. They have been extensively described in Trypanosoma cruzi epimastigote: are bounded by a membrane unit, present an electron-dense protein matrix with electron-lucent lipid inclusions, being devoid of inner membranes. Here we performed a detailed ultrastructural analysis of these organelles using a variety of electron microscopy techniques, including ultrathin sectioning, uranyl acetate stained preparations, and freeze fracture, either in intact epimastigotes or in isolated reservosomes. New informations were obtained. First, both isolated and in situ reservosomes presented small profiles of inner membranes that are morphologically similar to the membrane surrounding the organelle. In uranyl acetate stained preparations, internal membrane profiles turned out to be longer than they appeared in ultrathin section images and traversed the organelle diameter. Internal vesicles were also found. Second, endocytosed cargo are not associated with internal vesicles and reach reservosomes on board of vesicles that fuse with the boundary membrane, delivering cargo directly into reservosome lumen. Third, electron-lucent bodies with saturated lipid core surrounded by a membrane monolayer and with unusual rectangular shape were also observed. Fourth, it was possible to demonstrate the presence of intramembranous particles on the E face of both internal vesicles and the surrounding membrane. Collectively, these results indicate that reservosomes have a complex internal structure, which may correlate with their multiple functions.
Collapse
Affiliation(s)
- Celso Sant'Anna
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brasil
| | | | | | | | | |
Collapse
|
40
|
Ferreira LRP, Dossin FDM, Ramos TC, Freymüller E, Schenkman S. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. AN ACAD BRAS CIENC 2008; 80:157-66. [PMID: 18345384 DOI: 10.1590/s0001-37652008000100011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/21/2008] [Indexed: 11/22/2022] Open
Abstract
The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast -- an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.
Collapse
Affiliation(s)
- Ludmila R P Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 2008; 130:1187-98. [PMID: 18696100 DOI: 10.1007/s00418-008-0486-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2008] [Indexed: 01/07/2023]
Abstract
Trypanosoma cruzi epimastigote forms concentrate their major protease, cruzipain, in the same compartment where these parasites store macromolecules obtained from medium and for this ability these organelles were named as reservosomes. Intracellular digestion occurs mainly inside reservosomes and seems to be modulated by cruzipain and its natural inhibitor chagasin that also concentrates in reservosomes. T. cruzi mammalian forms, trypomastigotes and amastigotes, are unable to capture macromolecules by endocytosis, but also express cruzipain and chagasin, whose role in infectivity has been described. In this paper, we demonstrate that trypomastigotes and amastigotes also concentrate cruzipain, chagasin as well as serine carboxypeptidase in hydrolase-rich compartments of acidic nature. The presence of P-type proton ATPase indicates that this compartment is acidified by the same enzyme as epimastigote endocytic compartments. Electron microscopy analyzes showed that these organelles are placed at the posterior region of the parasite body, are single membrane bound and possess an electron-dense matrix with electronlucent inclusions. Three-dimensional reconstruction showed that these compartments have different size and shape in trypomastigotes and amastigotes. Based on these evidences, we suggest that all T. cruzi developmental stages present lysosome-related organelles that in epimastigotes have the additional and unique ability of storing cargo.
Collapse
|
42
|
da Silva-Lopez RE, Morgado-Díaz JA, dos Santos PT, Giovanni-De-Simone S. Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Trop 2008; 107:159-67. [PMID: 18599007 DOI: 10.1016/j.actatropica.2008.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/17/2022]
Abstract
An extracellular serine peptidase was purified 460-fold from Trypanosoma cruzi epimastigotes culture supernatant with (NH(4))(2)SO(4) precipitation followed by affinity chromatography aprotinin-agarose and continuous elution electrophoresis, yielding a total recovery of 65%. The molecular mass of the active enzyme estimated by reducing and non-reducing SDS-PAGE was about 75kDa. The optimal pH and temperature of this glycosylated peptidase were 8.0 and 37 degrees C using alpha-N-rho-tosyl-L-arginine-methyl ester (L-TAME) as substrate. The enzyme did not hydrolyze polypeptide substrates but was active against short peptide substrates containing arginine at the P1 site, in both ester and amide bonds. The peptidase was inhibited by TPCK and TCLK but not by other protease inhibitors suggesting that the enzyme belongs to the serine peptidase class. Interestingly, the enzyme seems to demonstrate some metal dependence since its activity was reduced by 1,10-phenanthroline, calcium and zinc ions. Rabbit anti-T. cruzi extracellular serine peptidase antiserum was used to show that the enzyme was restricted to intracellular structures, including the flagellar pocket, plasma membrane and cytoplasmic vesicles resembling reservosomes. These results suggest that the serine oligopeptidase is secreted into the extracellular environment through the flagellar pocket and the intracellular location could suggest its participation in certain proteolysis events in reservosomes. These findings show that this peptidase is a novel T. cruzi serine oligopeptidase, which differs not only from other peptidases described in the same parasite but also in other species of Trypanosoma.
Collapse
|
43
|
Souza WD. Electron microscopy of trypanosomes: a historical view. Mem Inst Oswaldo Cruz 2008; 103:313-25. [DOI: 10.1590/s0074-02762008000400001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Normalização e Qualidade Industrial, Brasil
| |
Collapse
|
44
|
De Lima AR, Navarro MC, Arteaga RY, Contreras VT. Cultivation of Trypanosoma cruzi epimastigotes in low glucose axenic media shifts its competence to differentiate at metacyclic trypomastigotes. Exp Parasitol 2008; 119:336-42. [PMID: 18442816 DOI: 10.1016/j.exppara.2008.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 03/03/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
Abstract
This study offers an insight into why Trypanosoma cruzi epimastigotes lose their capacity to differentiate into metacyclic forms, if maintained in culture media long-term through serial passages. The biological and metabolic behaviour of two T. cruzi strains isolated from various origins (human, opossum), and maintained under two schedules (alternate triatomine/mouse passages and serial culture media) were compared. To determine the effect of the environment on the parasites, the epimastigotes were grown under extreme conditions (high and low glucose concentrations), and the glucose consumption, ammonia production and changes in pH, either in one compartment (along the growth curve) or two compartments (induced metacyclogenesis) were compared. The glucose effect on the stages involved in metacyclogenesis at antigenic level was also evaluated. The results indicate that T. cruzi adapts to various environmental conditions and also that the ability of epimastigotes to undergo metacyclogenesis are influenced by the maintenance schedule. Antigenic profile analysis supports the idea that epimastigotes adapted to culture media do not complete their molecular differentiation into the trypomastigote metacyclic stage. These transition forms conserve some degree of gene expression of the epimastigote stage.
Collapse
Affiliation(s)
- Ana R De Lima
- Laboratorio de Protozoología, Centro BioMolP, Universidad de Carabobo, Bárbula, Valencia, Estado Carabobo, Venezuela
| | | | | | | |
Collapse
|
45
|
Lara FA, Sant'anna C, Lemos D, Laranja GAT, Coelho MGP, Reis Salles I, Michel A, Oliveira PL, Cunha-E-Silva N, Salmon D, Paes MC. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem Biophys Res Commun 2007; 355:16-22. [PMID: 17292866 DOI: 10.1016/j.bbrc.2006.12.238] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/24/2006] [Indexed: 11/28/2022]
Abstract
Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane.
Collapse
Affiliation(s)
- F A Lara
- Lab. de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|