1
|
Chaudhary A, Rana S, Singh R, Gurian PL, Betancourt W, Kumar A, Kumar A. Non-potable water reuse and the public health risks from protozoa and helminths: a case study from a city with a semi-arid climate. JOURNAL OF WATER AND HEALTH 2023; 21:981-994. [PMID: 37632375 PMCID: wh_2023_283 DOI: 10.2166/wh.2023.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
The study estimated the risk due to Cryptosporidium, Giardia, and Ascaris, associated with non-potable water reuse in the city of Jaipur, India. The study first determined the exposure dose of Cryptosporidium, Giardia, and Ascaris based on various wastewater treatment technologies for various scenarios of reuse for six wastewater treatment plants (WWTPs) in the city. The exposure scenarios considered were (1) garden irrigation; (2) working and lounging in the garden; and (3) consumption of crops irrigated with recycled water. The estimated annual risk of infection varied between 8.57 × 10-7 and 1.0 for protozoa and helminths, respectively. The order of treatment processes, in decreasing order of annual risk of infection, was found to be: moving-bed bioreactor (MBBR) technology > activated sludge process (ASP) technology > sequencing batch reactor (SBR) technology. The estimated annual risk was found to be in this order: Ascaris > Giardia > Cryptosporidium. The study also estimated the maximum allowable concentration (Cmax) of pathogen in the effluent for a benchmark value of annual infection of risk equal to 1:10,000, the acceptable level of risk used for drinking water. The estimated Cmax values were found to be 6.54 × 10-5, 1.37 × 10-5, and 2.89 × 10-6 (oo) cysts/mL for Cryptosporidium, Giardia, and Ascaris, respectively.
Collapse
Affiliation(s)
- Ayushi Chaudhary
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India E-mail: ;
| | - Shubham Rana
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India
| | - Rajveer Singh
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Patrick L Gurian
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Walter Betancourt
- Water and Energy Sustainable Technology Centre, University of Arizona, Tucson, AZ, USA
| | - Arun Kumar
- Department of Civil Engineering, IIT Delhi, Delhi, India
| | - Amit Kumar
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India
| |
Collapse
|
2
|
Suarez P, Alonso JL, Gómez G, Vidal G. Performance of sewage treatment technologies for the removal of Cryptosporidium sp. and Giardia sp.: Toward water circularity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116320. [PMID: 36183529 DOI: 10.1016/j.jenvman.2022.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.
Collapse
Affiliation(s)
- Pilar Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - José Luis Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
3
|
Medeiros RC, Sammarro Silva KJ, Daniel LA. Wastewater treatment performance in microbiological removal and (oo)cyst viability assessed comparatively to fluorescence decay. ENVIRONMENTAL TECHNOLOGY 2022; 43:962-970. [PMID: 32799634 DOI: 10.1080/09593330.2020.1811396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Municipal wastewater is a source of pathogenic protozoan (oo)cysts and may play a significant role in spreading waterborne diseases. This scenario becomes more critical as treated sewage from municipal wastewater treatment plants (WWTP) is discharged into springs, which are often used for water supply, irrigation, recreation and, further downstream, indirect potable reuse, quite common in Brazil. This study aimed to elucidate, regarding microbiological quality, the performance of a full-scale WWTP, consisting of preliminary treatment, upflow anaerobic sludge blanket (UASB) reactor, activated sludge system and ultraviolet (UV) radiation disinfection. Pathogenic protozoa (Giardia spp. cysts and Cryptosporidium spp. oocysts), as well as microbiological indicators (Escherichia coli and Clostridium perfringens), were evaluated in terms of their removal. In addition, (oo)cyst viability and fluorescence reduction were assessed. By using the data obtained from this research, the prevalence of infection estimated for the population served by the WWTP was between 7.4% and 14.8% for giardiasis, and between 0.055% and 0.11% for cryptosporidiosis.
Collapse
Affiliation(s)
- Raphael Corrêa Medeiros
- Department of Engineering and Environmental Technology, Federal University of Santa Maria - campus Frederico Westphalen, Rio Grande do Sul, Brazil
| | - Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Luiz Antonio Daniel
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Oliveira GLD, Sueitt APE, Dos Santos PR, Leite LDS, Daniel LA. Removal of protozoan (oo)cysts and bacteria during microalgae harvesting: Outcomes from a lab-scale experiment. CHEMOSPHERE 2022; 286:131767. [PMID: 34399254 DOI: 10.1016/j.chemosphere.2021.131767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The efficiency of microalgae harvesting on the removal of Giardia spp. cysts, Cryptosporidium spp. oocysts, total coliforms, Escherichia coli, Enterococcus spp. and Clostridium spp. was assessed in lab-scale experiments (Jartest and Flotatest) using effluent from a flat panel photobioreactor used for Chlorella sorokiniana cultivation. Three harvesting methods were evaluated: (1) flocculation induced by pH modulation followed by sedimentation (pH-SED), (2) flocculation induced by pH modulation followed by dissolved air flotation (pH-DAF), and (3) coagulation using an organic coagulant (Tanfloc SG) followed by dissolved air flotation (Coag-DAF). The results indicated that the three harvesting methods were efficient in removing protozoan (oo)cysts and bacteria, achieving percentages of removal higher than 97% for all the analyzed pathogens. Among the three methods, pH-SED showed the best removal performance: 99.60% (2.5 log) for Giardia spp. cysts, 100% (>6.3 log) for total coliforms, 100% (>4.6 log) for Escherichia coli, 100% (>5.8 log) for Enterococcus spp. and 99.96% (3.6 log) for Clostridium spp. Clostridium spp. seemed to be more tolerant to the harvesting methods than the other groups of bacteria analyzed in the study, and its presence was positively correlated to the presence of Giardia spp. cysts.
Collapse
Affiliation(s)
- Gabriela Laila de Oliveira
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil.
| | - Ana Paula Erbetta Sueitt
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil
| | - Priscila Ribeiro Dos Santos
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil
| | - Luan de Souza Leite
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil
| | - Luiz Antonio Daniel
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil
| |
Collapse
|
5
|
Bahramdoost Z, Mirjalali H, Yavari P, Haghighi A. Development of HRM real-time PCR for assemblage characterization of Giardia lamblia. Acta Trop 2021; 224:106109. [PMID: 34450062 DOI: 10.1016/j.actatropica.2021.106109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
A total of 90 stool samples were collected from dogs, referred to a dog shelter and a veterinary clinic. In addition, 395 stool samples obtained from pet dog owners and shelter keepers, as well as individuals referred to a medical laboratory as controls, were collected in Shahryar district, Tehran, Iran. Stool samples were parasitologically examined and the positive G. lamblia isolates were tested with Nested-PCR/sequencing for the tpi, gdh, and bg genes, and HRM real-time PCR. Microscopical examination revealed 20 (22.2%) and 34 (8.6%) Giardia-positive samples from dogs and humans, respectively. Regarding HRM real-time PCR, the prevalence of assemblages A and B in humans was 55.8% and 14.7%, respectively. In addition, 14.7% of samples were mix assemblages. HRM real-time PCR detected most of microscopically-positive samples in comparison to PCR/sequencing in both humans and dogs. The high prevalence of assemblages A and B in dogs signified the importance of a same source for infection between dogs and humans.
Collapse
|
6
|
Ryu H, Addor Y, Brinkman NE, Ware MW, Boczek L, Hoelle J, Mistry JH, Keely SP, Villegas EN. Understanding Microbial Loads in Wastewater Treatment Works as Source Water for Water Reuse. WATER 2021; 13. [PMID: 34804602 PMCID: PMC8597597 DOI: 10.3390/w13111452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Facing challenges in water demands and population size, particularly in the water-scarce regions in the United States, the reuse of treated municipal wastewater has become a viable potential to relieve the ever-increasing demands of providing water for (non-)potable use. The objectives of this study were to assess microbial quality of reclaimed water and to investigate treatability of microorganisms during different treatment processes. Raw and final treated effluent samples from three participating utilities were collected monthly for 16 months and analyzed for various microbial pathogens and fecal indicator organisms. Results revealed that the detectable levels of microbial pathogens tested were observed in the treated effluent samples from all participating utilities. Log10 reduction values (LRVs) of Cryptosporidium oocysts and Giardia cysts were at least two orders of magnitude lower than those of human adenovirus and all fecal indicator organisms except for aerobic endospores, which showed the lowest LRVs. The relatively higher LRV of the indicator organisms such as bacteriophages suggested that these microorganisms are not good candidates of viral indicators of human adenovirus during wastewater treatment processes. Overall, this study will assist municipalities considering the use of wastewater effluent as another source of drinking water by providing important data on the prevalence, occurrence, and reduction of waterborne pathogens in wastewater. More importantly, the results from this study will aid in building a richer microbial occurrence database that can be used towards evaluating reuse guidelines and disinfection practices for water reuse practices.
Collapse
Affiliation(s)
- Hodon Ryu
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Yao Addor
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Nichole E. Brinkman
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Michael W. Ware
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Laura Boczek
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jill Hoelle
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jatin H. Mistry
- United States Environmental Protection Agency, Region 6, Dallas, TX 75270, USA
| | - Scott P. Keely
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Eric N. Villegas
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
- Correspondence:
| |
Collapse
|
7
|
de Oliveira GL, Daniel LA. Removal of Giardia spp. cysts and Cryptosporididum spp. oocysts from anaerobic effluent by dissolved air flotation. ENVIRONMENTAL TECHNOLOGY 2021; 42:141-147. [PMID: 31136251 DOI: 10.1080/09593330.2019.1625447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Lab-scale studies were carried out to investigate the efficiency of dissolved air flotation (DAF) for the removal of Giardia spp. cysts and Cryptosporidium spp. oocysts from anaerobic effluent from the pilot UASB reactor. Raw wastewater, UASB and DAF effluent samples were collected weekly and protozoan (oo)cysts were concentrated using IMS followed by protozoa detection using immunofluorescense assay (IFA). The number of Cryptosporidium spp. oocysts in the raw wastewater was always lower than that of Giardia spp. cysts with 28-33 oocysts L-1 and 3177-4267 cysts L-1, respectively. Log10 removal of Giardia cysts utilising polyaluminium chloride (PACl) was higher than that with FeCl3, but no statistically significant difference between the two coagulants was observed. Cryptosporidium was absent in most of the treated effluent samples. The results indicate that DAF reached more than 2 log of cyst removal. In addition, the results demonstrated that these parasites are prevalent in the study area and E. coli and total coliforms were not good indicator microorganisms in terms of cyst and oocysts numbers.
Collapse
Affiliation(s)
- Gabriela Laila de Oliveira
- Hydraulic and Sanitation Department, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Luiz Antonio Daniel
- Hydraulic and Sanitation Department, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Javanmard E, Mirsamadi ES, Olfatifar M, Ghasemi E, Saki F, Mirjalali H, Zali MR, Karanis P. Prevalence of Cryptosporidium and Giardia in vegetables in Iran: a nineteen-years meta-analysis review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1629-1641. [PMID: 33312667 PMCID: PMC7721826 DOI: 10.1007/s40201-020-00493-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/08/2020] [Indexed: 06/12/2023]
Abstract
Cryptosporidium and Giardia are two major protozoa reported from vegetables and environment. The prevalence of these parasites supposes to be different regarding the climate zones. This review aimed to evaluate the prevalence of Cryptosporidium and Giardia in vegetables according to the major climate zones in Iran. The results showed pooled prevalence 7% (95% CI: 2%, 14%) and 4% (95% CI: 3%, 6%) for Cryptosporidium spp., and Giardia spp., respectively. The prevalence of Giardia spp. in mountain, desert and semi-desert, and Mediterranean regions was 4% (95% CI: 2%, 6%), 5% (95% CI: 3%, 8%) and 7% (95% CI: 1%, 18%), respectively. Cryptosporidium spp. was reported 8% (95% CI: 0%, 65%), 6% (95% CI: 0%, 18%) and 4% (95% CI: 0%, 77%) from mountain, desert and semi-desert, and Mediterranean climate zones, respectively. This review suggests the higher prevalence of Giardia and Cryptosporidium in Mediterranean and mountain regions, respectively.
Collapse
Affiliation(s)
- Ehsan Javanmard
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Olfatifar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saki
- Department of Geography, Faculty of Teacher Education, Farhangian University, Alborz, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Panagiotis Karanis
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Basic and Clinical Sciences, Nicosia University Medical School, 2408 Nicosia, Cyprus
| |
Collapse
|
9
|
Géba E, Rousseau A, Le Guernic A, Escotte-Binet S, Favennec L, La Carbona S, Gargala G, Dubey JP, Villena I, Betoulle S, Aubert D, Bigot-Clivot A. Survival and infectivity of Toxoplasma gondii and Cryptosporidium parvum oocysts bioaccumulated by Dreissena polymorpha. J Appl Microbiol 2020; 130:504-515. [PMID: 32737913 DOI: 10.1111/jam.14802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
AIMS The study was aimed to understand the depuration process of Cryptosporidium parvum and Toxoplasma gondii oocysts by zebra mussel (Dreissena polymorpha), to consider the use of the zebra mussel as a bioremediation tool. MATERIALS AND METHODS Two experiments were performed: (i) individual exposure of mussel to investigate oocyst transfers between bivalves and water and (ii) in vivo exposure to assess the ability of the zebra mussel to degrade oocysts. RESULTS (i) Our results highlighted a transfer of oocysts from the mussels to the water after 3 and 7 days of depuration; however, some oocysts were still bioaccumulated in mussel tissue. (ii) Between 7 days of exposure at 1000 or 10 000 oocysts/mussel/day and 7 days of depuration, the number of bioaccumulated oocysts did not vary but the number of infectious oocysts decreased. CONCLUSION Results show that D. polymorpha can release oocysts in water via (pseudo)faeces in depuration period. Oocysts remain bioaccumulated and infectious oocyst number decreases during the depuration period in zebra mussel tissues. Results suggest a degradation of bioaccumulated C. parvum and T. gondii oocysts. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlighted the potential use of D. polymorpha as a bioremediation tool to mitigate of protozoan contamination in water resources.
Collapse
Affiliation(s)
- E Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France.,EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - A Rousseau
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France.,ACTALIA Food Safety Department, Saint-Lô, France
| | - A Le Guernic
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| | - S Escotte-Binet
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - L Favennec
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Université de Rouen, Rouen Cedex, France
| | - S La Carbona
- ACTALIA Food Safety Department, Saint-Lô, France
| | - G Gargala
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Université de Rouen, Rouen Cedex, France
| | - J P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - I Villena
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - S Betoulle
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| | - D Aubert
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - A Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| |
Collapse
|
10
|
Benito M, Menacho C, Chueca P, Ormad MP, Goñi P. Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110268. [PMID: 32148324 DOI: 10.1016/j.jenvman.2020.110268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 05/15/2023]
Abstract
Some of the microorganisms present in urban wastewater, which include intestinal protozoa and nematodes, can be pathogenic. Their (oo)cyst and egg transmissible stages are very resistant to environmental stresses and disinfectants and they are therefore difficult to remove. Thus, they can constitute a health risk if water or sludge obtained in the purification of wastewater is reused for agricultural purposes. In this context, the presence of intestinal protozoa and nematodes were studied in influents, effluents and sludge from five wastewater treatment plants (WWTPs) in the north of Spain by optical microscopy and PCR techniques. The removal efficiency of different wastewater treatments was also compared. The presence of protozoa has increased among the population discharging waste to WWTPs in recent years. Cryptosporidium spp., Giardia duodenalis, Entamoeba spp. and nematodes were detected in all of the WWTPs. Indeed, this is the first report of Entamoeba histolytica and Entamoeba moshkovskii in Spanish WWTPs. The water treatments studied showed different removal efficiencies for each species of intestinal protozoa, with the aerated lagoons providing the best results. (Oo)cysts were also detected in sludge even after aerobic digestion and dehydration. To avoid risks, (oo)cyst viability should be analysed whenever the sludge is to be used as a fertilizer. This study reinforces the necessity of establishing legal limits on the presence of protozoa in WWTP effluents and sludges, especially if reuse is planned. Further studies are necessary for a better understanding of the presence and behaviour of intestinal parasites.
Collapse
Affiliation(s)
- María Benito
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Carmen Menacho
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| | - Patricia Chueca
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - María P Ormad
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| | - Pilar Goñi
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
11
|
Medeiros RC, Daniel LA, de Oliveira GL, Hoffmann MT. Performance of a small-scale wastewater treatment plant for removal of pathogenic protozoa (oo)cysts and indicator microorganisms. ENVIRONMENTAL TECHNOLOGY 2019; 40:3492-3501. [PMID: 29813004 DOI: 10.1080/09593330.2018.1480063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
The protozoa Giardia and Cryptosporidium are associated with numerous outbreaks of waterborne diseases worldwide. This study aimed to evaluate the concentration of Giardia spp. cysts, Cryptosporidium spp. oocysts, total coliforms, Escherichia coli and Clostridium perfringens in raw wastewater and their removals at UASB reactor, activated sludge system (operated conventionally and extended aeration) and slow sand filtration. Giardia spp. cysts were present in 100% and Cryptosporidium spp. oocysts in 31.4% of the analysed wastewater samples. The UASB reactor followed by activated sludge system obtained approximately 2.0 log of removal for total coliforms and E. coli, whereas for C. perfringens and Giardia spp. cysts, it obtained 1 log. There was a high percentage of (oo)cysts still viable after secondary treatment, therefore, the risk of contamination of water courses and, consequently, for public health is considerable. However, after tertiary filtration, no (oo)cysts were found in any of the filtered effluent samples, being a good option for future reuse. Seasonal variations did not affect the concentrations and removals of microorganisms observed. Lack of correlations of concentrations of indicator microorganisms and (oo)cysts raise caveats and doubts regarding the true microbiological quality when using only indicator microorganisms.
Collapse
Affiliation(s)
- Raphael Corrêa Medeiros
- Department of Engineering and Environmental Technology, Federal University of Santa Maria , Frederico Westphalen , Brazil
| | - Luiz Antonio Daniel
- Hydraulics and Sanitation Department, São Carlos School of Engineering, University of São Paulo , São Carlos - São Paulo , Brazil
| | - Gabriela Laila de Oliveira
- Hydraulics and Sanitation Department, São Carlos School of Engineering, University of São Paulo , São Carlos - São Paulo , Brazil
| | - Maria Teresa Hoffmann
- Hydraulics and Sanitation Department, São Carlos School of Engineering, University of São Paulo , São Carlos - São Paulo , Brazil
| |
Collapse
|
12
|
Zahedi A, Greay TL, Paparini A, Linge KL, Joll CA, Ryan UM. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. WATER RESEARCH 2019; 158:301-312. [PMID: 31051375 DOI: 10.1016/j.watres.2019.04.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
While some microbial eukaryotes can improve effluent quality in wastewater treatment plants (WWTPs), eukaryotic waterborne pathogens are a threat to public health. This study aimed to identify Eukarya, particularly faecal pathogens including Cryptosporidium, in different treatment stages (influent, intermediate and effluent) from four WWTPs in Western Australia (WA). Three WWTPs that utilise stabilisation ponds and one WWTP that uses activated sludge (oxidation ditch) treatment technologies were sampled. Eukaryotic 18S rRNA (18S) was targeted in the wastewater samples (n = 26) for next-generation sequencing (NGS), and a mammalian-blocking primer was used to reduce the amplification of mammalian DNA. Overall, bioinformatics analyses revealed 49 eukaryotic phyla in WWTP samples, and three of these phyla contained human intestinal parasites, which were primarily detected in the influent. These human intestinal parasites either had a low percent sequence composition or were not detected in the intermediate and effluent stages and included the amoebozoans Endolimax sp., Entamoeba sp. and Iodamoeba sp., the human pinworm Enterobius vermicularis (Nematoda), and Blastocystis sp. subtypes (Sarcomastigophora). Six Blastocystis subtypes and four Entamoeba species were identified by eukaryotic 18S NGS, however, Cryptosporidium sp. and Giardia sp. were not detected. Real-time polymerase chain reaction (PCR) also failed to detect Giardia, but Cryptosporidium-specific NGS detected Cryptosporidium in all WWTPs, and a total of nine species were identified, including five zoonotic pathogens. Although eukaryotic 18S NGS was able to identify some faecal pathogens, this study has demonstrated that more specific NGS approaches for pathogen detection are more sensitive and should be applied to future wastewater pathogen assessments.
Collapse
Affiliation(s)
- Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Telleasha L Greay
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Andrea Paparini
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Kathryn L Linge
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia.
| | - Una M Ryan
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
13
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
14
|
Schmitz BW, Moriyama H, Haramoto E, Kitajima M, Sherchan S, Gerba CP, Pepper IL. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7015-7023. [PMID: 29847105 DOI: 10.1021/acs.est.7b05876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.
Collapse
Affiliation(s)
- Bradley W Schmitz
- Department of Civil & Environmental Engineering , National University of Singapore , Block E1A, #07-03, No. 1 Engineering Drive 2 , Singapore , 117576
| | - Hitoha Moriyama
- Department of Environmental Sciences , University of Yamanashi , 4-3-11 Takeda , Kofu , Yamanashi 400-8511 , Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment , University of Yamanashi , 4-3-11 Takeda , Kofu , Yamanashi 400-8511 , Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering , Hokkaido University , North 13 West 8 , Kita-ku, Sapporo , Hokkaido 060-8628 , Japan
| | - Samendra Sherchan
- Department of Global Environmental Health Services , Tulane University of Louisiana , 1440 Canal Street Suite 2100 , New Orleans , Louisiana 70112 , United States
| | - Charles P Gerba
- Water and Energy Sustainable Technology (WEST) Center , The University of Arizona , 2959 West Calle Agua Nueva , Tucson , Arizona 85745 , United States
| | - Ian L Pepper
- Water and Energy Sustainable Technology (WEST) Center , The University of Arizona , 2959 West Calle Agua Nueva , Tucson , Arizona 85745 , United States
| |
Collapse
|
15
|
Chuah CJ, Ziegler AD. Temporal Variability of Faecal Contamination from On-Site Sanitation Systems in the Groundwater of Northern Thailand. ENVIRONMENTAL MANAGEMENT 2018; 61:939-953. [PMID: 29508021 DOI: 10.1007/s00267-018-1016-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/16/2018] [Indexed: 05/23/2023]
Abstract
We investigated the impacts of on-site sanitation systems to local groundwater. In this year-long study, we monitored the response of faecal contamination levels to hydroclimatological factors including rainfall and groundwater table. Concentration of faecal indicators-E. coli (ESC), Enterococcus (ENT), nitrate-in thirteen pairs of shallow and deep wells were determined every 7-14 days. All samples from shallow wells were tested positive for faecal contamination (ESC and ENT > 1 MPN/100 mL) but concentration varies. A maximum of 24,000 MPN/100 mL were recorded in some shallow wells. Water from deep wells showed lower susceptibility to contamination with only 4 and 23% of samples tested positive for ESC and ENT, respectively. Concentrations of ESC and ENT were lower too, with a maximum of 5 MPN/100 mL and 28 MPN/100 mL, respectively. Fluctuation in contamination among the wells was described by four archetypal responses to hydroclimatological forcing: (i) flushing during the onset of wet season, (ii) dilution over the course of the wet season, (iii) concentration during the dry season, and (iv) synoptic response to storms. Previous studies attempting to link the prevalence of faecal/waterborne diseases and temporal factors (e.g., dry vs wet season) have produced differing outcomes. Our study may help explain the relevant hydrological mechanisms leading to these varying observations. Presently, most communities in Thailand have access to 'improved' sanitation systems. However, due to the unsustainable implementation of these systems, the otherwise viable drinking-water resources in the form of the abundant local groundwater has become a genuine health hazard.
Collapse
Affiliation(s)
- C Joon Chuah
- Department of Geography, National University of Singapore, AS2, #03-01, 1 Arts Link, Kent Ridge, 117570, Singapore, Singapore.
- Institute of Water Policy, National University of Singapore, 469A Bukit Timah Rd, 259772, Singapore, Singapore.
| | - Alan D Ziegler
- Department of Geography, National University of Singapore, AS2, #03-01, 1 Arts Link, Kent Ridge, 117570, Singapore, Singapore
| |
Collapse
|
16
|
Xiao S, Hu S, Zhang Y, Zhao X, Pan W. Influence of sewage treatment plant effluent discharge into multipurpose river on its water quality: A quantitative health risk assessment of Cryptosporidium and Giardia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:797-805. [PMID: 29141237 DOI: 10.1016/j.envpol.2017.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/15/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Sewage treatment plants (STPs) are one of the sources of pathogens discharged into surface water. An investigation was carried out over the duration of 12 months in Henan Province, China, to evaluate the health influence of municipal wastewater effluent discharge on water quality of the receiving water. A discharge-based quantitative microbial risk assessment (QMRA) was employed, taking into account the vegetables consumption habits of the Chinese, population subgroups with different immune statuses and ages, to evaluate the incremental disease burden from agricultural irrigation and swimming exposure scenarios associated with increased concentration of the protozoan Cryptosporidium and/or Giardia in the receiving river. The results shown that all the STP influent samples contained Cryptosporidium and Giardia with average density of 142.31 oocysts/L and 1187.06 cysts/L, respectively. The QMRA results demonstrated that the estimated additional health burdens due to discharged effluent for both parasites were slightly violated the threshold of 10-6 DALYs per person per year set by WHO. Mitigation measures should be planned and executed by season since more disease burdens were borne during hot season than other seasons. The sensitivity analysis highlighted the great importance of stability of STP treatment process. This study provides useful information to improve the safety of surface water and deduce the disease burden of the protozoa in Henan Province and other region inside and outside China.
Collapse
Affiliation(s)
- Shumin Xiao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin 300384, PR China.
| | - Sike Hu
- School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Yan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Xiaoyun Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Wenwei Pan
- College of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, PR China
| |
Collapse
|
17
|
Ramo A, Del Cacho E, Sánchez-Acedo C, Quílez J. Occurrence and genetic diversity of Cryptosporidium and Giardia in urban wastewater treatment plants in north-eastern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:628-638. [PMID: 28454035 DOI: 10.1016/j.scitotenv.2017.04.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
This study was designed to investigate the presence and removal efficiency of Cryptosporidium and Giardia in wastewater treatment plants at the 20 most populated towns in Aragón (north-eastern Spain). Samples of influent and effluent wastewater and dewatered sewage sludge were collected seasonally from 23 plants and processed according to USEPA Method 1623. All samples from raw and treated wastewater tested positive for Giardia, at an average concentration of 3247±2039cysts/l and 50±28cysts/l, respectively. Cryptosporidium was identified in most samples from both raw (85/92) and treated (78/92) wastewaters in a concentration significantly lower than Giardia, at both influent (96±105oocysts/l) and effluent samples (31±70oocysts/l) (P<0.001). The (oo)cyst counts peaked in summer in most plants. The removal efficiency was higher for Giardia (1.06-log to 2.34-log) than Cryptosporidium (0.35-log to 1.8-log). Overall, high removal efficiency values were found for Giardia after secondary treatment based on activated sludge, while tertiary treatment (microfiltration, chlorination and/or ultraviolet irradiation) was needed to achieve the greatest removal or inactivation of Cryptosporidium. Most samples of treated sludge were positive for Giardia (92/92) and Cryptosporidium (45/92), at an average concentration of 20-593cysts/g and 2-44oocyst/g, respectively. The molecular characterization of Cryptosporidium oocysts and Giardia cysts were attempted at the SSU rRNA/GP60 and bg/tpi loci, respectively. G. duodenalis sub-assemblage AII was identified in all plants, with a large proportion of samples (15/47) harboring mixed assemblages (AII+B). Nine Cryptosporidium species and six subtypes were identified, with C. parvum IIaA15G2R1 being the most prevalent. The presence of significant numbers of (oo)cysts in samples of final effluents and treated sludge reveals the limited efficacy of conventional treatments in removing (oo)cysts and highlights the potential environmental impact and public health risks associated with disposal and reclamation of wastewater.
Collapse
Affiliation(s)
- Ana Ramo
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain
| | - Emilio Del Cacho
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain
| | - Caridad Sánchez-Acedo
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
18
|
Chaudhry RM, Hamilton KA, Haas CN, Nelson KL. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E635. [PMID: 28608808 PMCID: PMC5486321 DOI: 10.3390/ijerph14060635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
Abstract
Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10-4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10-4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.
Collapse
Affiliation(s)
- Rabia M Chaudhry
- Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, CA 94720-1710, USA.
| | - Kerry A Hamilton
- Drexel University Department of Civil, Architectural, and Environmental Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Charles N Haas
- Drexel University Department of Civil, Architectural, and Environmental Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, CA 94720-1710, USA.
| |
Collapse
|
19
|
Santos PRD, Daniel LA. Occurrence and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts from a municipal wastewater treatment plant in Brazil. ENVIRONMENTAL TECHNOLOGY 2017; 38:1245-1254. [PMID: 27573723 DOI: 10.1080/09593330.2016.1223175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Sewage and sewage sludge have been recognized as potential sources of two important waterborne pathogenic protozoa: Giardia spp. and Cryptosporidium spp. Due to the lack of studies about the occurrence of these pathogens in sewage and sludge in Brazil, an investigation was conducted at various stages of a municipal wastewater treatment plant (WWTP) aiming to assess the occurrence of Giardia spp. cysts and Cryptosporidium spp. oocysts, their removal by the treatment processes, which are upflow anaerobic sludge blanket (UASB) reactor and dissolved air flotation process, and also the correlations between protozoa and indicator microorganisms. Significant quantities of cysts were detected in 100% of the analyzed wastewater samples, while oocysts were detected only in 39.0% of all wastewater samples. The overall removal of Giardia spp. cysts from the WWTP was on average 2.03 log, and the UASB reactor was more efficient than flotation. The sludge samples presented high quantities of (oo)cysts, implying the risks of contamination in the case of sludge reuse or inadequate disposal. Giardiasis prevalence was estimated between 2.21% and 6.7% for the population served by the WWTP, while cryptosporidiosis prevalence was much lower. Significant positive correlation was obtained only between cysts and Clostridium spores in anaerobic effluent.
Collapse
Affiliation(s)
- Priscila Ribeiro Dos Santos
- a Hydraulics and Sanitation Department, Engineering School of São Carlos , University of São Paulo , São Carlos - São Paulo , Brazil
| | - Luiz Antonio Daniel
- a Hydraulics and Sanitation Department, Engineering School of São Carlos , University of São Paulo , São Carlos - São Paulo , Brazil
| |
Collapse
|
20
|
Amorós I, Moreno Y, Reyes M, Moreno-Mesonero L, Alonso JL. Prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated sewage sludges. ENVIRONMENTAL TECHNOLOGY 2016; 37:2898-2904. [PMID: 27080207 DOI: 10.1080/09593330.2016.1168486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/16/2016] [Indexed: 05/15/2023]
Abstract
Treated sludge from wastewater treatment plants (WWTPs) is commonly used in agriculture as fertilizers and to amend soils. The most significant health hazard for sewage sludge relates to the wide range of pathogenic microorganisms such as protozoa parasites.The objective of this study was to collect quantitative data on Cryptosporidium oocysts and Giardia cysts in the treated sludge in wastewater treatment facilities in Spain. Sludge from five WWTPs with different stabilization processes has been analysed for the presence of Cryptosporidium and Giardia in the raw sludge and after the sludge treatment. A composting plant (CP) has also been assessed. After a sedimentation step, sludge samples were processed and (oo)cysts were isolated by immunomagnetic separation (IMS) and detected by immunofluorescence assay (IFA). Results obtained in this study showed that Cryptosporidium oocysts and Giardia cysts were present in 26 of the 30 samples (86.6%) of raw sludge samples. In treated sludge samples, (oo)cysts have been observed in all WWTP's analysed (25 samples) with different stabilization treatment (83.3%). Only in samples from the CP no (oo)cysts were detected. This study provides evidence that (oo)cysts are present in sewage sludge-end products from wastewater treatment processes with the negative consequences for public health.
Collapse
Affiliation(s)
- Inmaculada Amorós
- a Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València , Valencia , Spain
| | - Yolanda Moreno
- a Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València , Valencia , Spain
| | - Mariela Reyes
- a Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València , Valencia , Spain
| | - Laura Moreno-Mesonero
- a Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València , Valencia , Spain
| | - Jose L Alonso
- a Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València , Valencia , Spain
| |
Collapse
|
21
|
Chuah CJ, Mukhaidin N, Choy SH, Smith GJD, Mendenhall IH, Lim YAL, Ziegler AD. Prevalence of Cryptosporidium and Giardia in the water resources of the Kuang River catchment, Northern Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:701-713. [PMID: 27110981 DOI: 10.1016/j.scitotenv.2016.03.247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/26/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
A catchment-scale investigation of the prevalence of Cryptosporidium and Giardia in the Kuang River Basin was carried out during the dry and rainy seasons. Water samples were collected from the Kuang River and its tributaries as well as a major irrigation canal at the study site. We also investigated the prevalence of gastrointestinal parasitic infection among dairy and beef cattle hosts. Cryptosporidium and/or Giardia were detected in all the rivers considered for this study, reflecting their ubiquity within the Kuang River Basin. The high prevalence of Cryptosporidium/Giardia in the upper Kuang River and Lai River is of a particular concern as both drain into the Mae Kuang Reservoir, a vital source of drinking-water to many local towns and villages at the research area. We did not, however, detected neither Cryptosporidium nor Giardia were in the irrigation canal. The frequency of Cryptosporidium/Giardia detection nearly doubled during the rainy season compared to the dry season, highlighting the importance of water as an agent of transport. In addition to the overland transport of these protozoa from their land sources (e.g. cattle manure, cess pits), Cryptosporidium/Giardia may also be re-suspended from the streambeds (a potentially important repository) into the water column of rivers during storm events. Faecal samples from dairy and beef cattle showed high infection rates from various intestinal parasites - 97% and 94%, respectively. However, Cryptosporidium and Giardia were only detected in beef cattle. The difference in management style between beef (freeranging) and dairy cattle (confined) may account for this disparity. Finally, phylogenetic analyses revealed that the Cryptosporidium/Giardia-positive samples contained C. ryanae (non-zoonotic) as well as Giardia intestinalis assemblages B (zoonotic) and E (non-zoonotic). With only basic water treatment facilities afforded to them, the communities of the rural area relying on these water supplies are highly at risk to Cryptosporidium/Giardia infections.
Collapse
Affiliation(s)
- C Joon Chuah
- Department of Geography, Faculty of Arts and Social Science, National University of Singapore, Singapore; Institute of Water Policy, National University of Singapore, Singapore
| | - Nabila Mukhaidin
- Department of Geography, Faculty of Arts and Social Science, National University of Singapore, Singapore
| | - Seow Huey Choy
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Malaysia
| | - Gavin J D Smith
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ian H Mendenhall
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Malaysia
| | - Alan D Ziegler
- Department of Geography, Faculty of Arts and Social Science, National University of Singapore, Singapore
| |
Collapse
|
22
|
Comparison of Methods to Identify Pathogens and Associated Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada. PLoS One 2016; 11:e0153554. [PMID: 27089040 PMCID: PMC4835084 DOI: 10.1371/journal.pone.0153554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022] Open
Abstract
The use of treated municipal wastewater residues (biosolids) as fertilizers is an attractive, inexpensive option for growers and farmers. Various regulatory bodies typically employ indicator organisms (fecal coliforms, E. coli and Salmonella) to assess the adequacy and efficiency of the wastewater treatment process in reducing pathogen loads in the final product. Molecular detection approaches can offer some advantages over culture-based methods as they can simultaneously detect a wider microbial species range, including non-cultivable microorganisms. However, they cannot directly assess the viability of the pathogens. Here, we used bacterial enumeration methods together with molecular methods including qPCR, 16S rRNA and cpn60 gene amplicon sequencing and shotgun metagenomic sequencing to compare pre- and post-treatment biosolids from two Canadian wastewater treatment plants (WWTPs). Our results show that an anaerobic digestion WWTP was unsuccessful at reducing the live indicator organism load (coliforms, generic E. coli and Salmonella) below acceptable regulatory criteria, while biosolids from a dewatering/pelletization WWTP met these criteria. DNA from other pathogens was detected by the molecular methods, but these species were considered less abundant. Clostridium DNA increased significantly following anaerobic digestion treatments. In addition to pathogen DNA, genes related to virulence and antibiotic resistance were identified in treated biosolids. Shotgun metagenomics revealed the widest range of pathogen DNA and, among the approaches used here, was the only approach that could access functional gene information in treated biosolids. Overall, our results highlight the potential usefulness of amplicon sequencing and shotgun metagenomics as complementary screening methods that could be used in parallel with culture-based methods, although more detailed comparisons across a wider range of sites would be needed.
Collapse
|
23
|
Nasser AM. Removal of Cryptosporidium by wastewater treatment processes: a review. JOURNAL OF WATER AND HEALTH 2016; 14:1-13. [PMID: 26837825 DOI: 10.2166/wh.2015.131] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryptosporidium is a protozoan parasite that infects humans and various animal species. The environmental stability and the low infectious dose of Cryptosporidium facilitate its transmission by water and food. Discharge of untreated wastewater may result in waterborne or foodborne Cryptosporidium outbreaks, therefore a suitable treatment may prevent its dissemination. Most studies on the prevalence of Cryptosporidium oocysts in wastewater have reported a concentration range between 10 and 200 oocysts/L and a prevalence of 6 to 100%. Activated sludge has been found to be ineffective for the removal of Cryptosporidium oocysts. Stabilization ponds and constructed wetlands are efficient for the reduction of Cryptosporidium from wastewater, especially when the retention time is longer than 20 days at suitable sunlight and temperature. High rate filtration and chlorine disinfection are inefficient for the reduction of Cryptosporidium from effluents, whereas ultrafiltration and UV irradiation were found to be very efficient for the reduction of Cryptosporidium oocysts. Adequate tertiary treatment may result in high quality effluent with low risk of Cryptosporidium for unrestricted irrigation and other non-potable applications.
Collapse
Affiliation(s)
- Abidelfatah M Nasser
- Water Quality Research Laboratory, Ministry of Health, Ben Zvi Rd 69, Tel Aviv, Israel E-mail:
| |
Collapse
|
24
|
Xiao G, Qiu Z, Qi J, Chen JA, Liu F, Liu W, Luo J, Shu W. Occurrence and potential health risk of Cryptosporidium and Giardia in the Three Gorges Reservoir, China. WATER RESEARCH 2013; 47:2431-45. [PMID: 23478072 DOI: 10.1016/j.watres.2013.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 02/03/2013] [Accepted: 02/07/2013] [Indexed: 05/20/2023]
Abstract
The Three Gorges Reservoir (TGR) is the biggest lake in the world and a major water source in China. There is no information about occurrence and impact of Cryptosporidium and Giardia on the aquatic ecosystem. 61 surface water samples from 23 monitoring sites and 5 treated effluent samples were collected and analyzed. Cryptosporidium oocysts and Giardia cysts were found, respectively, in 86.4% and 65.2% of a total of 66 water samples, with high concentrations in treated effluent. The mean percent recovery was 29.14% for oocysts and 34.86% for cysts. A seasonal pattern was observed, with positive samples for Cryptosporidium more frequent in flood period and positive samples for Giardia more frequent in impounding period. Counts of enterococci, fecal coliforms and total coliforms, and turbidity were significantly associated with Cryptosporidium concentration in backwater (water in a main river which is backed up by the Three Gorges Dam) areas of tributaries but not Giardia. High associations were also found between oocyst and cyst in backwater areas of tributaries and cities. The risks of infection and illness due to water consumption in four different exposure routes were estimated. The results showed that swimming in the TGR has the highest infection risk with 1.39 × 10(-3) per time (95% confidence interval (CI): 0.05-600.3 × 10(-5)) for Cryptosporidium and 2.08 × 10(-4) per time (95% CI: 0.05-878.87 × 10(-6)) for Giardia, while directly drinking unboiled tap water treated with the conventional process has the highest morbidity with 524.98 per 100,000 population per year (95% CI: 10.35-2040.26) for Cryptosporidium and 5.89 per 100,000 population per year (95% CI: 0.08-22.67) for Giardia. This study provides new useful information for drinking water plants, health care workers and managers to improve the safety of tap water and deduce the risk of surface water contamination in China.
Collapse
Affiliation(s)
- Guosheng Xiao
- Department of Environmental Hygiene, School of Military Preventive Medicine, Third Military Medical University, 400038 Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ajonina C, Buzie C, Otterpohl R. The detection of Giardia cysts in a large-scale wastewater treatment plant in Hamburg, Germany. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:509-514. [PMID: 23721585 DOI: 10.1080/15287394.2013.785208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Giardia is one of the most common human enteric parasites that continue to be a major cause of diarrheal disease globally. Wastewater is an important source of Giardia transmission, and control of the pathogen by appropriate treatment of wastewater would limit its transmission. In this study the occurrence of Giardia cysts at various stages of the wastewater treatment plants was monitored for a period of 18 mo. Using immunomagnetic separation and immunofluorescence with monoclonal antibodies, cysts were detected in all samples throughout the sampling period at a concentration ranging from 50 to 7548 cysts/L. The overall removal efficiency of the cysts in the treatment plants was 78%. Seasonal analyses of results revealed that the pathogens (cysts) were most prevalent in influents and effluents during autumn and winter.
Collapse
Affiliation(s)
- Caroline Ajonina
- Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany.
| | | | | |
Collapse
|
26
|
Cui X, Talley JW, Liu G, Larson SL. Effects of primary sludge particulate (PSP) entrapment on ultrasonic (20 kHz) disinfection of Escherichia coli. WATER RESEARCH 2011; 45:3300-3308. [PMID: 21529883 DOI: 10.1016/j.watres.2011.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/16/2011] [Accepted: 03/20/2011] [Indexed: 05/30/2023]
Abstract
The role of primary sludge particulates (PSPs) in ultrasonic disinfection of Escherichia coli (E. coli) was investigated. Entrapment of E. coli by PSP was directly observed through scanning electron microscope (SEM) after E. coli and PSP were incubated together in water for 24 h at 35 °C. Entrapment coefficient was proposed for the first time to reflect the ability of PSP to entrap E. coli and was estimated as 1.4 × 10(3) CFU/mg PSP under our experimental conditions. Ultrasonication (20 kHz) of different E. coli-PSPs solutions showed that the entrapped E. coli cells were protected by PSP from ultrasonication and the unentrapped cells were not. However, the protection of entrapped E. coli cells gradually decreased as ultrasonication proceeded, suggesting the ability of power ultrasonication to deprotect the entrapped E. coli cells. SEM studies suggested a two-step mechanism for ultrasonic (20 kHz) disinfection of entrapped E. coli: breakdown of the protective PSP refugia and disinfection of the exposed E. coli cells. This research will enable more informed decisions about disinfection of aqueous samples where porous PSP are present.
Collapse
Affiliation(s)
- Xiaofei Cui
- Department of Civil and Environmental Engineering, Southern Methodist University, Suite 203, 3101 Dyer Street, Dallas, TX 75205, USA
| | | | | | | |
Collapse
|
27
|
Cheng HWA, Lucy FE, Graczyk TK, Broaders MA, Mastitsky SE. Municipal wastewater treatment plants as removal systems and environmental sources of human-virulent microsporidian spores. Parasitol Res 2011; 109:595-603. [PMID: 21360095 DOI: 10.1007/s00436-011-2291-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/09/2011] [Indexed: 11/25/2022]
Abstract
Municipal wastewater treatment plants play a vital role in reducing the microbial load of sewage before the end-products are discharged to surface waters (final effluent) or local environments (biosolids). This study was to investigate the presence of human-virulent microsporidian spores (Enterocytozoon bieneusi, Encephalitozoon intestinalis, and Encephalitozoon hellem) and enterococci during treatment processes at four Irish municipal secondary wastewater treatment plants (plants A-D). Microsporidian abundance was significantly related to seasonal increase in water temperature. Plant A had the least efficient removal of E. intestinalis spores (32%) in wastewater, with almost 100% removal at other plants both in April and July. Some negative removal efficiencies were obtained for E. bieneusi (at plants C and D, -100%) and for E. hellem (at plants A and D, -90% and -50%). In addition, a positive correlation was found between the levels of enterococci and E. bieneusi in July (r (s) = 0.72, P < 0.05). In terms of the dewatered biosolids, a median concentration as high as 32,000 spores/Kg of E. hellem was observed at plant D in July. Plant C sewage sludge contained the lowest microsporidian loadings (E. bieneusi; 450 spores/L and 1,000 spores/L in April and July, respectively). This study highlights the seasonal variation in concentrations of microsporidian spores in the incoming sewage. Spores in final effluents and dewatered biosolids can be the source of human-virulent microsporidian contamination to the local environment. This emphasizes a considerably high public health risk when sewage-derived biosolids are spread during summer months. This study also suggested enterococci as a potential indicator of the presence of microsporidian spores in wastewater, especially for E. bieneusi.
Collapse
Affiliation(s)
- Hui-Wen A Cheng
- Department of Research, School of Science, Institute of Technology, Sligo, Ireland
| | | | | | | | | |
Collapse
|
28
|
Longitudinal and spatial distribution of GP60 subtypes in human cryptosporidiosis cases in Ireland. Epidemiol Infect 2011; 139:1945-55. [DOI: 10.1017/s0950268810002992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYWithin Europe, Ireland has one of the highest reported infection rates with the diarrhoeal protozoan pathogen Cryptosporidium. In this study 249 Cryptosporidium parvum isolates collected from Irish patients between 2000 and 2009 were subtyped by sequence analysis of the GP60 locus. A subsample of 127 isolates was also typed at the MS1 and ML1 loci. GP60 subtype IIaA18G3R1 was the predominant subtype in every year and every season throughout the country. Over the 10-year period there was no evidence that host immunity to the predominant subtype caused a shift in its prevalence. Length frequency distributions of the GP60 TCA/TCG repeats compiled from published data, showed distinct patterns for countries with predominantly zoonotic or anthroponotic transmission cycles, respectively. Although considered to be mostly affected by zoonotic cryptosporidiosis, the GP60 fragment length of Irish C. parvum isolates mirrored that of countries with predominantly human-to-human transmission, indicating more complex routes of infection between livestock and humans. Due to their homogeneity, ML1 and MS1 were not considered useful loci for subtyping C. parvum strains in Ireland.
Collapse
|
29
|
Castro-Hermida JA, García-Presedo I, González-Warleta M, Mezo M. Cryptosporidium and Giardia detection in water bodies of Galicia, Spain. WATER RESEARCH 2010; 44:5887-5896. [PMID: 20673950 DOI: 10.1016/j.watres.2010.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
The objective of this study was to determine the mean concentration (per litre) of Cryptosporidium oocysts and Giardia cysts in recreational river areas (n = 28), drinking water treatments plants (DWTPs; n = 52) and wastewater treatment plants (WWTPs; n = 50) in Galicia (NW Spain). Water samples from rivers and from the influent (50-100 l) and the treated effluent (100 l) of the water plants were filtered using Filta-Max filters (IDEXX Laboratories, Inc., Westbrook, ME, USA). A total of 232 samples were processed and the (oo)cysts were concentrated, clarified by IMS and then detected by IFAT. The viability was determined by applying fluorogenic vital dye (PI). In the recreational areas, infective forms of Cryptosporidium and Giardia were detected in 16 (57.1%; 1-60 oocysts per litre) and 17 (60.7%; 1-160 cysts per litre) samples, respectively. In the water flowing into the water treatment plants, oocysts were detected in 21 DWTPs (40.4%; 1-13 oocysts per litre) and cysts were observed in 22 DWTPs (42.3%; 1-7 cysts per litre). In the effluents from the treatment plants, Cryptosporidium oocysts and Giardia cysts were identified in 17 DWTPs (32.7%; 1-4 oocysts per litre) and in 19 DWTPs (36.5%; 1-5 cysts per litre), respectively. The highest concentrations of (oo)cysts were found in the WWTPs; specifically, oocysts were detected in 29 (58.0%; 1-80 oocysts per litre) and cysts in 49 (98.0%; 2-14.400 cysts per litre) WWTP effluents. Cryptosporidium and Giardia were detected in 32 (64.0%; 1-120 oocysts per litre) and 48 (96.0%; 2-6.000 cysts per litre) WWTP effluents, respectively. The percentage viability of the (oo)cysts ranged between 90.0% and 95.0%. In all samples analysed. Moreover, it was found that the effluents from coastal WWTPs were discharged directly into the sea, while inland WWTPs were discharged directly into rivers. The concentrations of both enteropathogens detected in effluents from WWTPs therefore represent a significant risk to human and animal health. These results demonstrate the wide distribution of Cryptosporidium and Giardia in the environment, the ineffectiveness of treatments in DWTPs and WWTPs in reducing/inactivating both protozoa and the need to monitor the presence, viability and infectivity of Cryptosporidium and Giardia in water bodies. In conclusion, the findings suggest the need for better monitoring of water quality and identification of sources of contamination.
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, Instituto Galego de Calidade Alimentaria-Xunta de Galicia, Carretera AC-542 de Betanzos a Mesón do Vento, Km 7.5, CP 15318 Abegondo (A Coruña), Spain.
| | | | | | | |
Collapse
|
30
|
Putignani L, Menichella D. Global distribution, public health and clinical impact of the protozoan pathogen cryptosporidium. Interdiscip Perspect Infect Dis 2010; 2010:753512. [PMID: 20706669 PMCID: PMC2913630 DOI: 10.1155/2010/753512] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/07/2010] [Accepted: 05/11/2010] [Indexed: 12/19/2022] Open
Abstract
Cryptosporidium spp. are coccidians, oocysts-forming apicomplexan protozoa, which complete their life cycle both in humans and animals, through zoonotic and anthroponotic transmission, causing cryptosporidiosis. The global burden of this disease is still underascertained, due to a conundrum transmission modality, only partially unveiled, and on a plethora of detection systems still inadequate or only partially applied for worldwide surveillance. In children, cryptosporidiosis encumber is even less recorded and often misidentified due to physiological reasons such as early-age unpaired immunological response. Furthermore, malnutrition in underdeveloped countries or clinical underestimation of protozoan etiology in developed countries contribute to the underestimation of the worldwide burden. Principal key indicators of the parasite distribution were associated to environmental (e.g., geographic and temporal clusters, etc.) and host determinants of the infection (e.g., age, immunological status, travels, community behaviours). The distribution was geographically mapped to provide an updated picture of the global parasite ecosystems. The present paper aims to provide, by a critical analysis of existing literature, a link between observational epidemiological records and new insights on public health, and diagnostic and clinical impact of cryptosporidiosis.
Collapse
Affiliation(s)
- Lorenza Putignani
- Microbiology Unit, Bambino Gesù Pediatric Hospital, Scientific Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Donato Menichella
- Microbiology Unit, Bambino Gesù Pediatric Hospital, Scientific Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| |
Collapse
|