1
|
Hatam-Nahavandi K, Mohammad Rahimi H, Rezaeian M, Ahmadpour E, Badri M, Mirjalali H. Detection and molecular characterization of Blastocystis sp., Enterocytozoon bieneusi and Giardia duodenalis in asymptomatic animals in southeastern Iran. Sci Rep 2025; 15:6143. [PMID: 39979370 PMCID: PMC11842636 DOI: 10.1038/s41598-025-90608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Domestic animals can harbor a variety of enteric unicellular eukaryotic parasites (EUEP) with zoonotic potential that pose risks to human health. The aim of this study was to evaluate the occurrence and genetic diversity of EUEP of zoonotic relevance in domestic animals in Iran. Faecal samples were collected from cattle, sheep, camels, goats, donkeys, horse, and dogs. A real-time PCR was performed to detect the parasites, followed by sequence-based genotyping analyses on isolates that tested positive for Enterocytozoon bieneusi, Giardia duodenalis, and Blastocystis sp.. Overall, 53 out of 200 faecal samples (26.5%, 95% CI 20.5-33.2) were positive for one or more EUEP. Enterocytozoon bieneusi was found in 23.8%, 12.0%, 26.1%, and 13.3% of cattle, sheep, goats, and camels, respectively. Giardia duodenalis was identified in 19.3% of cattle and 6.7% of camels. Blastocystis sp. was detected in 5.7% of cattle and 16.7% of camels. Enterocytozoon bieneusi genotypes macaque1, J, BEB6, and CHG3 were identified in 3.7% (1/27), 3.7% (1/27), 44.4% (12/27), and 48.2% (13/27) of the isolates, respectively. Giardia duodenalis assemblage B and Blastocystis subtype 10 were identified in one cattle and one camel isolate, respectively. These findings suggest that domestic animals could serve as potential reservoirs for EUEP of zoonotic relevance and might play a significant role in transmitting these parasites to humans and other animals.
Collapse
Affiliation(s)
- Kareem Hatam-Nahavandi
- Department of Parasitology and Mycology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaeian
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadpour
- Department of Parasitology and Mycology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Meng X, Ou Y, Jiang W, Guo Y, Xiao L, Feng Y, Li N. Identification of two new genetic loci for high-resolution genotyping of Enterocytozoon bieneusi. Parasite 2025; 32:6. [PMID: 39887113 PMCID: PMC11784105 DOI: 10.1051/parasite/2025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
In addition to the ribosomal internal transcribed spacer (ITS) locus, four loci (MS1, MS3, MS4, and MS7) have been identified to develop multilocus sequence typing tools for high-resolution genotyping of Enterocytozoon bieneusi in previous studies. However, the use of only five loci was insufficient for population genetic analysis of E. bieneusi from diverse hosts. In this study, comparison of a clinical genome sequence (C44566) with the whole genome sequence of an E. bieneusi isolate (H348) in GenBank led to the selection of the hypothetical protein 1 (hp1) and tubulin 1 (tub1) loci. Further analysis of the two loci with 156 E. bieneusi-positive samples showed high sequence polymorphisms in ITS Groups 1-6 and 10. Altogether, 30 and 23 sequence types were identified at hp1 and tub1, respectively. Genotyping based on the two loci confirmed the lack of genetic differentiation between Group 1 and Group 2 genotypes, as previously reported. Moreover, the genotypes in Groups 4 and 5 are more divergent from other genotypes within Groups 1-10. However, isolates in Group 11 and 12 could not be amplified at the hp1 and tub1 loci, supporting the previous conclusion of genetic uniqueness of the two genotype groups. The identified genetic markers and generated data could be used to develop a multilocus sequence typing tool for high-resolution genotyping of E. bieneusi, which would also have implications for understanding the taxonomy of Enterocytozoon spp., the public health significance of E. bieneusi in animals, and sources of E. bieneusi infections in humans.
Collapse
Affiliation(s)
- Xinan Meng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Yonglin Ou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Wen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Yaqiong Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| | - Lihua Xiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| | - Yaoyu Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
3
|
Procter M, Savikumar S, Hamdan L, Al Naqbi S, Kváč M, Schuster RK, Qablan MA. Genetic diversity of Cryptosporidium species from diarrhoeic ungulates in the United Arab Emirates. Vet Parasitol Reg Stud Reports 2024; 54:101067. [PMID: 39237224 DOI: 10.1016/j.vprsr.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/07/2024]
Abstract
Cryptosporidiosis has previously been reported in animals, humans, and water sources in the United Arab Emirates (UAE). However, most reports were only to the genus level, or generically identified as cryptosporidiosis. We aimed to investigate the genetic diversity of Cryptosporidium species occurring in diarrhetic ungulates which were brought to the Central Veterinary Research Laboratory (CVRL) in Dubai. Using a combination of microscopic and molecular methods, we identified five species of Cryptosporidium occurring among ungulates in the UAE, namely C. parvum, C. hominis, C. xiaoi, C. meleagridis, and C. equi. Cryptosporidium parvum was the most prevalent species in our samples. Furthermore, we identified subtypes of C. parvum and C. hominis, which are involved in both human and animal cryptosporidiosis. This is also the first reported occurrence of Cryptosporidium spp. in the Arabian Tahr, to our knowledge. Since the animals examined were all in contact with humans, the possibility of zoonotic spread is possible. Our study correlates with previous reports in the region, building upon the identification of Cryptosporidium sp. However, there is a need to further investigate the endemic populations of Cryptosporidium, including more hosts, sampling asymptomatic animals, and location data.
Collapse
Affiliation(s)
- M Procter
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - S Savikumar
- Central Veterinary Research Laboratory, PO Box 597, Dubai, United Arab Emirates
| | - L Hamdan
- Department of Veterinary Medicine, College Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - S Al Naqbi
- Department of Veterinary Medicine, College Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - M Kváč
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, 370 05 České Budějovice, Czech Republic; Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - R K Schuster
- Central Veterinary Research Laboratory, PO Box 597, Dubai, United Arab Emirates
| | - M A Qablan
- Department of Veterinary Medicine, College Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Mi R, Silayi A, Wang Y, Xia C, Tang W, Gong H, Huang Y, Zhang Y, Yan G, Chen Z. Molecular characterization of Cryptosporidium spp. in Bactrian camels ( Camelus bactrianus) from Yili Kazak Autonomous Prefecture of Xinjiang, China. Front Vet Sci 2024; 11:1411377. [PMID: 38915888 PMCID: PMC11195013 DOI: 10.3389/fvets.2024.1411377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Cryptosporidium spp. is a significant zoonotic parasite. The prevalence and infection characteristics of Cryptosporidium spp. in Bactrian camels in Yili Kazak Autonomous Prefecture have yet to be fully understood. Thus, the molecular epidemiology of cryptosporidiosis in camels was investigated in this region. Methods A total of 1,455 fecal samples were collected from 6 counties in three regions (Altay, Tacheng, and Yili) in Yili Prefecture. Nested PCR targeting the small subunit ribosomal RNA (ssu rRNA) gene was used to identify the species or genotypes of Cryptosporidium infection in camels. For C. parvum positive samples, the subtypes were identified using the 60-kDa glycoprotein (gp60) gene. Results and discussion The overall infection rate was 8.7% (126/1,455), ranging from 5.6% to 11.7% in different regions, and 4.2% to 15.8% in different counties. A significant difference was observed amongst the counties (p < 0.001). Three species were detected, namely C. andersoni (65.1%, 82/126), C. parvum (34.1%, 43/126), and C. occultus (0.8%, 1/126). Three C. parvum subtypes, If-like-A15G2 (n = 29), IIdA15G1 (n = 4), and IIdA19G1(n = 1) were detected, with If-like-A15G2 being the most prevalent subtype. Camels aged 3-12 months exhibited the highest infection rate (11.4%, 44/387), with no significant difference among age groups (p > 0.05). C. parvum was predominant in camels under 3 months, while C. andersoni prevailed in camels over 3 months. There was an extremely significant difference observed among seasons (p < 0.001), summer had the highest infection rates (16.9%, 61/360). This study collected nearly 1,500 samples and, for the first time, investigated Cryptosporidium spp. infection in camels based on different age groups and seasons. All three Cryptosporidiumspecies identified were zoonotic, posing a potential threat to human health and requiring close attention.
Collapse
Affiliation(s)
- Rongsheng Mi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Amanguli Silayi
- Yili Prefecture Center for Animal Disease Control and Diagnosis of Xinjiang, Yining, China
| | - Yongsheng Wang
- Yili Prefecture Center for Animal Disease Control and Diagnosis of Xinjiang, Yining, China
| | - Chenyang Xia
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Wenqiang Tang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Genqiang Yan
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Elmahallawy EK, Köster PC, Dashti A, Alghamdi SQ, Saleh A, Gareh A, Alrashdi BM, Hernández-Castro C, Bailo B, Lokman MS, Hassanen EAA, González-Barrio D, Carmena D. Molecular detection and characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi infections in dromedary camels ( Camelus dromedaries) in Egypt. Front Vet Sci 2023; 10:1139388. [PMID: 37152690 PMCID: PMC10157078 DOI: 10.3389/fvets.2023.1139388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Few studies have investigated the occurrence of microeukaryotic gut parasites in dromedary camels in Egypt, and the majority of these investigations are based on microscopic analysis of fecal material. Methods Herein, we assessed the occurrence, molecular diversity, and zoonotic potential of protozoan (Cryptosporidium spp. and Giardia duodenalis) and microsporidian (Enterocytozoon bieneusi) pathogens in individual fecal samples (n = 102) of dromedary camels with (n = 26) and without (n = 76) diarrhea from Aswan Governorate, Upper Egypt. Other factors possibly associated with an increased risk of infection (geographical origin, sex, age, and physical condition) were also analyzed. The SSU rRNA or ITS genes were targeted by molecular (PCR and Sanger sequencing) techniques for pathogen detection and species identification. Results and discussion The most abundant species detected was G. duodenalis (3.9%, 4/102; 95% CI: 1.1-9.7), followed by Cryptosporidium spp. (2.9%, 3/102; 95% CI: 0.6-8.4). All samples tested negative for the presence of E. bieneusi. Sequence analysis data confirmed the presence of zoonotic C. parvum (66.7%, 2/3) and cattle-adapted C. bovis (33.3%, 1/3). These Cryptosporidium isolates, as well as the four Giardia-positive isolates, were unable to be amplified at adequate genotyping markers (Cryptosporidium: gp60; Giardia: gdh, bg, and tpi). Camels younger than 2 years old were significantly more likely to harbor Cryptosporidium infections. This connection was not statistically significant, although two of the three cryptosporidiosis cases were detected in camels with diarrhea. The spread of G. duodenalis infections was unaffected by any risk variables studied. This is the first report of C. parvum and C. bovis in Egyptian camels. The finding of zoonotic C. parvum has public health implications since camels may function as sources of oocyst pollution in the environment and potentially infect livestock and humans. Although preliminary, this study provides useful baseline data on the epidemiology of diarrhea-causing microeukaryotic parasites in Egypt. Further research is required to confirm and expand our findings in other animal populations and geographical regions of the country.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Samia Qasem Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Alaqiq, Al-Baha Province, Saudi Arabia
| | - Amira Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Barakat M. Alrashdi
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Carolina Hernández-Castro
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
- Parasitology Group, Faculty of Medicine, Academic Corporation for the Study of Tropical Pathologies, University of Antioquia, Medellín, Colombia
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman A. A. Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
6
|
First Epidemiological Report on the Prevalence and Associated Risk Factors of Cryptosporidium spp. in Farmed Marine and Wild Freshwater Fish in Central and Eastern of Algeria. Acta Parasitol 2022; 67:1152-1161. [PMID: 35545736 DOI: 10.1007/s11686-022-00560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/14/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE The present study aimed to estimate the prevalence and molecular characterization of Cryptosporidium spp. in six different fish species both from marine and freshwater environments. METHODS During a period of 2 years (2018-2020), a total of 415 fecal samples and 565 intestinal scrapings were collected in seven provinces from the central and eastern Algeria. From those, 860 fish belonged to six different species, two of which are cultured marine and four are wild freshwater fish. All samples were screened for Cryptosporidium spp. presence using molecular techniques. Nested PCR approach was performed to amplify partial sequences of the small subunit ribosomal RNA (SSU rRNA) and 60-kDa glycoprotein (GP60) genes for Cryptosporidium genotyping and subtyping. Detailed statistical analysis was performed to assess the prevalence variation of Cryptosporidium infection according to different risk factors. RESULTS Nested PCR analysis of SSU gene revealed 173 Cryptosporidium positive fish, giving an overall prevalence of 20.11% (17.5-23.0). Cryptosporidium spp. was detected in 8.93% (42/470) of cultured marine fish and 33.58% (131/390) of wild freshwater fish. Overall, the prevalence was affected by all studied risk factors, except the gender. Molecular characterization and subtyping of Cryptosporidium isolates showed occurrence of IIaA16G2R1 and IIaA17G2R1 subtypes of C. parvum in the fish species Sparus aurata. CONCLUSION The present study provides the first epidemiological data on the prevalence and associated risk factors of Cryptosporidium spp. in farmed marine and wild freshwater fish and the first molecular data on the occurrence of zoonotic C. parvum in fish from North Africa (Algeria).
Collapse
|
7
|
Hijjawi N, Zahedi A, Al-Falah M, Ryan U. A review of the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East and North Africa (MENA) region. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105212. [PMID: 35065302 DOI: 10.1016/j.meegid.2022.105212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidium spp. and Giardia duodenalis are important protozoan parasites which are associated with diarrheal diseases in humans and animals worldwide. Relatively little is known about the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East Countries and North Africa (MENA region). Therefore, this review aimed to inspect published genotyping and subtyping studies on Cryptosporidium spp. and Giardia duodenalis in the MENA region. These studies indicate that both anthroponotic and zoonotic transmission of Cryptosporidium occurs with the predominance of zoonotic transmission in most countries. Seven Cryptosporidium species were identified in humans (C. parvum, C. hominis, Cryptosporidium meleagridis, C. felis, Cryptosporidium muris, C. canis and C. bovis), with C. parvum by far being the most prevalent species (reported in 95.4% of the retrieved studies). Among C. parvum gp60 subtype families, IIa and IId predominated, suggesting potential zoonotic transmission. However, in four MENA countries (Lebanon, Israel, Egypt and Tunisia), C. hominis was the predominant species with five subtype families reported including Ia, Ib, Id, If and Ie, all of which are usually anthroponotically transmitted between humans. In animals, the majority of studies were conducted mainly on livestock and poultry, 15 species were identified (C. parvum, C. hominis, C. muris, Cryptosporidium cuniculus, C. andersoni, C. bovis, C. meleagridis, C. baileyi, C. erinacei, C. ryanae, C. felis, C. suis, Cryptosporidium galli, C. xiaoi and C. ubiquitum) with C. parvum (IIa and IId subtypes) the dominant species in livestock and C. meleagridis and C. baileyi the dominant species in poultry. With G. duodenalis, five assemblages (A, B, C, E and F) were identified in humans and six (A, B, C, E, D and F) in animals in MENA countries with assemblages A and B commonly reported in humans, and assemblages A and E dominant in livestock. This review also identified a major knowledge gap in the lack of Cryptosporidium spp. and Giardia duodenalis typing studies in water and food sources in the MENA region. Of the few studies conducted on water sources (including drinking and tap water), ten Cryptosporidium species and four genotypes were identified, highlighting the potential role of water as the major route of Cryptosporidium spp. transmission in the region. In addition, three G. duodenalis assemblages (A, B and E) were detected in different water sources with AI, AII and BIV being the main sub-assemblages reported. More research is required in order to better understand the molecular diversity and transmission dynamics of Cryptsporidum spp. and Giardia duodenalis in humans, animals, water and food sources in MENA region.
Collapse
Affiliation(s)
- Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan.
| | - Alizera Zahedi
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | | | - Una Ryan
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Abstract
Microsporidia are pathogenic organism related to fungi. They cause infections in a wide variety of mammals as well as in avian, amphibian, and reptilian hosts. Many microsporidia species play an important role in the development of serious diseases that have significant implications in human and veterinary medicine. While microsporidia were originally considered to be opportunistic pathogens in humans, it is now understood that infections also occur in immune competent humans. Encephalitozoon cuniculi, Encephalitozoon intestinalis, and Enterocytozoon bieneusi are primarily mammalian pathogens. However, many other species of microsporidia that have some other primary host that is not a mammal have been reported to cause sporadic mammalian infections. Experimental models and observations in natural infections have demonstrated that microsporidia can cause a latent infection in mammalian hosts. This chapter reviews the published studies on mammalian microsporidiosis and the data on chronic infections due to these enigmatic pathogens.
Collapse
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Lee H, Lee SH, Lee YR, Kim HY, Moon BY, Han JE, Rhee MH, Kwon OD, Kwak D. Enterocytozoon bieneusi Genotypes and Infections in the Horses in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:639-643. [PMID: 34974671 PMCID: PMC8721311 DOI: 10.3347/kjp.2021.59.6.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
Enterocytozoon bieneusi is a microsporidian pathogen. Recently, the equestrian population is increasing in Korea. The horse-related zoonotic pathogens, including E. bieneusi, are concerns of public health. A total of 1,200 horse fecal samples were collected from riding centers and breeding farms in Jeju Island and inland areas. Of the fecal samples 15 (1.3%) were PCR positive for E. bieneusi. Interestingly, all positive samples came from Jeju Island. Diarrhea and infection in foals were related. Two genotypes (horse1, horse2) were identified as possible zoonotic groups requiring continuous monitoring.
Collapse
Affiliation(s)
- Haeseung Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
| | - Seung-Hun Lee
- College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644,
Korea
| | - Yu-Ran Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gyeongbuk 39660,
Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gyeongbuk 39660,
Korea
| | - Bo-Youn Moon
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gyeongbuk 39660,
Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944,
Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944,
Korea
| | - Oh-Deog Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944,
Korea
- Corresponding author ()
| |
Collapse
|
10
|
Alali F, Abbas I, Jawad M, Hijjawi N. Cryptosporidium infection in humans and animals from Iraq: A review. Acta Trop 2021; 220:105946. [PMID: 33964242 DOI: 10.1016/j.actatropica.2021.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The apicomplexan parasite Cryptosporidium causes serious diarrheal disease in humans and animals worldwide. The present review summarizes epidemiological and molecular studies as well as the clinical disease burden of natural Cryptosporidium infections in humans and animals from Iraq. Retrieved reports regarding cryptosporidiosis in Iraq indicated that the disease is highly prevalent in humans and animals, but the results extracted from these reports are confusing and mostly employed traditional methodologies for the detection of Cryptosporidium infective stage, the oocysts, in clinical samples. Many screened surveys represent point prevalence studies, which described diarrhea in infants and children due to cryptosporidiosis; however, other pathogens causing diarrhea were not excluded. High prevalence of Cryptosporidium oocysts was recovered from many studies from different environmental matrices in different parts of Iraq including drinking tap water, which facilitates its transmission to humans and animals. Reports on molecular characterization of different Cryptosporidium species which exist in Iraq are few but both Cryptosporidium hominis and Cryptosporidium parvum were detected in humans and the latter was more prevalent in isolates from cattle, sheep, goats and birds. A national study on adequate numbers of samples from different hosts and environmental matrices, and employing advanced diagnostic methodologies is required to precisely detect the epidemiological situation of cryptosporidiosis in Iraq. Furthermore, molecular genotyping studies are required to be conducted in Iraq to characterize the species and subtypes of Cryptosporidium infecting humans and animals especially during outbreaks. Therefore, Cryptosporidium parasite should be included in the routine diagnosis and surveillance system of infectious diseases in Iraq and should be regarded as an important public health problem of concern.
Collapse
|
11
|
Interactions between Cryptosporidium, Enterocytozoon, Giardia and Intestinal Microbiota in Bactrian Camels on Qinghai-Tibet Plateau, China. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are zoonotic pathogens commonly found in the intestinal tract of mammalian hosts including livestock and humans. The prevalence of these eukaryote microorganisms in domestic animals and their interaction with intestinal microbiota are not yet fully recognized. We analyzed the intestinal microbiota composition with metagenomics and functional characterization with Cluster of Orthologous (COG) in Bactrian camels, which were raised on Qinghai-Tibet Plateau, Northwest China. Thus, fecal samples were collected from the animals to determine the parasite infection and the profile of microbiota. Analysis of intestinal microbiota at genus level revealed important features of interaction between parasites infection and bacterial community. Coprococcus and Prevotella were more abundant while Akkermansia had lower relative abundance with E. bieneusi infection. Bacteria of Akkermansia, Lactococcus, Oxalobacter, Sphaerochaeta, Paludibacter, Fibrobacter, Anaerovibrio, Pseudomonas, Mogibacterium, Pseudoramibacter_Eubacterium, YRC22, Flexispira, SMB53, AF12, and Roseburia genera were found under-presented and Oscillospira genus over-presented when G. duodenalis infection was present. Meanwhile, Cryptosporidium spp. and E. bieneusi co-infected animals showed lower relative abundance of Allobaculum, Rikenella, Shuttleworthia, Epulopiscium, Bilophila, Dorea, Fibrobacter, and TG5. Results demonstrate important interaction between the intestinal parasites and microbiota, and provide informative link for understanding the co-evolution of zoonotic pathogens and bacteria in domestic animals.
Collapse
|
12
|
Ou Y, Jiang W, Roellig DM, Wan Z, Li N, Guo Y, Feng Y, Xiao L. Characterizations of Enterocytozoon bieneusi at new genetic loci reveal a lack of strict host specificity among common genotypes and the existence of a canine-adapted Enterocytozoon species. Int J Parasitol 2020; 51:215-223. [PMID: 33275946 DOI: 10.1016/j.ijpara.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 10/22/2022]
Abstract
Molecular characterizations of the microsporidian pathogen Enterocytozoon bieneusi at the ribosomal internal transcribed spacer (ITS) locus have identified nearly 500 genotypes in 11 phylogenetic groups with different host ranges. Among those, one unique group of genotypes, Group 11, is commonly found in dogs. Genetic characterizations of those and many divergent E. bieneusi genotypes at other genetic loci are thus far impossible. In this study, we sequenced 151 E. bieneusi isolates from several ITS genotype groups at the 16S rRNA locus and two new semi-conservative genetic markers (casein kinase 1 (ck1) and spore wall protein 1 (swp1)). Comparison of the near full (~1,200 bp) 16S rRNA sequences showed mostly two to three nucleotide substitutions between Group 1 and Group 2 genotypes, while Group 11 isolates differed from those by 26 (2.2%) nucleotides. Sequence analyses of the ck1 and swp1 loci confirmed the genetic uniqueness of Group 11 genotypes, which produced sequences very divergent from other groups. In contrast, genotypes in Groups 1 and 2 produced similar nucleotide sequences at these genetic loci, and there was discordant placement of ITS genotypes among loci in phylogenetic analyses of sequences. These results suggest that the canine-adapted Group 11 genotypes are genetically divergent from other genotype groups of E. bieneusi, possibly representing a different Enterocytozoon sp. They also indicate that there is no clear genetic differentiation of ITS Groups 1 and 2 at other genetic loci, supporting the conclusion on the lack of strict host specificity in both groups. Data and genetic markers from the study should facilitate population genetic characterizations of E. bieneusi isolates and improve our understanding of the zoonotic potential of E. bieneusi in domestic animals.
Collapse
Affiliation(s)
- Yonglin Ou
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Wen Jiang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Zhuowei Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
13
|
Wang Y, Cao J, Chang Y, Yu F, Zhang S, Wang R, Zhang L. Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in dairy cattle in Gansu, northwest China. ACTA ACUST UNITED AC 2020; 27:62. [PMID: 33206594 PMCID: PMC7673350 DOI: 10.1051/parasite/2020058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022]
Abstract
Cryptosporidium spp. and Giardia duodenalis are common gastrointestinal parasites with a broad range of hosts, including humans, livestock, and wildlife. To examine the infection status and assess the zoonotic potential of Cryptosporidium spp. and G. duodenalis in dairy cattle in Gansu, China, a total of 1414 fecal samples were collected from the rectum, with one sample collected from each individual animal. All the samples were tested using nested PCR based on the small subunit ribosomal RNA (SSU rRNA) gene of Cryptosporidium spp. and G. duodenalis. The overall infection rates of Cryptosporidium spp. and Giardia duodenalis were 4.2% (n = 59) and 1.0% (n = 14), respectively. Four Cryptosporidium species were identified: C. andersoni (n = 42), C. parvum (n = 12), C. bovis (n = 5), and C. ryanae (n = 1). In further analyses of subtypes of C. parvum isolates based on the 60 kDa glycoprotein (gp60) gene, five were successfully subtyped as IIdA19G1 (n = 4) and IIdA15G1 (n = 1). All 14 G. duodenalis isolates were identified as assemblage E using the triosephosphate isomerase (tpi) gene. The relatively low positive rates of Cryptosporidium spp. and G. duodenalis detected here and the predominance of non-human pathogenic species/assemblages of these parasites indicated their unique transmission dynamics in this area and the low level of threat posed to public health. However, continuous monitoring and further studies of these parasites should be conducted for the prevention and control of these pathogens.
Collapse
Affiliation(s)
- Yilin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China - National International Joint Research Center for Animal Immunology, Zhengzhou, 450046 Henan, PR China
| | - Jianke Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China - National International Joint Research Center for Animal Immunology, Zhengzhou, 450046 Henan, PR China
| | - Yankai Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China - National International Joint Research Center for Animal Immunology, Zhengzhou, 450046 Henan, PR China
| | - Fuchang Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China - National International Joint Research Center for Animal Immunology, Zhengzhou, 450046 Henan, PR China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China - National International Joint Research Center for Animal Immunology, Zhengzhou, 450046 Henan, PR China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China - National International Joint Research Center for Animal Immunology, Zhengzhou, 450046 Henan, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China - National International Joint Research Center for Animal Immunology, Zhengzhou, 450046 Henan, PR China
| |
Collapse
|
14
|
Genetic Diversity of Cryptosporidium in Bactrian Camels ( Camelus bactrianus) in Xinjiang, Northwestern China. Pathogens 2020; 9:pathogens9110946. [PMID: 33202835 PMCID: PMC7697964 DOI: 10.3390/pathogens9110946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/17/2023] Open
Abstract
Cryptosporidium species are ubiquitous enteric protozoan pathogens of vertebrates distributed worldwide. The purpose of this study was to gain insight into the zoonotic potential and genetic diversity of Cryptosporidium spp. in Bactrian camels in Xinjiang, northwestern China. A total of 476 fecal samples were collected from 16 collection sites in Xinjiang and screened for Cryptosporidium by PCR. The prevalence of Cryptosporidium was 7.6% (36/476). Six Cryptosporidium species, C. andersoni (n = 24), C. parvum (n = 6), C. occultus (n = 2), C. ubiquitum (n = 2), C. hominis (n = 1), and C. bovis (n = 1), were identified based on sequence analysis of the small subunit (SSU) rRNA gene. Sequence analysis of the gp60 gene identified six C. parvum isolates as subtypes, such as If-like-A15G2 (n = 5) and IIdA15G1 (n = 1), two C. ubiquitum isolates, such as subtype XIIa (n = 2), and one C. hominis isolate, such as Ixias IkA19G1 (n = 1). This is the first report of C. parvum, C. hominis, C. ubiquitum, and C. occultus in Bactrian camels in China. These results indicated that the Bactrian camel may be an important reservoir for zoonotic Cryptosporidium spp. and these infections may be a public health threat in this region.
Collapse
|
15
|
Bouragba M, Laatamna A, Cheddad FE, Baroudi D, Houali K, Hakem A. Gastrointestinal parasites of dromedary camel ( Camelus dromedarius) in Algeria. Vet World 2020; 13:1635-1640. [PMID: 33061238 PMCID: PMC7522961 DOI: 10.14202/vetworld.2020.1635-1640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
AIM The present study was designed to investigate the prevalence and identification of gastrointestinal parasites in feces samples of dromedary camels (Camelus dromedarius) in Algeria based on microscopic examination. MATERIALS AND METHODS A total of 717 fresh fecal samples obtained from 28 farms at Steppe and Northern Sahara regions of Algeria were processed for microscopic examination after concentration by formalin-ether sedimentation and flotation techniques. In addition, microscopic examination of Cryptosporidium spp. was done by modified Ziehl-Neelsen staining and Lugol staining procedure was used for the detection of Giardia cysts. RESULTS Microscopic examination indicated an infection rate of gastrointestinal parasites of 48.26% (346/717). Protozoan infections were recorded at 17.02% (122/717), whereas helminth infections were recorded at 23.71% (170/717). In addition, mixed infection (protozoans and helminths) was seen at 7.53% (54/717). No correlation was found between infection and age of the animals, nor the consistency of the stool samples; in addition, neither influence of sex nor breed of camels was observed. Eighteen genera of gastrointestinal parasites were revealed; including four genera of protozoa, 12 Nematoda, one Cestoda, and one Trematoda. Strongyloides spp. and Eimeria spp. showed the highest rate of parasitism, while Cooperia spp. was observed with the lowest prevalence. Cryptosporidium spp. was detected in 13 among 717 examined samples (1.81%). CONCLUSION The parasite fauna infecting the gastrointestinal tract of the Algerian dromedary is much diversified. The detected parasites in camels are similar to counterparts in other ruminants, posing serious challenge to animal farming. Future studies should be carried out to better understand the epidemiology of these parasitic diseases and their economic and public health impact.
Collapse
Affiliation(s)
- Messaoud Bouragba
- Laboratory of Analytical Biochemistry and Biotechnology, Faculty of Biological and Agronomical Sciences, University of Mouloud Mammeri, Tizi-Ouzou, Algeria
- Laboratory of Exploration and Valorization of Steppic Ecosystems, Faculty of Nature and Life Sciences, University of Djelfa, Djelfa, Algeria
| | - AbdElkarim Laatamna
- Laboratory of Exploration and Valorization of Steppic Ecosystems, Faculty of Nature and Life Sciences, University of Djelfa, Djelfa, Algeria
| | | | - Djamel Baroudi
- Higher National Veterinary School, Issad Abbes Street, Algiers, Algeria
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology, Faculty of Biological and Agronomical Sciences, University of Mouloud Mammeri, Tizi-Ouzou, Algeria
| | - Ahcène Hakem
- Laboratory of Exploration and Valorization of Steppic Ecosystems, Faculty of Nature and Life Sciences, University of Djelfa, Djelfa, Algeria
- Centre Research in Agro-Pastoralism, Djelfa, Algeria
| |
Collapse
|
16
|
Sazmand A, Joachim A, Otranto D. Zoonotic parasites of dromedary camels: so important, so ignored. Parasit Vectors 2019; 12:610. [PMID: 31881926 PMCID: PMC6935189 DOI: 10.1186/s13071-019-3863-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023] Open
Abstract
With a global population of about 35 million in 47 countries, dromedary camels play a crucial role in the economy of many marginal, desert areas of the world where they survive under harsh conditions. Nonetheless, there is scarce knowledge regarding camels' parasite fauna which can reduce their milk and meat productions. In addition, only scattered information is available about zoonotic parasites transmitted to humans via contamination (e.g. Cryptosporidium spp., Giardia duodenalis, Balantidium coli, Blastocystis spp. and Enterocytozoon bieneusi), as foodborne infections (e.g. Toxoplasma gondii, Trichinella spp. and Linguatula serrata) or by arthropod vectors (Trypanosoma spp.). Herein, we draw attention of the scientific community and health policy-making organizations to the role camels play in the epidemiology of parasitic zoonotic diseases also in the view of an increase in their farming in desert areas worldwide.
Collapse
Affiliation(s)
- Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978 Iran
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Domenico Otranto
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978 Iran
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
17
|
Molecular detection of Cryptosporidium and Enterocytozoon bieneusi in dairy calves and sika deer in four provinces in Northern China. Parasitol Res 2019; 119:105-114. [PMID: 31773309 DOI: 10.1007/s00436-019-06498-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023]
Abstract
The protistan pathogens Cryptosporidium and Enterocytozoon bieneusi can cause significant intestinal diseases in animals and humans. However, limited information is available regarding prevalence and molecular characterization of Cryptosporidium and E. bieneusi in ruminants in Northern China. In this study, the overall prevalence of Cryptosporidium and E. bieneusi was 19.3% (62/321) and 28.97% (93/321) in dairy calves and 1.10% (9/818) and 13.57% (111/818) in sika deer (Cervus nippon) in four provinces in Northern China, respectively. The prevalence of Cryptosporidium and E. bieneusi in different factor groups was various. Five Cryptosporidium species/genotypes were identified, of which C. parvum, C. ryanae, C. bovis, and C. andersoni were only found in dairy calves, and only Cryptosporidium deer genotype was found in sika deer. Moreover, J, I, and BEB4 ITS genotypes of E. bieneusi were found in dairy calves, and six known genotypes (JLD-III, JLD-IX, JLD-VII, EbpC, BEB6, and I) and ten novel genotypes (namely LND-I and JLD-XV to JLD-XXIII) were found in sika deer in this study. Cryptosporidium parvum and E. bieneusi genotype J were identified as the predominant species/genotypes in dairy calves, whereas the predominance of Cryptosporidium spp. and E. bieneusi in sika deer was Cryptosporidium deer genotype and BEB6, respectively. The present study reported the prevalence and genotypes of Cryptosporidium and E. bieneusi in dairy calves and sika deer in four provinces in northern China. The present findings also suggest that investigated dairy calves and sika deer may play an important role in the transmission of E. bieneusi and Cryptosporidium to humans and other animals, and also in an effort to better understand the epidemiology of these enteric pathogens in China.
Collapse
|
18
|
Molecular screening approach to identify protozoan and trichostrongylid parasites infecting one-humped camels (Camelus dromedarius). Acta Trop 2019; 197:105060. [PMID: 31194962 DOI: 10.1016/j.actatropica.2019.105060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Little is known about the diversity of many parasites infecting camels, with most relying on morphological parameters. DNA extracted from different tissues (n = 90) and fecal samples (n = 101) from dromedary camels (Camelus dromedarius) in Egypt were screened for multiple parasites using different molecular markers. Screening of tissue samples (heart) for Toxoplasma gondii and Sarcocystis spp. was performed using B1 and 18S rRNA gene markers, respectively. T. gondii was further genotyped using multiplex multilocus nested PCR-RFLP (Mn-PCR-RFLP). Sarcocystis was analyzed using PCR-RFLP characterization (XbaI and MboI restriction enzymes). A taxonomically challenging but important group of nematodes (Trichostrongylidae family) were screened using the ITS-2 ribosomal DNA (rDNA) species-specific markers. Furthermore, nested PCR was used for the detection of Cryptosporidium spp. (SSU rRNA gene) and positive samples were genotyped after RFLP (SspI and VspI) and sequencing. Cryptosporidium parvum isolates were subtyped by sequence analysis of the 60-kDa glycoprotein gene. This study revealed that many parasites infect the investigated camels, including T. gondii (1.1%), Sarcocystis spp. (64.4%), Cryptosporidium spp. (5.9%) and Trichostrongylidae nematodes (22.7%). The species contribution for nematodes was as follows: Haemonchus spp. (95.6%), Trichostrongylus axei (26%), Trichostrongylus colubriformis (65.2%) and Cooperia oncophora (60.8%). Mn-PCR-RFLP typing for Toxoplasma was only successful for three markers: 5'-SAG2 (type II), 3'-SAG2 (type II) and alt. SAG2 (type II). PCR-RFLP using XbaI showed possible mixed Sarcocystis infection. Moreover, the Cryptosporidium genotypes detected were C. parvum (IIdA19G1 and IIaA15G1R1), Cryptosporidium rat genotype IV and a novel genotype (camel genotype). This approach revealed the unique Cryptosporidium genotypes infecting the investigated camels, and the high genetic diversity of the investigated parasites.
Collapse
|
19
|
Zhang Q, Zhang Z, Ai S, Wang X, Zhang R, Duan Z. Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis from animal sources in the Qinghai-Tibetan Plateau Area (QTPA) in China. Comp Immunol Microbiol Infect Dis 2019; 67:101346. [PMID: 31550674 DOI: 10.1016/j.cimid.2019.101346] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are globally ubiquitous infectious parasitoses in humans and animals. The purpose of the present study was to determine the distribution and genetic diversity of Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis from animal sources in different regions of QTPA in China. A total of 405 fresh fecal specimens from seven domestic animals were collected in Qinghai, Yunnan, and Tibet. The overall prevalence of Cryptosporidium spp., E. bieneusi and G. duodenalis was 3.0% (n = 12), 19.8% (n = 80) and 5.7% (n = 23), respectively. Four Cryptosporidium species (C. andersoni, C. xiaoi, C. bovis, and C. ryanae) were identified and C. bovis was firstly identified from camel. Ten genotypes of E. bieneusi were identified in the present study, including eight known genotype (BEB6, CAM2, CHG2, CAM1, COS I, J, CHS8, and CHG3), and two novel genotypes (YAK1 and PN). Genotype CAM2 was detected in horse, yak, and mongolian sheep for the first time and the novel genotype YAK1 was grouped into the human-pathogenic group 1. G. duodenalis assemblage E was common in all animal species, and the human-pathogenic assemblage A was only detected in yaks and camels. Our results elucidate the occurrence and genetic diversity of three zoonotic pathogens from different animals and regions in QTPA, which could act as potential zoonotic reservoirs. More areas and larger number of samples are required to assess the potential risk of cross-species transmission in this region.
Collapse
Affiliation(s)
- Qingxun Zhang
- Genetic Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Zhichao Zhang
- Genetic Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Sitong Ai
- Genetic Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xiaoqi Wang
- Genetic Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ruiying Zhang
- Genetic Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ziyuan Duan
- Genetic Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Li W, Feng Y, Santin M. Host Specificity of Enterocytozoon bieneusi and Public Health Implications. Trends Parasitol 2019; 35:436-451. [PMID: 31076351 DOI: 10.1016/j.pt.2019.04.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 10/26/2022]
Abstract
Enterocytozoon bieneusi is the most common cause of human microsporidiosis and it also infects a wide range of mammals and birds worldwide. The role of animals in the transmission of this parasite to humans and its public health importance remain poorly elucidated. This review summarizes all E. bieneusi genotypes identified thus far based on sequence analysis of the ribosomal internal transcribed spacer (ITS) from specimens obtained from humans, domestic and wild animals, and water sources; it examines genotypes, host and geographical distribution, analyzes inter- and intragenotype group host specificity, and interprets the public health significance of genotype groups and major zoonotic genotypes, with the goal of improving our understanding of host specificity in E. bieneusi and its implications for interspecies and zoonotic transmission.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, USA.
| |
Collapse
|
21
|
Baroudi D, Hakem A, Adamu H, Amer S, Khelef D, Adjou K, Dahmani H, Chen X, Roellig D, Feng Y, Xiao L. Zoonotic Cryptosporidium species and subtypes in lambs and goat kids in Algeria. Parasit Vectors 2018; 11:582. [PMID: 30400983 PMCID: PMC6219180 DOI: 10.1186/s13071-018-3172-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Little is known on the occurrence and identity of Cryptosporidium species in sheep and goats in Algeria. This study aimed at investigating the occurrence of Cryptosporidium species in lambs and goat kids younger than 4 weeks. METHODS A total of 154 fecal samples (62 from lambs and 92 from kid goats) were collected from 13 sheep flocks in Médea, Algeria and 18 goat flocks across Algiers and Boumerdes. They were screened for Cryptosporidium spp. by nested-PCR analysis of a fragment of the small subunit (SSU) rRNA gene, followed by restriction fragment length polymorphism and sequence analyses to determine the Cryptosporidium species present. Cryptosporidium parvum and C. ubiquitum were further subtyped by sequence analysis of the 60 kDa glycoprotein gene. RESULTS Cryptosporidium spp. were detected in 17 fecal samples (11.0%): 9 from lambs (14.5%) and 8 from goat kids (8.7%). The species identified included C. parvum in 3 lambs, C. xiaoi in 6 lambs and 6 goat kids, and C. ubiquitum in 2 goat kids. Cryptosporidium infections were detected mostly in animals during the first two weeks of life (7/8 for goat kids and 7/9 for lambs) and in association with diarrhea occurrence (7/17 or 41.2% goat kids and 7/10 or 70.0% lambs with diarrhea were positive for Cryptosporidium spp.). Subtyping of C. parvum and C. ubiquitum isolates identified the zoonotic IIaA13G2R1 and XIIa subtype families, respectively. Minor differences in the SSU rRNA gene sequences were observed between C. xiaoi from sheep and goats. CONCLUSIONS Results of this study indicate that three Cryptosporidium species occur in lambs and goat kids in Algeria, including zoonotic C. parvum and C. ubiquitum. They are associated with the occurrence of neonatal diarrhea.
Collapse
Affiliation(s)
- Djamel Baroudi
- École Nationale Supérieure Vétérinaire, Rue Issaad Abbes, El Alia, Alger, Algérie
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329 USA
| | - Ahcene Hakem
- Laboratoire exploration et valorisation des écosystèmes steppique, Université Ziane Achor, 17000 Djelfa, Algérie
| | - Haileeyesus Adamu
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Said Amer
- Department of Zoology, Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh, 33516 Egypt
| | - Djamel Khelef
- École Nationale Supérieure Vétérinaire, Rue Issaad Abbes, El Alia, Alger, Algérie
| | - Karim Adjou
- UMR-BIPAR, ANSES-Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, Paris, France
| | | | - Xiaohua Chen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Beijing, 100050 China
| | - Dawn Roellig
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329 USA
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
22
|
Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol 2018; 34:997-1011. [DOI: 10.1016/j.pt.2018.07.009] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
|