1
|
Rubio-Sánchez R, Lepe-Balsalobre E, Ubeda C, Lepe-Jiménez JA. Volatile biomarkers of Gram-positive bacteria of clinical relevance as a tool for infection diagnosis. Int Microbiol 2024; 27:1737-1745. [PMID: 38512524 PMCID: PMC11611999 DOI: 10.1007/s10123-024-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
AIM Volatile organic compounds (VOCs) are being studied as potential biomarkers in many infections. Therefore, this study aimed to analyze the volatile profile of three Gram-positive bacteria of clinical relevance to identify potential volatile biomarkers that allow their differentiation. METHODS AND RESULTS L. monocytogenes, S. aureus, and E. faecalis clinical isolates were inoculated in a thioglycollate medium until grown. Then, VOCs were extracted by solid-phase microextraction, and the data obtained were subjected to multivariate analysis. According to our results, there was a high production of aldehydes in E. faecalis. In the case of alcohols, they only increased in L. monocytogenes, while ketones were produced significantly in all three bacteria, mainly due to acetoin. Acids were produced significantly in E. faecalis and L. monocytogenes. CONCLUSIONS Potential biomarkers of L. monocytogenes could be 1-butanol and 2-methylbutanoic acid. In the case of E. faecalis, the VOC most related to its presence was nonanal. Lastly, potential biomarkers of S. aureus could be isoamyl butanoate and methionol, although some pyrazines have also been associated with this bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY The identification of potential biomarkers of these clinically relevant bacteria could open the way for the diagnosis of these infections through the analysis of volatile compounds.
Collapse
Affiliation(s)
- Ricardo Rubio-Sánchez
- Servicio de Análisis Clínicos, Hospital Universitario de Jerez de la Frontera, Cádiz, Spain
| | | | - Cristina Ubeda
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González, 2, 41012, Seville, Spain.
| | - José Antonio Lepe-Jiménez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Infectious Diseases Research Group, Institute of Biomedicine of Seville (IBIS), University of Seville/CSIC/University Hospital Virgen del Rocío, Seville, Spain
| |
Collapse
|
2
|
Cuervo L, Méndez C, Olano C, Malmierca MG. Volatilome: Smells like microbial spirit. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:1-43. [PMID: 38763526 DOI: 10.1016/bs.aambs.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain.
| |
Collapse
|
3
|
Disease Biomarkers of Giardiasis. J Parasitol Res 2022; 2022:1932518. [PMID: 36065350 PMCID: PMC9440637 DOI: 10.1155/2022/1932518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/12/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Giardiasis is a common, treatable intestinal disease that adversely affects underprivileged communities living in unsanitary conditions. Giardiasis causes a wide spectrum of gastrointestinal diseases in those infected, ranging from subclinical disease that can manifest as irritable bowel syndrome with persistent abdominal symptoms. Importantly, giardiasis has been identified as a predictor of malnutrition among young children in rural areas and as a cause of waterborne mass epidemics endangering not only humans but also animals in a broad clinical, social, and economic spectrum. While the diagnosis of giardiasis is heavily dependent on the presence of cysts and/or trophozoites detected using microscopy, the intermittent cyst excretion, low infection intensity, and low sensitivity method m4akes fecal examination unrewarding, thus urging the need for an improved diagnostic method for giardiasis. Proteins are key compounds in biosynthesis, cells, tissues, and organ signaling, carrying important information related to biological and pathogenic processes, as well as pharmacological responses to therapeutic intervention, and are therefore important indicators for determining disease onset, progression, and drug treatment effectiveness. In connection with this, proteins could serve as promising biomarkers for antigen-antibody detection, as well as vaccine candidates. This article is aimed at providing a comprehensive overview of proteins, serological, molecular, inflammatory, volatile, and hormonal biomarkers associated with giardiasis and their potential for diagnostics and therapeutics.
Collapse
|
4
|
Lepe-Balsalobre E, Rubio-Sánchez R, Ubeda C, Lepe JA. Volatile compounds from in vitro metabolism of seven Listeria monocytogenes isolates belonging to different clonal complexes. J Med Microbiol 2022; 71. [PMID: 35723974 DOI: 10.1099/jmm.0.001553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms produce a wide variety of volatile organic compounds (VOCs) as products of their metabolism and some of them can be specific VOCs linked to the microorganism's identity, which have proved to be helpful for the diagnosis of infection via odour fingerprinting. The aim of this study was to determine the VOCs produced and consumed to characterize the volatile metabolism of seven isolates of different clonal complexes (CCs) of Listeria monocytogenes. For this purpose, dichloromethane extracts from the thioglycolate broth medium were analysed by gas chromatography coupled to mass spectrometry (GC/MS). Also, multivariate analyses were applied to the data obtained. Results showed that all the isolates of L. monocytogenes produced de novo isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 3-(methylthio)-1-propanol, acetic acid, isobutyric acid, butanoic acid, and isovaleric acid. Significant differences were found among isolates for the production amount of these volatiles, which allowed their differentiation. Thus, CC4 (ST-219/CT-3650) and CC87 (ST-87/CT-4557) showed an active volatile compounds metabolism with high consumption nitrogen and sulphur compounds and production of alcohols and acids, and CC8 (ST-8/CT-8813) and CC3 (ST-3/CT-8722) presented a less active volatile metabolism. Moreover, within the VOCs determined, huge differences were found in the production of butanol among the seven isolates analysed, being probably a good biomarker to discriminate among isolates belonging to different CCs. Hence, the analysis of volatile profile generated by the growth of L. monocytogenes in vitro could be a useful tool to differentiate among CCs isolates.
Collapse
Affiliation(s)
| | | | - Cristina Ubeda
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - José Antonio Lepe
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Infectious Diseases. Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (IBIS), University of Seville/CSIC/University Hospital Virgen del Rocío, Seville, Spain
| |
Collapse
|
5
|
Identification of Specific Substances in the FAIMS Spectra of Complex Mixtures Using Deep Learning. SENSORS 2021; 21:s21186160. [PMID: 34577367 PMCID: PMC8472972 DOI: 10.3390/s21186160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
High-field asymmetric ion mobility spectrometry (FAIMS) spectra of single chemicals are easy to interpret but identifying specific chemicals within complex mixtures is difficult. This paper demonstrates that the FAIMS system can detect specific chemicals in complex mixtures. A homemade FAIMS system is used to analyze pure ethanol, ethyl acetate, acetone, 4-methyl-2-pentanone, butanone, and their mixtures in order to create datasets. An EfficientNetV2 discriminant model was constructed, and a blind test set was used to verify whether the deep-learning model is capable of the required task. The results show that the pre-trained EfficientNetV2 model completed convergence at a learning rate of 0.1 as well as 200 iterations. Specific substances in complex mixtures can be effectively identified using the trained model and the homemade FAIMS system. Accuracies of 100%, 96.7%, and 86.7% are obtained for ethanol, ethyl acetate, and acetone in the blind test set, which are much higher than conventional methods. The deep learning network provides higher accuracy than traditional FAIMS spectral analysis methods. This simplifies the FAIMS spectral analysis process and contributes to further development of FAIMS systems.
Collapse
|
6
|
|
7
|
Rodríguez-Hernández P, Rodríguez-Estévez V, Arce L, Gómez-Laguna J. Application of Volatilome Analysis to the Diagnosis of Mycobacteria Infection in Livestock. Front Vet Sci 2021; 8:635155. [PMID: 34109231 PMCID: PMC8180594 DOI: 10.3389/fvets.2021.635155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
Volatile organic compounds (VOCs) are small molecular mass metabolites which compose the volatilome, whose analysis has been widely employed in different areas. This innovative approach has emerged in research as a diagnostic alternative to different diseases in human and veterinary medicine, which still present constraints regarding analytical and diagnostic sensitivity. Such is the case of the infection by mycobacteria responsible for tuberculosis and paratuberculosis in livestock. Although eradication and control programs have been partly managed with success in many countries worldwide, the often low sensitivity of the current diagnostic techniques against Mycobacterium bovis (as well as other mycobacteria from Mycobacterium tuberculosis complex) and Mycobacterium avium subsp. paratuberculosis together with other hurdles such as low mycobacteria loads in samples, a tedious process of microbiological culture, inhibition by many variables, or intermittent shedding of the mycobacteria highlight the importance of evaluating new techniques that open different options and complement the diagnostic paradigm. In this sense, volatilome analysis stands as a potential option because it fulfills part of the mycobacterial diagnosis requirements. The aim of the present review is to compile the information related to the diagnosis of tuberculosis and paratuberculosis in livestock through the analysis of VOCs by using different biological matrices. The analytical techniques used for the evaluation of VOCs are discussed focusing on the advantages and drawbacks offered compared with the routine diagnostic tools. In addition, the differences described in the literature among in vivo and in vitro assays, natural and experimental infections, and the use of specific VOCs (targeted analysis) and complete VOC pattern (non-targeted analysis) are highlighted. This review emphasizes how this methodology could be useful in the problematic diagnosis of tuberculosis and paratuberculosis in livestock and poses challenges to be addressed in future research.
Collapse
Affiliation(s)
- Pablo Rodríguez-Hernández
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Inst Univ Invest Quim Fina and Nanoquim Inst Univ Invest Quim Fina and Nanoquim (IUNAN), International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| |
Collapse
|
8
|
Abstract
Volatolomics allows us to elucidate cell metabolic processes in real time. In particular, a volatile organic compound (VOC) excreted from our bodies may be specific for a certain disease, such that measuring this VOC may afford a simple, fast, accessible and safe diagnostic approach. Yet, finding the optimal endogenous volatile marker specific to a pathology is non-trivial because of interlaboratory disparities in sample preparation and analysis, as well as high interindividual variability. These limit the sensitivity and specificity of volatolomics and its applications in biological and clinical fields but have motivated the development of induced volatolomics. This approach aims to overcome issues by measuring VOCs that result not from an endogenous metabolite but, rather, from the pathogen-specific or metabolic-specific enzymatic metabolism of an exogenous biological or chemical probe. In this Review, we introduce volatile-compound-based probes and discuss how they can be exploited to detect and discriminate pathogenic infections, to assess organ function and to diagnose and monitor cancers in real time. We focus on cases in which labelled probes have informed us about metabolic processes and consider the potential and drawbacks of the probes for clinical trials. Beyond diagnostics, VOC-based probes may also be effective tools to explore biological processes more generally.
Collapse
|
9
|
Rodríguez-Hernández P, Cardador MJ, Arce L, Rodríguez-Estévez V. Analytical Tools for Disease Diagnosis in Animals via Fecal Volatilome. Crit Rev Anal Chem 2020; 52:917-932. [PMID: 33180561 DOI: 10.1080/10408347.2020.1843130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Volatilome analysis is growing in attention for the diagnosis of diseases in animals and humans. In particular, volatilome analysis in fecal samples is starting to be proposed as a fast, easy and noninvasive method for disease diagnosis. Volatilome comprises volatile organic compounds (VOCs), which are produced during both physiological and patho-physiological processes. Thus, VOCs from a pathological condition often differ from those of a healthy state and therefore the VOCs profile can be used in the detection of some diseases. Due to their strengths and advantages, feces are currently being used to obtain information related to health status in animals. However, they are complex samples, that can present problems for some analytical techniques and require special consideration in their use and preparation before analysis. This situation demands an effort to clarify which analytic options are currently being used in the research context to analyze the possibilities these offer, with the final objectives of contributing to develop a standardized methodology and to exploit feces potential as a diagnostic matrix. The current work reviews the studies focused on the diagnosis of animal diseases through fecal volatilome in order to evaluate the analytical methods used and their advantages and limitations. The alternatives found in the literature for sampling, storage, sample pretreatment, measurement and data treatment have been summarized, considering all the steps involved in the analytical process.
Collapse
Affiliation(s)
| | - M J Cardador
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | - L Arce
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|