1
|
Fang S, Meng L, Shi Y, Hao C, Gu X, Du F, Cui P, Tang X. Comparative Analysis of Cross-Protective Immunity Among Three Geographically Distinct Isolates of Eimeria kongi. Animals (Basel) 2024; 14:3524. [PMID: 39682489 DOI: 10.3390/ani14233524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidiosis is one of the most significant diseases affecting the rabbit industry and is caused by Eimeria. In a previous study, we identified a new species of Eimeria kongi (E. kongi-ZJK) from the northern region of China (Zhangjiakou, Hebei Province) and studied its pathogenicity and immunogenicity. The aim of this study was to evaluate the pathogenicity, immunogenicity, and cross-immunogenicity from different geographical isolates of E. kongi for vaccine development. Two geographical isolates of E. kongi-QD from Qingdao, Shandong Province (eastern China), and E. kongi-CD from Chengdu, Sichuan Province (southwestern China), were isolated and identified. The pathogenicity, immunogenicity, and cross-immunogenicity among the three geographical isolates were evaluated. The pathogenicity results showed that after infecting rabbits with doses of 1 × 103 or fewer sporulated oocysts of E. kongi-QD and E. kongi-CD, the rabbits exhibited clinical symptoms but recovered quickly, indicating lower pathogenicity. Immunogenicity studies revealed that after immunizing rabbits with 1 × 103 sporulated oocysts of E. kongi-QD and E. kongi-CD for 14 days, followed by challenge with 1 × 104 homologous sporulated oocysts, the oocyst reduction rates in the immunized groups were 99.39% and 99.12%, respectively, compared with the non-immunized groups, demonstrating good immunogenicity. In cross-immunogenicity studies, rabbits were immunized with 1 × 103 sporulated oocysts of E. kongi-ZJK, E. kongi-QD, or E. kongi-CD and then challenged with 1 × 104 sporulated oocysts of heterologous isolate. The immunized groups showed no significant clinical symptoms, and the oocyst reduction rates ranged from 55.9% to 98.4%. E. kongi-CD exhibited cross-protection against E. kongi-ZJK and E. kongi-QD, making it an ideal candidate formulation for vaccine development.
Collapse
Affiliation(s)
- Sufang Fang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Linghai Meng
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Yubo Shi
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengyu Hao
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Xiaolong Gu
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Fangchen Du
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Ping Cui
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Abdel-Gaber R, Alamari G, Dkhil MA, Meryk A, Al-Shaebi EM, Al-Quraishy S. Krameria lappacea root extract's anticoccidial properties and coordinated control of CD4 T cells for IL-10 production and antioxidant monitoring. Front Immunol 2024; 15:1404297. [PMID: 38751432 PMCID: PMC11094240 DOI: 10.3389/fimmu.2024.1404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Recently, the use of botanicals as an alternative to coccidiostats has been an appealing approach for controlling coccidiosis. Therefore, this study was conducted to evaluate the potential role of aqueous methanolic extract (200 mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by Eimeria papillata. Methods A total of 25 male C57BL/6 mice were divided into five groups (I, II, III, IV, and V). On 1st day of the experiment, all groups except groups I (control) and II (non-infected-treated group with KLRE), were inoculated orally with 103 sporulated E. papillata oocysts. On the day of infection, group IV was treated with KLRE. Group V served as an infected-treated group and was treated with amprolium (coccidiostat). Results Treatment with extract and coccidiostat was continued for five consecutive days. While not reaching the efficacy level of the reference drug (amprolium), KLRE exhibited notable anticoccidial activity as assessed by key criteria, including oocyst suppression rate, total parasitic stages, and maintenance of nutrient homeostasis. The presence of phenolic and flavonoid compounds in KLRE is thought to be responsible for its positive effects. The Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment significantly increased the activity of catalase and superoxide dismutase. On the contrary, KLRE decreased the level of malondialdehyde and nitric oxide. Moreover, KLRE treatment decreased macrophage infiltration in the mice jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused a state of systemic inflammatory response as revealed by the upregulation of inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to downregulate the expression of pro-inflammatory cytokines interferon-γ, nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold, respectively. Moreover, KLRE showed a significant reduction in the expression of IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml. Conclusion Collectively, K. lappacea is a promising herbal medicine that could ameliorate the oxidative stress and inflammation of jejunum, induced by E. papillata infection in mice.
Collapse
Affiliation(s)
- Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghada Alamari
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Hao G, Xiong C, Xiao J, He W, Zhu Y, Xu L, Jiang Q, Yang G. Evaluation of the immunoprotective effect of the recombinant Eimeria intestinalis rhoptry protein 25 and rhoptry protein 30 on New Zealand rabbits. Exp Parasitol 2024; 259:108719. [PMID: 38364954 DOI: 10.1016/j.exppara.2024.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Rabbit coccidiosis is a parasitism caused by either one or multiple co-infections of Eimeria species. Among them, Eimeria intestinalis is the primary pathogen responsible for diarrhea, growth retardation, and potential mortality in rabbits. Concerns regarding drug resistance and drug residues have led to the development of recombinant subunit vaccines targeting Eimeria species as a promising preventive measure. The aim of this study was to assess the immunoprotective efficacy of recombinant subunit vaccines comprising EiROP25 and EiROP30 (rhoptry proteins (ROPs)) against E. intestinalis infection in rabbits. METHODS Cloning, prokaryotic expression, and protein purification were performed to obtain EiROP25 and EiROP30. Five groups of fifty 35-day-old Eimeria-free rabbits were created (unchallenged control group, challenged control group, vector protein control group, rEiROP25 group, and rEiROP30 group), with 10 rabbits in each group. Rabbits in the rEiROP25 and rEiROP30 groups were immunized with the recombinant proteins (100 μg per rabbit) for primary and booster immunization (100 μg per rabbit) at a two-week intervals, and challenged with 7 × 104 oocysts per rabbit after an additional two-week interval. Two weeks after the challenge, the rabbits were euthanized for analysis. Weekly collections of rabbit sera were made to measure changes in specific IgG and cytokine level. Clinical symptoms and pathological changes after challenge were observed and recorded. At the conclusion of the animal experiment, lesion scores, the relative weight increase ratio, the oocyst reduction rate, and the anticoccidial index were computed. RESULTS Rabbits immunized with rEiROP25 and rEiROP30 exhibited relative weight gain ratios of 56.57% and 72.36%, respectively. Oocysts decreased by 78.14% and 84.06% for the rEiROP25 and rEiROP30 groups, respectively. The anticoccidial indexes were 140 and 155. Furthermore, there was a noticeable drop in intestinal lesions. After the primary immunization with rEiROP25 and rEiROP30, a week later, there was a notable rise in specific IgG levels, which remained elevated for two weeks following challenge (P < 0.05). Interleukin (IL)-2 levels increased markedly in the rEiROP25 group, whereas IL-2, interferon gamma (IFN-γ), and IL-4 levels increased substantially in the rEiROP30 group (P < 0.05). CONCLUSION Immunization of rabbits indicated that both rEiROP25 and rEiROP30 are capable of inducing an increase in specific antibody levels. rEiROP25 triggered a Th1-type immune protection response, while rEiROP30 elicited a Th1/Th2 mixed response. EiROP25 and EiROP30 can generate a moderate level of immune protection, with better efficacy observed for EiROP30. This study provides valuable insights for the promotion of recombinant subunit vaccines targeting rabbit E. intestinalis infection.
Collapse
Affiliation(s)
- Ge Hao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Changming Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Wei He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yuhua Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Liwen Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Qing Jiang
- Ya'an Polytechnic College, Yaan, 625014, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
4
|
He W, Hao G, Xiong C, Xiao J, Pu J, Chen H, Xu L, Zhu Y, Yang G. Protection against Eimeria intestinalis infection in rabbits immunized with the recombinant elongation factors EF1α and EFG. Infect Immun 2023; 91:e0020823. [PMID: 37823630 PMCID: PMC10652966 DOI: 10.1128/iai.00208-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
Eimeria intestinalis is the most pathogenic species of rabbit coccidiosis, causing weight loss, diarrhea, and even acute death. The currently used anticoccidial drugs against E. intestinalis in rabbits are associated with drug resistance and residues. Immunological control might be a potential alternative. We cloned and expressed the E. intestinalis recombinant EF1α and EFG (rEi-EF1α and rEi-EFG, respectively). Rabbits were immunized subcutaneously every 14 days with 100 µg of rEi-EF1α and rEi-EFG and followed by 5 × 104 E. intestinalis sporulated oocysts orally challenge. Serum samples were collected every 7 days to measure the levels of specific antibodies and cytokines. On post-challenge day 14, rabbits were sacrificed and the anticoccidial index was evaluated. The rabbits of PBS challenged groups exhibited anorexia, diarrhea, marked intestinal wall thickening, and white nodules that formed patches, while rabbits from the rEi-EF1α or rEi-EFG challenged group exhibited milder symptoms. The rEi-EF1α group showed a 75.18% oocyst reduction and 89.01%wt gain; the rEi-EFG group had a 60.58% oocyst reduction and 56.04%wt gain. After vaccination, specific IgG levels increased and stayed high (P < 0.05). The IL-4 and IL-2 levels of rEi-EF1α immunized groups showed a significant increase after immunization (P < 0.05). Both rEi-EF1α and rEi-EFG could induce humoral and cellular immune responses. In contrast, rabbits immunized with rEi-EF1α were better protected from challenge by E. intestinalis than rEi-EFG.
Collapse
Affiliation(s)
- Wei He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Ge Hao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Changming Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Liwen Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yuhua Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| |
Collapse
|
5
|
Xiong C, He W, Xiao J, Hao G, Pu J, Chen H, Xu L, Zhu Y, Yang G. Assessment of the Immunoprotective Efficacy of Recombinant 14-3-3 Protein and Dense Granule Protein 10 (GRA10) as Candidate Antigens for Rabbit Vaccines against Eimeria intestinalis. Int J Mol Sci 2023; 24:14418. [PMID: 37833865 PMCID: PMC10572514 DOI: 10.3390/ijms241914418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Eimeria intestinalis infects rabbits, causing severe intestinal coccidiosis. Prolonged anticoccidial drug use might lead to coccidia resistance and drug residues in food. Thus, vaccines are required to control rabbit coccidiosis. In this study, recombinant E. intestinalis 14-3-3 and GRA10 proteins (rEi-14-3-3 and rEi-GRA10) were obtained via prokaryotic expression and used as recombinant subunit vaccines. Fifty 30-day-old rabbits were randomly grouped as follows: PBS-uninfected group, PBS-infected group, Trx-His-S control group, and rEi-14-3-3 and rEi-GRA10 immunized groups. The rabbits were subcutaneously immunized twice at 2-week intervals, challenged with 7 × 104 sporulated oocysts, and sacrificed 14 days later. The protective effects were assessed via clinical signs, relative weight gain, oocyst reduction, mean intestinal lesion score, ACI (anticoccidial index), cytokine, and specific antibody levels in sera. The rEi-14-3-3 and rEi-GRA10 groups had higher relative weight gain rates of 81.94% and 73.61% (p < 0.05), and higher oocyst reduction rates of 86.13% and 84.87% (p < 0.05), respectively. The two immunized groups had fewer intestinal lesions (p < 0.05) and higher IgG levels (p < 0.05). Higher levels of IL-2, IL-4, and IFN-γ cytokines in the rEi-14-3-3 group (p < 0.05) and a higher level of IFN-γ in the rEi-GRA10 group (p < 0.05) were observed. The ACI values of the rEi-14-3-3 and rEi-GRA10 groups were 168.24 and 159.91, with good and moderate protective effects, respectively. Both rEi-14-3-3 and rEi-GRA10 induced humoral immunity in the rabbits. In addition, rEi-14-3-3 induced Th1- and Th2-type immune responses. Both recombinant proteins were protective against E. intestinalis infection in rabbits, with rEi-14-3-3 showing a better protective effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangyou Yang
- Department of Parasitology, College of Veterinary, Sichuan Agricultural University, Chengdu 611130, China; (C.X.); (W.H.); (J.X.); (G.H.); (J.P.); (H.C.); (L.X.); (Y.Z.)
| |
Collapse
|