1
|
Sang L, Xu E, Liu Y, Hu T, Yang M, Niu J, Lu C, Zhou Y, Sun Y, Zhai Z, Abdulmajid D, Zhang P, Wang Q, La H, Zou Y. Transcriptomic analysis offers deep insights into the Increased Grain Length 1 (IGL1) regulation of grain length. BMC PLANT BIOLOGY 2025; 25:264. [PMID: 40011803 PMCID: PMC11866874 DOI: 10.1186/s12870-025-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Although great progress has been made in recent years in identifying novel genes or natural alleles for rice yield improvement, the molecular mechanisms of how these genes/natural alleles regulate yield-associated traits, such as grain length and 1000-grain weight, remain largely unclear. An in-depth understanding of the roles of these genes/natural alleles in controlling yield traits become a necessity to ultimately increase rice yield via novel molecular techniques, such as gene editing. RESULTS In this study, the roles of IGL1, which was previously identified through a map-based cloning approach, in the regulation of grain length were investigated by overexpressing and knocking out it in the Nipponbare genetic background. Overexpression and knockout of IGL1 (the resulting transgenic lines were hereafter designated IGL1-OE and IGL1-CR lines, respectively) led to elongation and shortening of grains, respectively. To further elucidate the molecular mechanisms behind the IGL1 action, young panicles from IGL1-OE and IGL1-CR lines were subjected to mRNA sequencing. The results showed that both overexpression and knockout of IGL1 all resulted in a large number of upregulated and downregulated differentially expression genes (DEGs) relative to wild-type NPB control lines. A total of 984 DEGs overlapped between upregulated DEGs from IGL1-OE and downregulated DEGs from IGL1-CR; 1146 DEGs were common to downregulated DEGs from IGL1-OE and upregulated DEGs from IGL1-CR. GO term and KEGG pathway analysis revealed that IGL1-upregulated DEGs were associated with extracellular region, protein ubiquitination, cell-wall modification, BR signaling, cell cycle, etc.; by comparison, the IGL1-downregulated DEGs were connected with extracellular region, response to wounding, flavonoid biosynthesis, jasmonic-acid signaling, glucose/sucrose metabolism, etc. Some phytohormone-associated genes (like OsYUCCA4, OsPIN10b, OsBAK1, and OsDLT), TF genes (like OsMADS1 and OsGASR9), grain length-regulating genes (like An-1, GS9, OsIQD14, and TGW2) showed significant upregulation or downregulation in IGL1-OE or IGL1-CR. CONCLUSION Our result clearly demonstrated that IGL1 is an important regulator of grain length, and has profound impacts on genome-wide gene expression, suggesting that it may work together with certain TFs. Overexpression or knockout of IGL1 appears to cause complex expression changes of genes associated with phytohormones, TFs, grain length-regulating factors, which ultimately brings about the grain elongation.
Collapse
Affiliation(s)
- Liran Sang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Ending Xu
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Yan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Tiange Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Mengqi Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Jiayu Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Chong Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Yi Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Yifei Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Zhaoyu Zhai
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dina Abdulmajid
- Rice Research and Training Centre, Field Crops Research Institute, A.R.C, Sakha, Kafrelsheikh, 33717, Egypt
| | - Peijiang Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China.
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, 266000, China.
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China.
| | - Yu Zou
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China.
| |
Collapse
|
2
|
Li YS, Liao PC, Chang CT, Hwang SY. The Contribution of Epigenetics to Evolutionary Adaptation in Zingiber kawagoii Hayata (Zingiberaceae) Endemic to Taiwan. PLANTS (BASEL, SWITZERLAND) 2023; 12:1558. [PMID: 37050184 PMCID: PMC10096833 DOI: 10.3390/plants12071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
We epigenotyped 211 individuals from 17 Zingiber kawagoii populations using methylation-sensitive amplification polymorphism (MSAP) and investigated the associations of methylated (mMSAP) and unmethylated (uMSAP) loci with 16 environmental variables. Data regarding genetic variation based on amplified fragment length polymorphism (AFLP) were obtained from an earlier study. We found a significant positive correlation between genetic and epigenetic variation. Significantly higher mean mMSAP and uMSAP uHE (unbiased expected heterozygosity: 0.223 and 0.131, respectively, p < 0.001) per locus than that estimated based on AFLP (uHE = 0.104) were found. Genome scans detected 10 mMSAP and 9 uMSAP FST outliers associated with various environmental variables. A significant linear fit for 11 and 12 environmental variables with outlier mMSAP and uMSAP ordination, respectively, generated using full model redundancy analysis (RDA) was found. When conditioned on geography, partial RDA revealed that five and six environmental variables, respectively, were the most important variables influencing outlier mMSAP and uMSAP variation. We found higher genetic (average FST = 0.298) than epigenetic (mMSAP and uMSAP average FST = 0.044 and 0.106, respectively) differentiation and higher genetic isolation-by-distance (IBD) than epigenetic IBD. Strong epigenetic isolation-by-environment (IBE) was found, particularly based on the outlier data, controlling either for geography (mMSAP and uMSAP βE = 0.128 and 0.132, respectively, p = 0.001) or for genetic structure (mMSAP and uMSAP βE = 0.105 and 0.136, respectively, p = 0.001). Our results suggest that epigenetic variants can be substrates for natural selection linked to environmental variables and complement genetic changes in the adaptive evolution of Z. kawagoii populations.
Collapse
Affiliation(s)
- Yi-Shao Li
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, 1727 Taiwan Boulevard, Section 4, Taichung 40704, Taiwan;
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| |
Collapse
|
3
|
Jopčík M, Libantová J, Lancíková V. Effect of chronic radiation on the flax (Linum usitatissimum L.) genome grown for six consecutive generations in the radioactive Chernobyl area. PHYSIOLOGIA PLANTARUM 2022; 174:e13745. [PMID: 35780328 DOI: 10.1111/ppl.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The growth of plants under chronic radiation stress in the Chernobyl area may cause changes in the genome of plants. To assess the extent of genetic and epigenetic changes in nuclear DNA, seeds of the annual crop flax (Linum usitatissimum L.) of the Kyivskyi variety, sown 21 years after the accident and grown for six generations in radioactive (RAD) and remediated (REM) fields were analysed. Flaxseed used for sowing first generation, which served as a reference (REF), was also analysed. The AFLP (Amplified Fragment Length Polymorphism) revealed a higher number of specific EcoRI-MseI loci (3.4-fold) in pooled flaxseed samples harvested from the RAD field compared with the REM field, indicating a link between the mutation process in the flax genome and the ongoing adaptation process. MSAP (Methylation-Sensitive Amplified Polymorphism) detecting EcoRI-MspI and EcoRI-HpaII loci in flax nuclear DNA genome showed no significant differences in methylation level, reaching about 33% in each of the groups studied. On the other hand, significant changes in the DNA methylation pattern of flaxseed samples harvested from the RAD field compared with controls were detected. Pairwise FST comparison revealed within both, EcoRI-MspI and transformed methylation-Sensitive data sets more than a 3-fold increase of genetic divergence in the RAD field compared with both controls. These results indicate that the nuclear genome of flax exposed to chronic radiation for six generations has more mutations and uses DNA methylation as one of the adaptation mechanisms for sustainability under adverse conditions.
Collapse
Affiliation(s)
- Martin Jopčík
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Libantová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Veronika Lancíková
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
4
|
Hüther P, Hagmann J, Nunn A, Kakoulidou I, Pisupati R, Langenberger D, Weigel D, Johannes F, Schultheiss SJ, Becker C. MethylScore, a pipeline for accurate and context-aware identification of differentially methylated regions from population-scale plant whole-genome bisulfite sequencing data. QUANTITATIVE PLANT BIOLOGY 2022; 3:e19. [PMID: 37077980 PMCID: PMC10095865 DOI: 10.1017/qpb.2022.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/03/2023]
Abstract
Whole-genome bisulfite sequencing (WGBS) is the standard method for profiling DNA methylation at single-nucleotide resolution. Different tools have been developed to extract differentially methylated regions (DMRs), often built upon assumptions from mammalian data. Here, we present MethylScore, a pipeline to analyse WGBS data and to account for the substantially more complex and variable nature of plant DNA methylation. MethylScore uses an unsupervised machine learning approach to segment the genome by classification into states of high and low methylation. It processes data from genomic alignments to DMR output and is designed to be usable by novice and expert users alike. We show how MethylScore can identify DMRs from hundreds of samples and how its data-driven approach can stratify associated samples without prior information. We identify DMRs in the A. thaliana 1,001 Genomes dataset to unveil known and unknown genotype-epigenotype associations .
Collapse
Affiliation(s)
- Patrick Hüther
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | | | - Adam Nunn
- ecSeq Bioinformatics GmbH, 04103 Leipzig, Germany
- Department of Computer Science, Leipzig University, 04107 Leipzig, Germany
| | - Ioanna Kakoulidou
- Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rahul Pisupati
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | | | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | | | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| |
Collapse
|
5
|
Ajaykumar H, Ramesh S, Sunitha NC, Anilkumar C. Assessment of natural DNA methylation variation and its association with economically important traits in dolichos bean (Lablab purpureus L. Var. Lignosus) using AMP-PCR assay. J Appl Genet 2021; 62:571-583. [PMID: 34247322 DOI: 10.1007/s13353-021-00648-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022]
Abstract
As a prelude to exploit DNA methylation-induced variation, we hypothesized the existence of substantial natural DNA methylation variation and its association with economically important traits in dolichos bean, and tested it using amplified methylation polymorphism-polymerase chain reaction (AMP-PCR) assay. DNA methylation patterns such as internal, external, full and non-methylation were amplified in a set of 64 genotypes using 26 customized randomly amplified polymorphic DNA (RAPD) primers containing 5'CCGG3' sequence. The 64 genotypes included 60 germplasm accessions (GA), two advanced breeding lines (ABLs) and two released varieties. The ABLs and released varieties are referred to as improved germplasm accessions (IGA) in this study. The association of DNA methylation patterns with economically important traits such as days to 50% flowering, raceme length, fresh pods plant-1, fresh pod yield plant-1 and 100-fresh seed weight was explored. At least 50 genotypes were polymorphic for DNA methylation patterns at 10 loci generated by seven of the 26 RAPD primers. The GA and IGA differed significantly for total, full and external methylation and the frequency of methylation was higher in GA compared to that in IGA. The genotypes with external methylation produced longer racemes than those with full, internal and non-methylation in that order at polymorphic RAPD-11-242 locus. High pod yielding genotypes had significantly lower frequency of full methylation than low yielding ones. On the contrary, the genotypes that produced heavier fresh seeds harboured higher frequencies of total and externally methylated loci than those that produced lighter fresh seeds.
Collapse
Affiliation(s)
- H Ajaykumar
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - S Ramesh
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India.
| | - N C Sunitha
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - C Anilkumar
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India.,ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
6
|
Yang J, Gu D, Wu S, Zhou X, Chen J, Liao Y, Zeng L, Yang Z. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). HORTICULTURE RESEARCH 2021; 8:253. [PMID: 34848699 PMCID: PMC8632975 DOI: 10.1038/s41438-021-00679-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 05/26/2023]
Abstract
Tea plants are subjected to multiple stresses during growth, development, and postharvest processing, which affects levels of secondary metabolites in leaves and influences tea functional properties and quality. Most studies on secondary metabolism in tea have focused on gene, protein, and metabolite levels, whereas upstream regulatory mechanisms remain unclear. In this review, we exemplify DNA methylation and histone acetylation, summarize the important regulatory effects that epigenetic modifications have on plant secondary metabolism, and discuss feasible research strategies to elucidate the underlying specific epigenetic mechanisms of secondary metabolism regulation in tea. This information will help researchers investigate the epigenetic regulation of secondary metabolism in tea, providing key epigenetic data that can be used for future tea genetic breeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Shuhua Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiaming Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
| |
Collapse
|
7
|
Halabian R, Valizadeh Arshad, Ahmadi A, Saeedi P, Azimzadeh Jamalkandi S, Alivand MR. Laboratory methods to decipher epigenetic signatures: a comparative review. Cell Mol Biol Lett 2021; 26:46. [PMID: 34763654 PMCID: PMC8582164 DOI: 10.1186/s11658-021-00290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics refers to nucleotide sequence-independent events, and heritable changes, including DNA methylation and histone modification (as the two main processes), contributing to the phenotypic features of the cell. Both genetics and epigenetics contribute to determining the outcome of regulatory gene expression systems. Indeed, the flexibility of epigenetic effects and stability of genetic coding lead to gene regulation complexity in response signals. Since some epigenetic changes are significant in abnormalities such as cancers and neurodegenerative diseases, the initial changes, dynamic and reversible properties, and diagnostic potential of epigenomic phenomena are subject to epigenome-wide association studies (EWAS) for therapeutic aims. Based on recent studies, methodological developments are necessary to improve epigenetic research. As a result, several methods have been developed to explore epigenetic alterations at low, medium, and high scales, focusing on DNA methylation and histone modification detection. In this research field, bisulfite-, enzyme sensitivity- and antibody specificity-based techniques are used for DNA methylation, whereas histone modifications are gained based on antibody recognition. This review provides a mechanism-based understanding and comparative overview of the most common techniques for detecting the status of epigenetic effects, including DNA methylation and histone modifications, for applicable approaches from low- to high-throughput scales.
Collapse
Affiliation(s)
- Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Valizadeh Arshad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute For Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Mollasadra Ave., 14359-16471, Tehran, Iran.
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Kordyum E, Dubyna D. The role of epigenetic regulation in adaptive phenotypic plasticity of plants. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.05.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent decades, knowledge about the role of epigenetic regulation of gene expression in plant responses to external stimuli and in adaptation of plants to adverse environmental fluctuations have extended significantly. DNA methylation is considered as the main molecular mechanism that provides genomic information and contributes to the understanding of the molecular basis of phenotypic variations based on epigenetic modifications. Unfortunately, the vast majority of research in this area has been performed on the model species Arabidopsis thaliana. The development of the methylation-sensitive amplified polymorphism (MSAP) method has made it possible to implement the large-scale detection of DNA methylation alterations in wild non-model and agricultural plants with large and highly repetitive genomes in natural and manipulated habitats. The article presents current information on DNA methylation in species of natural communities and crops and its importance in plant development and adaptive phenotypic plasticity, along with brief reviews of current ideas about adaptive phenotypic plasticity and epigenetic regulation of gene expression. The great potential of further studies of the epigenetic role in phenotypic plasticity of a wide range of non-model species in natural populations and agrocenoses for understanding the molecular mechanisms of plant existence in the changing environment in onto- and phylogeny, directly related to the key tasks of forecasting the effects of global warming and crop selection, is emphasized. Specific taxa of the Ukrainian flora, which, in authors’ opinion, are promising and interesting for this type of research, are recommended.
Collapse
|
9
|
García-García I, Méndez-Cea B, Martín-Gálvez D, Seco JI, Gallego FJ, Linares JC. Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline. FRONTIERS IN PLANT SCIENCE 2021; 12:797958. [PMID: 35058957 PMCID: PMC8764141 DOI: 10.3389/fpls.2021.797958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 05/14/2023]
Abstract
Forest tree species are highly vulnerable to the effects of climate change. As sessile organisms with long generation times, their adaptation to a local changing environment may rely on epigenetic modifications when allele frequencies are not able to shift fast enough. However, the current lack of knowledge on this field is remarkable, due to many challenges that researchers face when studying this issue. Huge genome sizes, absence of reference genomes and annotation, and having to analyze huge amounts of data are among these difficulties, which limit the current ability to understand how climate change drives tree species epigenetic modifications. In spite of this challenging framework, some insights on the relationships among climate change-induced stress and epigenomics are coming. Advances in DNA sequencing technologies and an increasing number of studies dealing with this topic must boost our knowledge on tree adaptive capacity to changing environmental conditions. Here, we discuss challenges and perspectives in the epigenetics of climate change-induced forests decline, aiming to provide a general overview of the state of the art.
Collapse
Affiliation(s)
- Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel García-García,
| | - Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Belén Méndez-Cea,
| | - David Martín-Gálvez
- Departamento de Biodiversidad, Ecología y Evolución, UD Zoología, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José Ignacio Seco
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
10
|
Lievers R, Kuperus P, Groot AT. DNA methylation patterns in the tobacco budworm, Chloridea virescens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103370. [PMID: 32251721 DOI: 10.1016/j.ibmb.2020.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is an important epigenetic modification that is prone to stochastic variation and is responsive to environmental factors. Yet changes in DNA methylation could persist across generations and thus play an important role in evolution. In this study, we used methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) to evaluate whether DNA methylation could contribute to the evolution of the sexual communication signal in the noctuid moth Chloridea virescens. We found that most DNA methylation was consistent across tissues, although some methylation sites were specifically found in pheromone glands. We also found significant DNA methylation differences among families and two pheromone phenotype selection lines, and these differences correlated with genetic variation. Most DNA methylation patterns were inherited, although some sites were subject to spontaneous de novo DNA methylation across generations. Thus, DNA methylation likely plays a role in a wide range of processes in moths. Together, our results present an important initial step towards understanding the potential role of DNA methylation in the evolution of sexual communication signals in moths.
Collapse
Affiliation(s)
- Rik Lievers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands.
| | - Peter Kuperus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, the Netherlands; Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell strasse 8, 07745, Jena, Germany
| |
Collapse
|
11
|
Li S, Liu X, Liu H, Zhang X, Ye Q, Zhang H. Induction, identification and genetics analysis of tetraploid Actinidia chinensis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191052. [PMID: 31827844 PMCID: PMC6894549 DOI: 10.1098/rsos.191052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/16/2019] [Indexed: 05/30/2023]
Abstract
Actinidia chinensis is a commercially important fruit, and tetraploid breeding of A. chinensis is of great significance for economic benefit. In order to obtain elite tetraploid cultivars, tetraploid plants were induced by colchicine treatment with leaves of diploid A. chinensis 'SWFU03'. The results showed that the best treatment was dipping leaves 30 h in 60 mg l-1 colchicine solutions, with induction rate reaching 26%. Four methods, including external morphology comparison, stomatal guard cell observation, chromosome number observation and flow cytometry analysis were used to identify the tetraploid of A. chinensis. Using the induction system and flow cytometry analysis methods, 187 tetraploid plants were identified. Three randomly selected tetraploid plants and their starting diploid plants were further subjected to transcriptome analysis, real-time quantitative polymerase chain reaction (RT-qPCR) and methylation-sensitive amplification polymorphism (MSAP) analysis. The transcriptome analysis results showed that there were a total of 2230 differentially expressed genes (DEG) between the diploid and tetraploid plants, of which 660 were downregulated and 1570 upregulated. The DEGs were mainly the genes involved in growth and development, stress resistance and antibacterial ability in plants. RT-qPCR results showed that the gene expression levels of the growth and stress resistance of tetraploid plants were higher than those of diploid ones at the transcriptome level. MSAP analysis of DNA methylation results showed that tetraploid plants had lower methylation ratio than diploid ones. The present results were valuable to further explore the epigenetics of diploid and tetraploid kiwifruit plants.
Collapse
Affiliation(s)
- Shengxing Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Huiming Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Xianang Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Qinxia Ye
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| |
Collapse
|
12
|
Ibáñez MA, Alvarez-Mari A, Rodríguez-Sanz H, Kremer C, González-Benito ME, Martín C. Genetic and epigenetic stability of recovered mint apices after several steps of a cryopreservation protocol by encapsulation-dehydration. A new approach for epigenetic analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:299-307. [PMID: 31539759 DOI: 10.1016/j.plaphy.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The genetic and epigenetic stability (analysis of DNA methylation using MSAP markers) of mint (Mentha x piperita L.) apices was studied after each step of a cryopreservation protocol, by encapsulation-dehydration. The effect of the addition of an antioxidant (ascorbic acid) during one of the protocol steps was also evaluated. Eight-week old in vitro recovered shoots from apices after each step of the protocol were genetically stable when compared to control in vitro shoots, using RAPD and AFLP markers. The addition of ascorbic acid in the medium with the highest sucrose concentration did not improve recovery and did not have any effect on stability. Apices sampled immediately after each step showed increased epigenetic differences as the protocol advanced, compared to in vitro control apices, in particular related to de novo methylation events. However, after one-day in vitro recovery, methylation status was similar to control apices. To improve the quality of methylation data interpretation, a simple and fast method for MSAP markers analysis, based on R programming, has been developed which allows the statistical comparison of treatments to control samples and its graphical representation.
Collapse
Affiliation(s)
- Miguel Angel Ibáñez
- Departamento de Economía Agraria, Estadística y Gestión de Empresas, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Ana Alvarez-Mari
- Departamento de Economía Agraria, Estadística y Gestión de Empresas, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Héctor Rodríguez-Sanz
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Carolina Kremer
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - María Elena González-Benito
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Carmen Martín
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Wang MZ, Li HL, Li JM, Yu FH. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity (Edinb) 2019; 124:146-155. [PMID: 31431739 DOI: 10.1038/s41437-019-0261-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/06/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Heritable epigenetic modifications may occur in response to environmental variation, further altering phenotypes through gene regulation, without genome sequence changes. However, epigenetic variation in wild plant populations and their correlations with genetic and phenotypic variation remain largely unknown, especially for clonal plants. We investigated genetic, epigenetic and phenotypic variation of ten populations of an introduced clonal herb Hydrocotyle vulgaris in China. Populations of H. vulgaris exhibited extremely low genetic diversity with one genotype exclusively dominant, but significantly higher epigenetic diversity. Both intra- and inter-population epigenetic variation were related to genetic variation. But there was no correlation between intra-/inter-population genetic variation and phenotypic variation. When genetic variation was controlled, intra-population epigenetic diversity was related to petiole length, specific leaf area, and leaf area variation, while inter-population epigenetic distance was correlated with leaf area differentiation. Our study provides empirical evidence that even though epigenetic variation is partly under genetic control, it could also independently play a role in shaping plant phenotypes, possibly serving as a pathway to accelerate evolution of clonal plant populations.
Collapse
Affiliation(s)
- Mo-Zhu Wang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, 318000, China.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.,School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Li Li
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jun-Min Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, 318000, China. .,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
14
|
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate University Okinawa Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Hidetoshi Saze
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate University Okinawa Japan
| |
Collapse
|
15
|
Yang SX, Guo C, Zhao XT, Sun JT, Hong XY. Divergent methylation pattern in adult stage between two forms of Tetranychus urticae (Acari: Tetranychidae). INSECT SCIENCE 2018; 25:667-678. [PMID: 28217963 DOI: 10.1111/1744-7917.12444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
The two-spotted spider mite, Tetranychus urticae Koch has two forms: green form and red form. Understanding the molecular basis of how these two forms established without divergent genetic background is an intriguing area. As a well-known epigenetic process, DNA methylation has particularly important roles in gene regulation and developmental variation across diverse organisms that do not alter genetic background. Here, to investigate whether DNA methylation could be associated with different phenotypic consequences in the two forms of T. urticae, we surveyed the genome-wide cytosine methylation status and expression level of DNA methyltransferase 3 (Tudnmt3) throughout their entire life cycle. Methylation-sensitive amplification polymorphism (MSAP) analyses of 585 loci revealed variable methylation patterns in the different developmental stages. In particular, principal coordinates analysis (PCoA) indicates a significant epigenetic differentiation between female adults of the two forms. The gene expression of Tudnmt3 was detected in all examined developmental stages, which was significantly different in the adult stage of the two forms. Together, our results reveal the epigenetic distance between the two forms of T. urticae, suggesting that DNA methylation might be implicated in different developmental demands, and contribute to different phenotypes in the adult stage of these two forms.
Collapse
Affiliation(s)
- Si-Xia Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Chao Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiu-Ting Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
16
|
Liu C, Wang M, Wang L, Guo Q, Liang G. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids. Genome 2018; 61:437-447. [PMID: 29687741 DOI: 10.1139/gen-2017-0232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.
Collapse
Affiliation(s)
- Chao Liu
- a Key Laboratory of Horticulture Science for Southern Mountainous Region, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Tiansheng Road 2, 400715, Chongqing, P.R. China
| | - Mingbo Wang
- b CSIRO Agriculture and Food, Clunies Ross Street, Canberra ACT 2061, Australia
| | - Lingli Wang
- c Technical Advice Station of Economic Crop, Yubei district, Chongqing, P.R. China
| | - Qigao Guo
- a Key Laboratory of Horticulture Science for Southern Mountainous Region, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Tiansheng Road 2, 400715, Chongqing, P.R. China
| | - Guolu Liang
- a Key Laboratory of Horticulture Science for Southern Mountainous Region, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Tiansheng Road 2, 400715, Chongqing, P.R. China
| |
Collapse
|
17
|
Analysis of sulphur and chlorine induced DNA cytosine methylation alterations in fresh corn (Zea mays L. saccharata and rugosa) leaf tissues by methylation sensitive amplification polymorphism (MSAP) approach. Genes Genomics 2018; 40:913-925. [PMID: 30155706 DOI: 10.1007/s13258-018-0685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 01/24/2023]
Abstract
DNA (cytosine) methylation mechanism is another way through which plants respond to various cues including soil fertility amendments and abiotic stresses, and the mechanism has been used to infer some physiological, biochemical or adaptation processes. Despite numerous studies on global DNA methylation profiling in various crop species, however, researches on fresh corn (Zea mays L. saccharata or rugosa) remain largely unreported. The study aimed at investigating sulphur and chlorine induced DNA methylation changes in the fresh corn leaves of field-grown plants at the milk stage. Methylation sensitive amplification polymorphism (MSAP) technique was used to profile sulphur (S) and chlorine (Cl) induced DNA methylation patterns, levels and polymorphism alterations at the CCGG sites in fresh corn leaves of TDN21, JKN2000 and JKN928 hybrid cultivars. Twelve primer pairs used effectively detected 325 MSAP bands, exhibiting differentially methylated sites in the genomic DNA of all the three cultivars, with control showing higher (48.9-56.3%) type I bands as compared to sulphur (34.8-44.9%) and chlorine (40.9-47.4%) treatment samples. Consequently, total methylation levels were greater in S and Cl treatment samples than control; accounting for 43.7-59.7, 51.1-65.2 and 46.8-55.1% of total sites in TDN21, JKN2000 and JKN928, respectively. Full methylation of the internal cytosine was greater than hemi-methylation. Further, demethylation polymorphic loci significantly exceeded methylation polymorphic loci, being greater in S than Cl and control samples in all cultivars. Sulphur and chlorine have a profound influence on DNA methylation patterns and levels at the milk stage, principally by increasing the demethylation loci in the internal cytosine of the fresh corn genome. We speculate that these methylation alterations play an integral role in photosynthates assimilation and physiochemical pathways regulating quality parameters in kernels, as well as abiotic stress responses in fresh corn.
Collapse
|
18
|
The vesicle trafficking regulator PN_SCD1 is demethylated and overexpressed in florets of apomictic Paspalum notatum genotypes. Sci Rep 2018; 8:3030. [PMID: 29445151 PMCID: PMC5812994 DOI: 10.1038/s41598-018-21220-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Apomixis (asexual reproduction through seeds) is considered a deviation of the sexual reproductive pathway leading to the development of clonal progenies genetically identical to the mother plant. Here we used the Methylation-Sensitive Amplification Polymorphism (MSAP) technique to characterize cytosine methylation patterns occurring in florets of sexual and aposporous Paspalum notatum genotypes, in order to identify epigenetically-controlled genes putatively involved in apomixis development. From twelve polymorphic MSAP-derived sequences, one (PN_6.6, later renamed PN_SCD1) was selected due to its relevant annotation and differential representation in apomictic and sexual floral transcriptome libraries. PN_SCD1 encodes the DENN domain/WD repeat-containing protein SCD1, which interacts with RAB GTPases- and/or MAPKs to promote specialized cell division, functions in clathrin-mediated membrane transport and acts as potential substrate receptor of CUL4 E3 ubiquitin ligases. Quantitative RT-PCR and comparative RNAseq analyses of laser microdissected nucellar cells confirmed PN_SCD1 upregulation in florets of apomictic plants and revealed that overexpression takes place just before the onset of apospory initials. Moreover, we found that several SCD1 molecular partners are expressed in P. notatum florets and upregulated in apomictic plants. Our results disclosed a specific vesicle trafficking molecular pathway epigenetically modulated during apomixis.
Collapse
|
19
|
Peredo EL, Arroyo-García R, Martínez-Zapater JM, Revilla MÁ. Evaluation of Microsatellite Detection Using Autoradiography and Capillary Electrophoresis in Hops. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-63-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Elena L. Peredo
- Departamento Biología de Organismos y Sistemas, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain
| | | | | | - M. Ángeles Revilla
- Departamento Biología de Organismos y Sistemas, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain
| |
Collapse
|
20
|
Coronel CJ, González AI, Ruiz ML, Polanco C. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. PLANT CELL REPORTS 2018; 37:137-152. [PMID: 29038910 DOI: 10.1007/s00299-017-2217-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/04/2017] [Indexed: 05/14/2023]
Abstract
We provide evidence that nucleotide sequence and methylation status changes occur in the Arabidopsis genome during in vitro tissue culture at a frequency high enough to represent an important source of variation. Somaclonal variation is a general consequence of the tissue culture process that has to be analyzed specifically when regenerated plants are obtained in any plant species. Currently, there are few studies about the variability comprising sequence changes and methylation status at the DNA level, generated by the culture of A. thaliana cells and tissues. In this work, two types of highly reproducible molecular markers, modified methylation sensitive AFLP (metAFLP) and transposon methylation display (TMD) have been used for the first time in this species to analyze the nucleotide and cytosine methylation changes induced by transformation and tissue culture protocols. We found significantly higher average methylation values (7.5%) in regenerated and transgenic plants when compared to values obtained from seed derived plants (3.2%) and that the main component of the somaclonal variation present in Arabidopsis clonal plants is genetic rather than epigenetic. However, we have found that the Arabidopsis regenerated and transgenic plants had a higher number of non-fully methylated sites flanking transposable elements than the control plants, and therefore, their mobilization can be facilitated. These data provide further evidence that changes in nucleotide sequence and methylation status occur in the Arabidopsis genome during in vitro tissue culture frequently enough to be an important source of variation in this species.
Collapse
Affiliation(s)
- Carlos J Coronel
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Ana I González
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - María L Ruiz
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Carlos Polanco
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
| |
Collapse
|
21
|
The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis. Int J Mol Sci 2017; 18:ijms18081738. [PMID: 28796162 PMCID: PMC5578128 DOI: 10.3390/ijms18081738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP) technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS–3C and CS–3C3C, 48.68% and 48.65%, respectively) were significantly increased when compared to common wheat CS (41.31%) and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted–repeat transposable elements), LTR-retrotransposon WIS-1p and retrotransposon Gypsy, respectively. Overall, our results showed that DNA methylation could play a role in the Gc action.
Collapse
|
22
|
Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol 2017; 30:1612-1632. [PMID: 28597938 DOI: 10.1111/jeb.13130] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally-mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.
Collapse
Affiliation(s)
- J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Araki KS, Kubo T, Kudoh H. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population. PLoS One 2017; 12:e0178145. [PMID: 28542457 PMCID: PMC5439711 DOI: 10.1371/journal.pone.0178145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Collapse
Affiliation(s)
- Kiwako S. Araki
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuya Kubo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| |
Collapse
|
24
|
The Pea (Pisum sativum L.) Rogue Paramutation is Accompanied by Alterations in the Methylation Pattern of Specific Genomic Sequences. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The spontaneous emergence among common pea (Pisum sativum L.) cultivars of off-type rogue plants exhibiting leaves with narrower and pointed leaflets and stipules and the non-Mendelian inheritance of this new phenotype were first described in the early 20th century. However, so far, no studies at the molecular level of this first identified case of paramutation have been carried out. In this study, we show for the first time that the pea rogue paramutation is accompanied by alterations in the methylation status of specific genomic sequences. Although, no significant differences were observed in the genome-wide DNA methylation in leaves of non-rogue cv. Onward in comparison to its rogue paramutant line JI2723, 22 DNA sequences were identified by methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) analysis as differentially methylated in the two epigenomes. Mitotically inherited through all leaf tissues, the differential methylation patterns were also found to be meiotically inherited and conserved in pollen grains for 12 out of the 22 sequences. Fourteen of the sequences were successfully amplified in cDNA but none of them exhibited significant differential expression in the two contrasting epigenotypes. The further exploitation of the present research results on the way towards the elucidation of the molecular mechanisms behind this interesting epigenetic phenomenon is discussed.
Collapse
|
25
|
Lauria M, Echegoyen-Nava RA, Rodríguez-Ríos D, Zaina S, Lund G. Inter-individual variation in DNA methylation is largely restricted to tissue-specific differentially methylated regions in maize. BMC PLANT BIOLOGY 2017; 17:52. [PMID: 28231765 PMCID: PMC5324254 DOI: 10.1186/s12870-017-0997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Variation in DNA methylation across distinct genetic populations, or in response to specific biotic or abiotic stimuli, has typically been studied in leaf DNA from pooled individuals using either reduced representation bisulfite sequencing, whole genome bisulfite sequencing (WGBS) or methylation sensitive amplified polymorphism (MSAP). The latter represents a useful alterative when sample size is large, or when analysing methylation changes in genomes that have yet to be sequenced. In this study we compared variation in methylation across ten individual leaf and endosperm samples from maize hybrid and inbred lines using MSAP. We also addressed the methodological implications of analysing methylation variation using pooled versus individual DNA samples, in addition to the validity of MSAP compared to WGBS. Finally, we analysed a subset of variable and non-variable fragments with respect to genomic location, vicinity to repetitive elements and expression patterns across leaf and endosperm tissues. RESULTS On average, 30% of individuals showed inter-individual methylation variation, mostly of leaf and endosperm-specific differentially methylated DNA regions. With the exception of low frequency demethylation events, the bulk of inter-individual methylation variation (84 and 80% in leaf and endosperm, respectively) was effectively captured in DNA from pooled individuals. Furthermore, available genome-wide methylation data largely confirmed MSAP leaf methylation profiles. Most variable methylation that mapped within genes was associated with CG methylation, and many of such genes showed tissue-specific expression profiles. Finally, we found that the hAT DNA transposon was the most common class II transposable element found in close proximity to variable DNA regions. CONCLUSIONS The relevance of our results with respect to future studies of methylation variation is the following: firstly, the finding that inter-individual methylation variation is largely restricted to tissue-specific differentially methylated DNA regions, underlines the importance of tissue-type when analysing the methylation response to a defined stimulus. Secondly, we show that pooled sample-based MSAP studies are methodologically appropriate to study methylation variation. Thirdly, we confirm that MSAP is a powerful tool when WGBS is not required or feasible, for example in plant species that have yet to be sequenced.
Collapse
Affiliation(s)
- Massimiliano Lauria
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, I-20133 Milan, Italy
| | - Rodrigo Antonio Echegoyen-Nava
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Dalia Rodríguez-Ríos
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Guanajuato, Mexico
| | - Gertrud Lund
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| |
Collapse
|
26
|
Kalinka A, Achrem M, Poter P. The DNA methylation level against the background of the genome size and t-heterochromatin content in some species of the genus Secale L. PeerJ 2017; 5:e2889. [PMID: 28149679 PMCID: PMC5267573 DOI: 10.7717/peerj.2889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Methylation of cytosine in DNA is one of the most important epigenetic modifications in eukaryotes and plays a crucial role in the regulation of gene activity and the maintenance of genomic integrity. DNA methylation and other epigenetic mechanisms affect the development, differentiation or the response of plants to biotic and abiotic stress. This study compared the level of methylation of cytosines on a global (ELISA) and genomic scale (MSAP) between the species of the genus Secale. We analyzed whether the interspecific variation of cytosine methylation was associated with the size of the genome (C-value) and the content of telomeric heterochromatin. MSAP analysis showed that S. sylvestre was the most distinct species among the studied rye taxa; however, the results clearly indicated that these differences were not statistically significant. The total methylation level of the studied loci was very similar in all taxa and ranged from 60% in S. strictum ssp. africanum to 66% in S. cereale ssp. segetale, which confirmed the lack of significant differences in the sequence methylation pattern between the pairs of rye taxa. The level of global cytosine methylation in the DNA was not significantly associated with the content of t-heterochromatin and did not overlap with the existing taxonomic rye relationships. The highest content of 5-methylcytosine was found in S. cereale ssp. segetale (83%), while very low in S. strictum ssp. strictum (53%), which was significantly different from the methylation state of all taxa, except for S. sylvestre. The other studied taxa of rye had a similar level of methylated cytosine ranging from 66.42% (S. vavilovii) to 74.41% in (S. cereale ssp. afghanicum). The results obtained in this study are evidence that the percentage of methylated cytosine cannot be inferred solely based on the genome size or t-heterochromatin. This is a significantly more complex issue.
Collapse
Affiliation(s)
- Anna Kalinka
- Department of Cell Biology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Magdalena Achrem
- Department of Cell Biology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Paulina Poter
- Department of Cell Biology, Faculty of Biology, University of Szczecin , Szczecin , Poland
| |
Collapse
|
27
|
Guevara MÁ, de María N, Sáez-Laguna E, Vélez MD, Cervera MT, Cabezas JA. Analysis of DNA Cytosine Methylation Patterns Using Methylation-Sensitive Amplification Polymorphism (MSAP). Methods Mol Biol 2017; 1456:99-112. [PMID: 27770361 DOI: 10.1007/978-1-4899-7708-3_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.
Collapse
Affiliation(s)
- María Ángeles Guevara
- Department of Forest Ecology and Genetic, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de InvestigaciónForestal (INIA-CIFOR), Ctra. de La Coruña Km 7,5, Madrid, 28040, Spain
| | - Nuria de María
- Department of Forest Ecology and Genetic, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de InvestigaciónForestal (INIA-CIFOR), Ctra. de La Coruña Km 7,5, Madrid, 28040, Spain
| | - Enrique Sáez-Laguna
- Department of Forest Ecology and Genetic, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de InvestigaciónForestal (INIA-CIFOR), Ctra. de La Coruña Km 7,5, Madrid, 28040, Spain
| | - María Dolores Vélez
- Department of Forest Ecology and Genetic, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de InvestigaciónForestal (INIA-CIFOR), Ctra. de La Coruña Km 7,5, Madrid, 28040, Spain
| | - María Teresa Cervera
- Department of Forest Ecology and Genetic, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de InvestigaciónForestal (INIA-CIFOR), Ctra. de La Coruña Km 7,5, Madrid, 28040, Spain.
| | - José Antonio Cabezas
- Department of Forest Ecology and Genetic, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de InvestigaciónForestal (INIA-CIFOR), Ctra. de La Coruña Km 7,5, Madrid, 28040, Spain.
| |
Collapse
|
28
|
Parisod C. Profiling Transposable Elements and Their Epigenetic Effects in Non-model Species. Methods Mol Biol 2017; 1456:243-250. [PMID: 27770371 DOI: 10.1007/978-1-4899-7708-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Taking transposable elements into consideration in surveys of genetic and epigenetic variation remains challenging in species lacking a high-quality reference genome. Here, molecular techniques reducing genome complexity and specifically targeting restructuring and methylation changes in TE genome fractions are described. In particular, methyl-sensitive transposon display (MSTD) uses isoschizomers and PCR amplifications to assess the methylation environment of TE insertions. MSTD offers reliable insights into genome-wide epigenetic changes associated with TEs, especially when used together with similar techniques tracking random sequences.
Collapse
Affiliation(s)
- Christian Parisod
- Laboratory of Evolutionary Botany, Biology Institute, University of Neuchâtel, Rue Emile-Argand 11, 2009, Neuchâtel, Switzerland.
| |
Collapse
|
29
|
Baldanzi S, Watson R, McQuaid CD, Gouws G, Porri F. Epigenetic variation among natural populations of the South African sandhopper Talorchestia capensis. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9877-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Whipple AV, Holeski LM. Epigenetic Inheritance across the Landscape. Front Genet 2016; 7:189. [PMID: 27826318 PMCID: PMC5079072 DOI: 10.3389/fgene.2016.00189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here, we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome–environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.
Collapse
Affiliation(s)
- Amy V Whipple
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University Flagstaff, AZ, USA
| | - Liza M Holeski
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University Flagstaff, AZ, USA
| |
Collapse
|
31
|
Comparison of molecular genetic utilities of TD, AFLP, and MSAP among the accessions of japonica, indica, and Tongil of Oryza sativa L. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Jiang Q, Li Q, Yu H, Kong L. Inheritance and Variation of Genomic DNA Methylation in Diploid and Triploid Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:124-132. [PMID: 26585587 DOI: 10.1007/s10126-015-9674-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
DNA methylation is an important epigenetic mechanism that could be responsive to environmental changes indicating a potential role in natural selection and adaption. In order to evaluate an evolutionary role of DNA methylation, it is essential to first gain a better insight into inheritability. To address this question, this study investigated DNA methylation variation from parents to offspring in the Pacific oyster Crassostrea gigas using fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) analysis. Most of parental methylated loci were stably transmitted to offspring segregating following Medelian expectation. However, methylated loci deviated more often than non-methylated loci and offspring showed a few de novo methylated loci indicating DNA methylation changes from parents to offspring. Interestingly, some male-specific methylated loci were found in this study which might help to explore sex determination in oyster. Despite environmental stimuli, genomic stresses such as polyploidization also can induce methylation changes. This study also compared global DNA methylation level and individual methylated loci between diploid and triploid oysters. Results showed no difference in global methylation state but a few ploidy-specific loci were detected. DNA methylation variation during polyploidization was less than autonomous methylation variation from parents to offspring.
Collapse
Affiliation(s)
- Qun Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Hong Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
33
|
Ci D, Song Y, Du Q, Tian M, Han S, Zhang D. Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:723-37. [PMID: 26552881 DOI: 10.1093/jxb/erv485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA methylation, one of the best-studied types of chromatin modification, suppresses the expression of transposable elements, pseudogenes, repetitive sequences, and individual genes. However, the extent and variation of genome-wide DNA methylation in natural populations of plants remain relatively unknown. To investigate variation in DNA methylation and whether this variation associates with important plant traits, including leaf shape and photosynthesis, 20 413 DNA methylation sites were examined in a poplar association population (505 individuals) using methylation-sensitive amplification polymorphism (MSAP) technology. Calculation of epi-population structure and kinships assigned individuals into subsets (K=3), revealing that the natural population of P. simonii consists of three subpopulations. Population epigenetic distance and geographic distance showed a significant correlation (r=0.4688, P<0.001), suggesting that environmental factors may affect epigenetics. Single-marker approaches were also used to identify significant marker-trait associations, which found 1087 high-confidence DNA methylation markers associated with different phenotypic traits explaining ~5-15% of the phenotypic variance. Among these loci, 147 differentially methylated fragments were obtained by sequencing, representing 130 candidate genes. Expression analysis of six candidate genes indicated that these genes might play important roles in leaf development and regulation of photosynthesis. This study provides association analysis to study the effects of DNA methylation on plant development and these data indicate that epigenetics bridges environmental and genetic factors in affecting plant growth and development.
Collapse
Affiliation(s)
- Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Min Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Shuo Han
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
34
|
Wang Q, Ci D, Li T, Li P, Song Y, Chen J, Quan M, Zhou D, Zhang D. The Role of DNA Methylation in Xylogenesis in Different Tissues of Poplar. FRONTIERS IN PLANT SCIENCE 2016; 7:1003. [PMID: 27462332 PMCID: PMC4941658 DOI: 10.3389/fpls.2016.01003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
In trees, xylem tissues play a key role in the formation of woody tissues, which have important uses for pulp and timber production; also DNA methylation plays an important part in gene regulation during xylogenesis in trees. In our study, methylation-sensitive amplified polymorphism (MSAP) analysis was used to analyze the role cytosine methylation plays in wood formation in the commercially important tree species Populus tomentosa. This analysis compared the methylation patterns between xylem tissues (developing xylem and mature xylem) and non-xylem tissues (cambium, shoot apex, young leaf, mature leaf, phloem, root, male catkin, and female catkin) and found 10,316 polymorphic methylation sites. MSAP identified 132 candidate genes with the same methylation patterns in xylem tissues, including seven wood-related genes. The expression of these genes differed significantly between xylem and non-xylem tissue types (P < 0.01). This indicated that the difference of expression of specific genes with unique methylation patterns, rather than relative methylation levels between the two tissue types plays a critical role in wood biosynthesis. However, 46.2% of candidate genes with the same methylation pattern in vascular tissues (cambium, phloem, and developing xylem) did not have distinct expression patterns in xylem and non-xylem tissue. Also, bisulfite sequencing and transcriptome sequencing of MYB, NAC and FASCICLIN-LIKE AGP 13 revealed that the location of cytosine methylation in the gene might affect the expression of different transcripts from the corresponding gene. The expression of different transcripts that produce distinct proteins from a single gene might play an important role in the regulation of xylogenesis.
Collapse
Affiliation(s)
- Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Tong Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Peiwen Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - YuePeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Daling Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Deqiang Zhang
| |
Collapse
|
35
|
Senerchia N, Felber F, Parisod C. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation. Proc Biol Sci 2015; 282:20142874. [PMID: 25716787 DOI: 10.1098/rspb.2014.2874] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation.
Collapse
Affiliation(s)
- Natacha Senerchia
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| | - François Felber
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland Musée et Jardins Botaniques Cantonaux, Lausanne 1007, Switzerland
| | - Christian Parisod
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| |
Collapse
|
36
|
Liu S, Sun K, Jiang T, Feng J. Natural epigenetic variation in bats and its role in evolution. ACTA ACUST UNITED AC 2015; 218:100-6. [PMID: 25568456 DOI: 10.1242/jeb.107243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
When facing the challenges of environmental change, such as habitat fragmentation, organisms have to adjust their phenotype to adapt to various environmental stresses. Recent studies show that epigenetic modifications could mediate environmentally induced phenotypic variation, and this epigenetic variance could be inherited by future generations, indicating that epigenetic processes have potential evolutionary effects. Bats living in diverse environments show geographic variations in phenotype, and the females usually have natal philopatry, presenting an opportunity to explore how environments shape epigenetic marks on the genome and the evolutionary potential of epigenetic variance in bat populations for adaptation. We have explored the natural epigenetic diversity and structure of female populations of the great roundleaf bat (Hipposideros armiger), the least horseshoe bat (Rhinolophus pusillus) and the eastern bent-winged bat (Miniopterus fuliginosus) using a methylation-sensitive amplified polymorphism technique. We have also estimated the effects of genetic variance and ecological variables on epigenetic diversification. All three bat species have a low level of genomic DNA methylation and extensive epigenetic diversity that exceeds the corresponding genetic variance. DNA sequence divergence, epigenetic drift and environmental variables contribute to the epigenetic diversities of each species. Environment-induced epigenetic variation may be inherited as a result of both mitosis and meiosis, and their potential roles in evolution for bat populations are also discussed in this review.
Collapse
Affiliation(s)
- Sen Liu
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, Jilin, China Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Keping Sun
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, Jilin, China
| | - Tinglei Jiang
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, Jilin, China
| | - Jiang Feng
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, Jilin, China
| |
Collapse
|
37
|
Li Z, Liu Z, Chen R, Li X, Tai P, Gong Z, Jia C, Liu W. DNA damage and genetic methylation changes caused by Cd in Arabidopsis thaliana seedlings. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2095-103. [PMID: 25914311 DOI: 10.1002/etc.3033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 05/05/2023]
Abstract
Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MASP) techniques are sensitive to deoxyribonucleic acid (DNA) damage and genetic methylation, respectively. Using these 2 techniques, Arabidopsis thaliana cultured with 0 mg/L (control), 0.5 mg/L, 1.5 mg/L, and 5.0 mg/L Cd(2+) for 16 d was used to analyze the DNA damage and methylation changes as a result of cadmium (Cd). The DNA was amplified by 14 AFLP primer pairs and 13 MSAP primer combinations. In the AFLP experiment, 62 polymorphic sites were found in the patterns of 11 primer combinations and a total of 1116 fragments were obtained in these patterns. There were no polymorphic bands in the remaining 3 pairs. The proportions of polymorphic sites in the 0.5-mg/L Cd(2+) and 5.0-mg/L Cd(2+) treatments were significantly different. Seven polymorphic fragments were then separated and successfully sequenced, yielding 6 nucleobase substitutions and 1 nucleobase deletion. Similarly, in the MSAP experiment, the MSAP% and number of demethylated-type bands were unchanged after Cd treatment, but the number of methylated-type bands was increased significantly in the 5.0-mg/L Cd(2+) treatment group, a finding that may be associated with the AFLP results. The polymorphic bands were also sequenced and the functions of their homologous genes were determined. The DNA damage and methylation changes may be the primary cause of certain pathology changes as a result of Cd uptake in plants.
Collapse
Affiliation(s)
- Zhaoling Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhihong Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Life and Environmental, Deakin University, Warrnambool, Victoria, Australia
| | - Ruijuan Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Peidong Tai
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Zongqiang Gong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Chunyun Jia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Wan Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| |
Collapse
|
38
|
Preite V, Snoek LB, Oplaat C, Biere A, van der Putten WH, Verhoeven KJF. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions. Mol Ecol 2015. [DOI: 10.1111/mec.13329] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- V. Preite
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - L. B. Snoek
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - C. Oplaat
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| | - A. Biere
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| | - W. H. van der Putten
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - K. J. F. Verhoeven
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| |
Collapse
|
39
|
Covelo-Soto L, Leunda PM, Pérez-Figueroa A, Morán P. Genome-wide methylation study of diploid and triploid brown trout (Salmo trutta L.). Anim Genet 2015; 46:280-8. [PMID: 25917300 DOI: 10.1111/age.12287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
The induction of triploidization in fish is a very common practice in aquaculture. Although triploidization has been applied successfully in many salmonid species, little is known about the epigenetic mechanisms implicated in the maintenance of the normal functions of the new polyploid genome. By means of methylation-sensitive amplified polymorphism (MSAP) techniques, genome-wide methylation changes associated with triploidization were assessed in DNA samples obtained from diploid and triploid siblings of brown trout (Salmo trutta). Simple comparative body measurements showed that the triploid trout used in the study were statistically bigger, however, not heavier than their diploid counterparts. The statistical analysis of the MSAP data showed no significant differences between diploid and triploid brown trout in respect to brain, gill, heart, liver, kidney or muscle samples. Nonetheless, local analysis pointed to the possibility of differences in connection with concrete loci. This is the first study that has investigated DNA methylation alterations associated with triploidization in brown trout. Our results set the basis for new studies to be undertaken and provide a new approach concerning triploidization effects of the salmonid genome while also contributing to the better understanding of the genome-wide methylation processes.
Collapse
Affiliation(s)
- L Covelo-Soto
- Dpto Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, Vigo, 36210, Spain
| | | | | | | |
Collapse
|
40
|
Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH, Thorgaard GH, May B, Nichols KM. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol 2015; 25:1785-1800. [PMID: 25958780 DOI: 10.1111/mec.13231] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Migration is essential for the reproduction and survival of many animals, yet little is understood about its underlying molecular mechanisms. We used the salmonid Oncorhynchus mykiss to gain mechanistic insight into smoltification, which is a morphological, physiological and behavioural transition undertaken by juveniles in preparation for seaward migration. O. mykiss is experimentally tractable and displays intra- and interpopulation variation in migration propensity. Migratory individuals can produce nonmigratory progeny and vice versa, indicating a high degree of phenotypic plasticity. One potential way that phenotypic plasticity might be linked to variation in migration-related life history tactics is through epigenetic regulation of gene expression. To explore this, we quantitatively measured genome-scale DNA methylation in fin tissue using reduced representation bisulphite sequencing of F2 siblings produced from a cross between steelhead (migratory) and rainbow trout (nonmigratory) lines. We identified 57 differentially methylated regions (DMRs) between smolt and resident O. mykiss juveniles. DMRs were high in magnitude, with up to 62% differential methylation between life history types, and over half of the gene-associated DMRs were in transcriptional regulatory regions. Many of the DMRs encode proteins with activity relevant to migration-related transitions (e.g. circadian rhythm pathway, nervous system development, protein kinase activity). This study provides the first evidence of a relationship between epigenetic variation and life history divergence associated with migration-related traits in any species.
Collapse
Affiliation(s)
- Melinda R Baerwald
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Mariah H Meek
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Molly R Stephens
- School of Natural Sciences, University of California - Merced, Merced, CA, 95343
| | - Raman P Nagarajan
- GlaxoSmithKline, Cancer Epigenetics Discovery Performance Unit, Collegeville, PA 19426
| | - Alisha M Goodbla
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | | | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164
| | - Bernie May
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112
| |
Collapse
|
41
|
|
42
|
rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra. PLoS One 2015; 10:e0117198. [PMID: 25723542 PMCID: PMC4344237 DOI: 10.1371/journal.pone.0117198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/22/2014] [Indexed: 12/03/2022] Open
Abstract
The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs) in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins.
Collapse
|
43
|
Li Z, Chen X, Li S, Wang Z. Effect of nickel chloride on Arabidopsis genomic DNA and methylation of 18S rDNA. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
44
|
Yuan JL, Sun HM, Guo GP, Yue JJ, Gu XP. Correlation between DNA methylation and chronological age of Moso bamboo (Phyllostachys heterocycla var. pubescens). BOTANICAL STUDIES 2014; 55:4. [PMID: 28510908 PMCID: PMC5432823 DOI: 10.1186/1999-3110-55-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/09/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chronological age is the primary consideration when studying the physiological development, aging, and flowering of bamboo. However, it's difficult to determine bamboo's chronological age if the time of germination is unknown. To investigate the chronological age of bamboo from the genomic DNA methylation profile, methylation-sensitive amplification polymorphism (MSAP) was employed to analyze the genomic DNA methylation of Moso bamboo (Phyllostachys heterocycla var. pubescens) from stands of nine germination-ages, using six primer pairs which have previously been shown to yield methylation rates that reflect the age of Moso bamboo. RESULTS The results showed that the total genomic DNA methylation rates in Moso bamboo at different chronological ages were significantly different, and the increase in genomic DNA methylation rate was consistent with the increase of chronological age. Six primer pairs displayed different genomic DNA methylation rates in Moso bamboo of nine age's group; however, a significantly positive correlation existed among these primer pairs. An integrated index was obtained by performing principal component analysis on the six primer pairs to represent the genomic DNA methylation levels in Moso bamboo of various chronological ages, and a quadratic curve between the chronological age and genomic DNA methylation levels was obtained. CONCLUSIONS Such a relationship between DNA methylation and its chronological age may serve a reference for its aging study in Moso bamboo.
Collapse
Affiliation(s)
- Jin-Ling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang China
| | - Hui-Min Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang China
| | - Guang-Ping Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang China
| | - Jin-Jun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang China
| | - Xiao-Ping Gu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang China
| |
Collapse
|
45
|
Analysis of DNA methylation in tissues and development stages of pearl oyster Pinctada fucata. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0246-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Zhao W, Shi X, Li J, Guo W, Liu C, Chen X. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China. PLoS One 2014; 9:e112869. [PMID: 25386983 PMCID: PMC4227887 DOI: 10.1371/journal.pone.0112869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/19/2014] [Indexed: 11/19/2022] Open
Abstract
Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.
Collapse
Affiliation(s)
- Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- Institute of Botany, Changbai Mountain Academy of Sciences, Erdao, Jilin, China
| | - Xiaozheng Shi
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Wei Guo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- Institute of Botany, Changbai Mountain Academy of Sciences, Erdao, Jilin, China
| | - Chengbai Liu
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
47
|
Mastan SG, Rathore MS, Bhatt VD, Chikara J, Ghosh A. DNA methylation and methylation polymorphism in ecotypes of Jatropha curcas L. using methylation-sensitive AFLP markers. Mol Biol Rep 2014; 41:8261-71. [PMID: 25227523 DOI: 10.1007/s11033-014-3734-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 09/09/2014] [Indexed: 11/27/2022]
Abstract
We investigated DNA methylation and polymorphism in the methylated DNA using AFLP based methylation-sensitive amplification polymorphism (MS-AFLP) markers in ecotypes of Jatropha curcas L. growing in similar and different geo-ecological conditions. Three ecotypes growing in different geo-ecological conditions with environmental heterogeneity (Group-1) and five ecotypes growing in similar environmental conditions (Group-2) were assessed. In ecotypes growing in group-1, 44.32 % DNA was methylated and of which 93.59 % DNA was polymorphic. While in group-2, 32.27 % DNA was methylated, of which 51.64 % DNA was polymorphic. In site 1 and site 2 of group-1, overall methylation was 18.94 and 22.44 % respectively with difference of 3.5 %, while overall polymorphism was 41.14 and 39.23 % with a difference of 1.91 %. In site 1 and site 2 of group-2, overall methylation was 24.68 and 24.18 % respectively with difference of 0.5 %, while overall polymorphism was 12.19 and 12.65 % with a difference of 0.46 %. The difference of methylation percentage and percentage of methylation polymorphism throughout the genome of J. curcas at site 1 and 2 of group-1 is higher than that of J. curcas at site 1 and 2 of group-2. These results correlated the physico-chemical properties of soil at these sites. The variations of physico-chemical properties of soil at Chorwadla (site 1 in group-1 and site 2 in group-2) compared to the soil at Brahmapur (site 2 in group-1) is higher than that of soil at Neswad (site 1 in group-2). The study suggests that these homologous nucleotide sequences probably play important role in ecotype adaptation to environmental heterogeneity by creating epiallelic variations hence in evolution of ecotypes/clines or forms of species showing phenotypic/genotypic differences in different geographical areas.
Collapse
Affiliation(s)
- Shaik G Mastan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | | | | | | | | |
Collapse
|
48
|
Sáez-Laguna E, Guevara MÁ, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, Cervera MT. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One 2014; 9:e103145. [PMID: 25084460 PMCID: PMC4118849 DOI: 10.1371/journal.pone.0103145] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/26/2014] [Indexed: 01/17/2023] Open
Abstract
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Collapse
Affiliation(s)
- Enrique Sáez-Laguna
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - María-Ángeles Guevara
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Luis-Manuel Díaz
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - David Sánchez-Gómez
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Carmen Collada
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros de Montes (ETSIM), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ismael Aranda
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - María-Teresa Cervera
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
- * E-mail:
| |
Collapse
|
49
|
Tang XM, Tao X, Wang Y, Ma DW, Li D, Yang H, Ma XR. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol Genet Genomics 2014; 289:1075-84. [PMID: 24916310 DOI: 10.1007/s00438-014-0869-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022]
Abstract
Perennial ryegrass (Lolium perenne), an excellent grass for forage and turf, is widespread in temperate regions. Drought is an important factor that limits its growth, distribution, and yield. DNA methylation affects gene expression and plays an important role in adaptation to adverse environments. In this study, the DNA methylation changes in perennial ryegrass under drought stress were assessed using methylation-sensitive amplified polymorphism (MSAP). After 15 days of drought stress treatment, the plant height was less than half of the control, and the leaves were smaller and darker. Genome-wide, a total of 652 CCGG sites were detected by MSAP. The total methylation level was 57.67 and 47.39 % in the control and drought treatment, respectively, indicating a decrease of 10.28 % due to drought exposure. Fifteen differentially displayed DNA fragments in MSAP profiles were cloned for sequencing analysis. The results showed that most of the genes involved in stress responses. The relative expression levels revealed that three demethylated fragments were up-regulated. The expression of a predicted retrotransposon increased significantly, changing from hypermethylation to non-methylation. Although the extent of methylation in two other genes decreased, the sites of methylation remained, and the expression increased only slightly. All of these results suggested that drought stress decreased the total DNA methylation level in perennial ryegrass and demethylation up-regulated related gene expressions and that the extent of methylation was negatively correlated with expression. Overall, the induced epigenetic changes in genome probably are an important regulatory mechanism for acclimating perennial ryegrass to drought and possibly other environmental stresses.
Collapse
Affiliation(s)
- Xiao-Mei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Gao G, Li J, Li H, Li F, Xu K, Yan G, Chen B, Qiao J, Wu X. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. BREEDING SCIENCE 2014; 64:125-33. [PMID: 24987298 PMCID: PMC4065319 DOI: 10.1270/jsbbs.64.125] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/16/2014] [Indexed: 05/21/2023]
Abstract
DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus.
Collapse
|