1
|
Sečnik A, Volk H, Kunej U, Radišek S, Štajner N, Jakše J. Genome-wide DNA methylation analysis of CBCVd-infected hop plants ( Humulus lupulus var. "Celeia") provides novel insights into viroid pathogenesis. Microbiol Spectr 2025:e0039424. [PMID: 40237512 DOI: 10.1128/spectrum.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Viroids are small, naked, infectious single-stranded RNA molecules that exploit host factors to replicate. Some viroids have been linked to severe diseases in agricultural crops, including the recent outbreak of Cocadviroid rimocitri, previously known as Citrus bark cracking viroid (CBCVd), in hop plants (Humulus lupulus). Numerous studies have demonstrated the involvement of viroid-derived RNA in viroid pathogenesis through interactions with RNAi host factors, leading to alterations in gene expression, metabolism, and phenotype. Recent research efforts have also focused on elucidating viroid-induced changes in DNA methylation patterns via the RNA-directed DNA methylation pathway. In this study, we conducted an epigenome analysis of CBCVd-infected hop plants to provide novel evidence supporting the putative role of DNA methylation in CBCVd viroid pathogenesis. Our findings revealed that several genes involved in pathogen interaction pathways, such as MAPK signaling and LRR, exhibit hypomethylation, suggesting that their increased transcription enhances the host's ability to counteract the pathogen. Intriguingly, genes associated with RNA transcription and encoding key proteins, such as POL II, POL IV, and POL V, display hypermethylation, highlighting the significance of DNA methylation as a defense mechanism.IMPORTANCEViroids are emerging as a substantial threat to various crops; however, our understanding of the molecular mechanisms governing their pathogenesis and the host's defense remains incomplete. This knowledge gap leaves crop disease management reliant on unsustainable strategies. Our research seeks to address this issue by examining the complex world of infected hop plants. Specifically, we are investigating the DNA methylation processes, providing insights into the less-explored aspects of the host's response to viroid interaction. Our aim was to unravel the complexities of how viroids influence the molecular landscape within plants and the corresponding host defenses. By understanding these interactions, we hope to provide insights that lead to more sustainable ways to protect crops and keep agriculture resilient against viroid-related threats.
Collapse
Affiliation(s)
- Andrej Sečnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Volk
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Kumar S, Seem K, Kumar S, Singh A, Krishnan SG, Mohapatra T. DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity. PLANTA 2023; 259:4. [PMID: 37993704 DOI: 10.1007/s00425-023-04272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Roots play an important role in adaptive plasticity of rice under dry/direct-sown conditions. However, hypomethylation of genes in leaves (resulting in up-regulated expression) complements the adaptive plasticity of Nagina-22 under DSR conditions. Rice is generally cultivated by transplanting which requires plenty of water for irrigation. Such a practice makes rice cultivation a challenging task under global climate change and reducing water availability. However, dry-seeded/direct-sown rice (DSR) has emerged as a resource-saving alternative to transplanted rice (TPR). Though some of the well-adapted local cultivars are used for DSR, only limited success has been achieved in developing DSR varieties mainly because of a limited knowledge of adaptability of rice under fluctuating environmental conditions. Based on better morpho-physiological and agronomic performance of Nagina-22 (N-22) under DSR conditions, N-22 and IR-64 were grown by transplanting and direct-sowing and used for whole genome methylome analysis to unravel the epigenetic basis of adaptive plasticity of rice. Comparative methylome and transcriptome analyses indicated a large number (4078) of genes regulated through DNA methylation/demethylation in N-22 under DSR conditions. Gene × environment interactions play important roles in adaptive plasticity of rice under direct-sown conditions. While genes for pectinesterase, LRK10, C2H2 zinc-finger protein, splicing factor, transposable elements, and some of the unannotated proteins were hypermethylated, the genes for regulation of transcription, protein phosphorylation, etc. were hypomethylated in CG context in the root of N-22, which played important roles in providing adaptive plasticity to N-22 under DSR conditions. Hypomethylation leading to up-regulation of gene expression in the leaf complements the adaptive plasticity of N-22 under DSR conditions. Moreover, differential post-translational modification of proteins and chromatin assembly/disassembly through DNA methylation in CHG context modulate adaptive plasticity of N-22. These findings would help developing DSR cultivars for increased water-productivity and ecological efficiency.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
3
|
Jeynes-Cupper K, Catoni M. Long distance signalling and epigenetic changes in crop grafting. FRONTIERS IN PLANT SCIENCE 2023; 14:1121704. [PMID: 37021313 PMCID: PMC10067726 DOI: 10.3389/fpls.2023.1121704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Humans have used grafting for more than 4000 years to improve plant production, through physically joining two different plants, which can continue to grow as a single organism. Today, grafting is becoming increasingly more popular as a technique to increase the production of herbaceous horticultural crops, where rootstocks can introduce traits such as resistance to several pathogens and/or improving the plant vigour. Research in model plants have documented how long-distance signalling mechanisms across the graft junction, together with epigenetic regulation, can produce molecular and phenotypic changes in grafted plants. Yet, most of the studied examples rely on proof-of-concept experiments or on limited specific cases. This review explores the link between research findings in model plants and crop species. We analyse studies investigating the movement of signalling molecules across the graft junction and their implications on epigenetic regulation. The improvement of genomics analyses and the increased availability of genetic resources has allowed to collect more information on potential benefits of grafting in horticultural crop models. Ultimately, further research into this topic will enhance our ability to use the grafting technique to exploit genetic and epigenetic variation in crops, as an alternative to traditional breeding.
Collapse
Affiliation(s)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
4
|
Katsidi EC, Avramidou EV, Ganopoulos I, Barbas E, Doulis A, Triantafyllou A, Aravanopoulos FA. Genetics and epigenetics of Pinus nigra populations with differential exposure to air pollution. FRONTIERS IN PLANT SCIENCE 2023; 14:1139331. [PMID: 37089661 PMCID: PMC10117940 DOI: 10.3389/fpls.2023.1139331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Forest species in the course of their evolution have experienced several environmental challenges, which since historic times include anthropogenic pollution. The effects of pollution on the genetic and epigenetic diversity in black pine (Pinus nigra) forests were investigated in the Amyntaio - Ptolemais - Kozani Basin, which has been for decades the largest lignite mining and burning center of Greece, with a total installed generating capacity of about 4.5 GW, operating for more than 70 years and resulting in large amounts of primary air pollutant emissions, mainly SO2, NOx and PM10. P. nigra, a biomarker for air pollution and a keystone species of affected natural ecosystems, was examined in terms of phenology (cone and seed parameters), genetics (283 AFLP loci) and epigenetics (606 MSAP epiloci), using two populations (exposed to pollution and control) of the current (mature trees) and future (embryos) stand. It was found that cone, seed, as well as genetic diversity parameters, did not show statistically significant differences between the exposed population and the control. Nevertheless, statistically significant differences were detected at the population epigenetic level. Moreover, there was a further differentiation regarding the intergenerational comparison: while the epigenetic diversity does not substantially change in the two generations assessed in the control population, epigenetic diversity is significantly higher in the embryo population compared to the parental stand in the exposed population. This study sheds a light to genome dynamics in a forest tree population exposed to long term atmospheric pollution burden and stresses the importance of assessing both genetics and epigenetics in biomonitoring applications.
Collapse
Affiliation(s)
- Elissavet Ch. Katsidi
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Barbas
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Doulis
- Laboratory of Plant Biotechnology – Genomic Resources, Hellenic Agricultural Organization DEMETER, Institute of Viticulture, Floriculture and Vegetable Crops, Heraklion, Greece
| | - Athanasios Triantafyllou
- Laboratory of Atmospheric Pollution and Environmental Physics (LALEP), Faculty of Engineering, University of Western Macedonia, Kozani, Greece
| | - Filippos A. Aravanopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Filippos A. Aravanopoulos,
| |
Collapse
|
5
|
Sečnik A, Štajner N, Radišek S, Kunej U, Križman M, Jakše J. Cytosine Methylation in Genomic DNA and Characterization of DNA Methylases and Demethylases and Their Expression Profiles in Viroid-Infected Hop Plants ( Humulus lupulus Var. 'Celeia'). Cells 2022; 11:cells11162592. [PMID: 36010668 PMCID: PMC9406385 DOI: 10.3390/cells11162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Abiotic and biotic stresses can lead to changes in host DNA methylation, which in plants is also mediated by an RNA-directed DNA methylation mechanism. Infections with viroids have been shown to affect DNA methylation dynamics in different plant hosts. The aim of our research was to determine the content of 5-methylcytosine (5-mC) in genomic DNA at the whole genome level of hop plants (Humulus lupulus Var. 'Celeia') infected with different viroids and their combinations and to analyse the expression of the selected genes to improve our understanding of DNA methylation dynamics in plant-viroid systems. The adapted HPLC-UV method used proved to be suitable for this purpose, and thus we were able to estimate for the first time that the cytosine methylation level in viroid-free hop plants was 26.7%. Interestingly, the observed 5-mC level was the lowest in hop plants infected simultaneously with CBCVd, HLVd and HSVd (23.7%), whereas the highest level was observed in plants infected with HLVd (31.4%). In addition, we identified three DNA methylases and one DNA demethylase gene in the hop's draft genome. The RT-qPCR revealed upregulation of all newly identified genes in hop plants infected with all three viroids, while no altered expression was observed in any of the other hop plants tested, except for CBCVd-infected hop plants, in which one DNA methylase was also upregulated.
Collapse
Affiliation(s)
- Andrej Sečnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mitja Križman
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203280
| |
Collapse
|
6
|
Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics 2022; 2022:1092894. [PMID: 35747076 PMCID: PMC9213152 DOI: 10.1155/2022/1092894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Plants being sessile are always exposed to various environmental stresses, and to overcome these stresses, modifications at the epigenetic level can prove vital for their long-term survival. Epigenomics refers to the large-scale study of epigenetic marks on the genome, which include covalent modifications of histone tails (acetylation, methylation, phosphorylation, ubiquitination, and the small RNA machinery). Studies based on epigenetics have evolved over the years especially in understanding the mechanisms at transcriptional and posttranscriptional levels in plants against various environmental stimuli. Epigenomic changes in plants through induced methylation of specific genes that lead to changes in their expression can help to overcome various stress conditions. Recent studies suggested that epigenomics has a significant potential for crop improvement in plants. By the induction and modulation of various cellular processes like DNA methylation, histone modification, and biogenesis of noncoding RNAs, the plant genome can be activated which can help in achieving a quicker response against various plant stresses. Epigenetic modifications in plants allow them to adjust under varied environmental stresses by modulating their phenotypic plasticity and at the same time ensure the quality and yield of crops. The plasticity of the epigenome helps to adapt the plants during pre- and postdevelopmental processes. The variation in DNA methylation in different organisms exhibits variable phenotypic responses. The epigenetic changes also occur sequentially in the genome. Various studies indicated that environmentally stimulated epimutations produce variable responses especially in differentially methylated regions (DMR) that play a major role in the management of stress conditions in plants. Besides, it has been observed that environmental stresses cause specific changes in the epigenome that are closely associated with phenotypic modifications. However, the relationship between epigenetic modifications and phenotypic plasticity is still debatable. In this review, we will be discussing the role of various factors that allow epigenetic changes to modulate phenotypic plasticity against various abiotic stress in plants.
Collapse
|
7
|
|
8
|
Thakur RK, Prasad P, Bhardwaj SC, Gangwar OP, Kumar S. Epigenetics of wheat-rust interaction: an update. PLANTA 2022; 255:50. [PMID: 35084577 DOI: 10.1007/s00425-022-03829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The outcome of different host-pathogen interactions is influenced by both genetic and epigenetic systems, which determine the response of plants to pathogens and vice versa. This review highlights key molecular mechanisms and conceptual advances involved in epigenetic research and the progress made in epigenetics of wheat-rust interactions. Epigenetics implies the heritable changes in the way of gene expression as a consequence of the modification of DNA bases, histone proteins, and/or non-coding-RNA biogenesis without disturbing the underlying nucleotide sequence. The changes occurring between DNA and its surrounding chromatin without altering its DNA sequence and leading to significant changes in the genome of any organism are called epigenetic changes. Epigenetics has already been used successfully to explain the mechanism of human pathogens and in the identification of pathogen-induced modifications within various host plants. Wheat rusts are one of the most vital fungal diseases throughout the major wheat-growing areas of the world. The epigenome in plant pathogens causing diseases such as wheat rusts is mysterious. The investigations of host and pathogen epigenetics in the wheat rusts system can offer a piece of suitable evidence for elucidation of the molecular basis of host-pathogen interaction. Besides, the information on the epigenetic regulation of the genes involved in resistance or pathogenicity will provide better insights into the complex resistance signaling pathways and could provide answers to certain key questions, such as whether epigenetic regulation of certain genes is imparting resistance to host in response of certain pathogen elicitors or not. In the last few years, there has been an upsurge in research on the host as well as pathogen epigenetics and its outcome in plant-pathogen interactions. This review summarizes the progress made in the areas related to the epigenetic control of host-pathogen interaction with particular emphasis on wheat rusts.
Collapse
Affiliation(s)
- Rajni Kant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|
9
|
Xiao D, Zhou K, Yang X, Yang Y, Ma Y, Wang Y. Crosstalk of DNA Methylation Triggered by Pathogen in Poplars With Different Resistances. Front Microbiol 2022; 12:750089. [PMID: 35027912 PMCID: PMC8748266 DOI: 10.3389/fmicb.2021.750089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
DNA methylation plays crucial roles in responses to environmental stimuli. Modification of DNA methylation during development and abiotic stress responses has been confirmed in increasing numbers of plants, mainly annual plants. However, the epigenetic regulation mechanism underlying the immune response to pathogens remains largely unknown in plants, especially trees. To investigate whether DNA methylation is involved in the response to infection process or is related to the resistance differences among poplars, we performed comprehensive whole-genome bisulfite sequencing of the infected stem of the susceptible type Populus × euramerican ‘74/76’ and resistant type Populus tomentosa ‘henan’ upon Lonsdalea populi infection. The results revealed that DNA methylation changed dynamically in poplars during the infection process with a remarkable decrease seen in the DNA methylation ratio. Intriguingly, the resistant P. tomentosa ‘henan’ had a much lower basal DNA methylation ratio than the susceptible P. × euramerican ‘74/76’. Compared to mock-inoculation, both poplar types underwent post-inoculation CHH hypomethylation; however, significant decreases in mC and mCHH proportions were found in resistant poplar. In addition, most differentially CHH-hypomethylated regions were distributed in repeat and promoter regions. Based on comparison of DNA methylation modification with the expression profiles of genes, DNA methylation occurred in resistance genes, pathogenesis-related genes, and phytohormone genes in poplars during pathogen infection. Additionally, transcript levels of genes encoding methylation-related enzymes changed during pathogen infection. Interestingly, small-regulator miRNAs were subject to DNA methylation in poplars experiencing pathogen infection. This investigation highlights the critical role of DNA methylation in the poplar immune response to pathogen infection and provides new insights into epigenetic regulation in perennial plants in response to biotic stress.
Collapse
Affiliation(s)
- Dandan Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ke Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,School of Landscape Architecture, Chengdu Agricultural College, Chengdu, China
| | - Xiaoqian Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yuzhang Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yudie Ma
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Kumar S, Seem K, Kumar S, Vinod KK, Chinnusamy V, Mohapatra T. Pup1 QTL Regulates Gene Expression Through Epigenetic Modification of DNA Under Phosphate Starvation Stress in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:871890. [PMID: 35712593 PMCID: PMC9195100 DOI: 10.3389/fpls.2022.871890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Cytosine methylation, epigenetic DNA modification, is well known to regulate gene expression. Among the epigenetic modifications, 5-methylcytosine (5-mC) has been one of the extensively studied epigenetic changes responsible for regulating gene expression in animals and plants. Though a dramatic change in 5-mC content is observed at the genome level, the variation in gene expression is generally less than that it is expected. Only less is understood about the significance of 5-mC in gene regulation under P-starvation stress in plants. Using whole-genome bisulfite sequencing of a pair of rice [Pusa-44 and its near-isogenic line (NIL)-23 harboring Pup1 QTL] genotypes, we could decipher the role of Pup1 on DNA (de)methylation-mediated regulation of gene expression under P-starvation stress. We observed 13-15% of total cytosines to be methylated in the rice genome, which increased significantly under the stress. The number of differentially methylated regions (DMRs) for hypomethylation (6,068) was higher than those (5,279) for hypermethylated DMRs under the stress, particularly in root of NIL-23. Hypomethylation in CHH context caused upregulated expression of 489 genes in shoot and 382 genes in root of NIL-23 under the stress, wherein 387 genes in shoot and 240 genes in root were upregulated exclusively in NIL-23. Many of the genes for DNA methylation, a few for DNA demethylation, and RNA-directed DNA methylation were upregulated in root of NIL-23 under the stress. Methylation or demethylation of DNA in genic regions differentially affected gene expression. Correlation analysis for the distribution of DMRs and gene expression indicated the regulation of gene mainly through (de)methylation of promoter. Many of the P-responsive genes were hypomethylated or upregulated in roots of NIL-23 under the stress. Hypermethylation of gene body in CG, CHG, and CHH contexts caused up- or downregulated expression of transcription factors (TFs), P transporters, phosphoesterases, retrotransposon proteins, and other proteins. Our integrated transcriptome and methylome analyses revealed an important role of the Pup1 QTL in epigenetic regulation of the genes for transporters, TFs, phosphatases, carbohydrate metabolism, hormone-signaling, and chromatin architecture or epigenetic modifications in P-starvation tolerance. This provides insights into the molecular function of Pup1 in modulating gene expression through DNA (de)methylation, which might be useful in improving P-use efficiency or productivity of rice in P-deficient soil.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar ; ; orcid.org/0000-0002-7127-3079
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
11
|
DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 2021; 44:279-297. [PMID: 34837631 DOI: 10.1007/s13258-021-01191-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND A review of research shows that methylation in plants is more complex and sophisticated than in microorganisms and animals. Overall, studies on the effects of abiotic stress on epigenetic modifications in plants are still scarce and limited to few species. Epigenetic regulation of plant responses to environmental stresses has not been elucidated. This study summarizes key effects of abiotic stressors on DNA methylation and histone modifications in plants. DISCUSSION Plant DNA methylation and histone modifications in responses to abiotic stressors varied and depended on the type and level of stress, plant tissues, age, and species. A critical analysis of the literature available revealed that 44% of the epigenetic modifications induced by abiotic stressors in plants involved DNA hypomethylation, 40% DNA hypermethylation, and 16% histone modification. The epigenetic changes in plants might be underestimated since most authors used methods such as methylation-sensitive amplification polymorphism (MSAP), High performance liquid chromatography (HPLC), and immunolabeling that are less sensitive compared to bisulfite sequencing and single-base resolution methylome analyses. More over, mechanisms underlying epigenetic changes in plants have not yet been determined since most reports showed only the level or/and distribution of DNA methylation and histone modifications. CONCLUSIONS Various epigenetic mechanisms are involved in response to abiotic stressors, and several of them are still unknown. Integrated analysis of the changes in the genome by omic approaches should help to identify novel components underlying mechanisms involved in DNA methylation and histone modifications associated with plant response to environmental stressors.
Collapse
|
12
|
Entrambasaguas L, Ruocco M, Verhoeven KJF, Procaccini G, Marín-Guirao L. Gene body DNA methylation in seagrasses: inter- and intraspecific differences and interaction with transcriptome plasticity under heat stress. Sci Rep 2021; 11:14343. [PMID: 34253765 PMCID: PMC8275578 DOI: 10.1038/s41598-021-93606-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The role of DNA methylation and its interaction with gene expression and transcriptome plasticity is poorly understood, and current insight comes mainly from studies in very few model plant species. Here, we study gene body DNA methylation (gbM) and gene expression patterns in ecotypes from contrasting thermal environments of two marine plants with contrasting life history strategies in order to explore the potential role epigenetic mechanisms could play in gene plasticity and responsiveness to heat stress. In silico transcriptome analysis of CpGO/E ratios suggested that the bulk of Posidonia oceanica and Cymodocea nodosa genes possess high levels of intragenic methylation. We also observed a correlation between gbM and gene expression flexibility: genes with low DNA methylation tend to show flexible gene expression and plasticity under changing conditions. Furthermore, the empirical determination of global DNA methylation (5-mC) showed patterns of intra and inter-specific divergence that suggests a link between methylation level and the plants' latitude of origin and life history. Although we cannot discern whether gbM regulates gene expression or vice versa, or if other molecular mechanisms play a role in facilitating transcriptome responsiveness, our findings point to the existence of a relationship between gene responsiveness and gbM patterns in marine plants.
Collapse
Affiliation(s)
- Laura Entrambasaguas
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Miriam Ruocco
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Gabriele Procaccini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Lazaro Marín-Guirao
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/Varadero, 30740, San Pedro del Pinatar, Spain
| |
Collapse
|
13
|
Zhang X, Li C, Tie D, Quan J, Yue M, Liu X. Epigenetic memory and growth responses of the clonal plant Glechoma longituba to parental recurrent UV-B stress. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:827-838. [PMID: 33820599 DOI: 10.1071/fp20303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The responses of plants to recurrent stress may differ from their responses to a single stress event. In this study, we investigated whether clonal plants can remember past environments. Parental ramets of Glechoma longituba (Nakai) Kuprian were exposed to UV-B stress treatments either once or repeatedly (20 and 40 repetitions). Differences in DNA methylation levels and growth parameters among parents, offspring ramets and genets were analysed. Our results showed that UV-B stress reduced the DNA methylation level of parental ramets, and the reduction was enhanced by increasing the number of UV-B treatments. The epigenetic variation exhibited by recurrently stressed parents was maintained for a long time, but that of singly stressed parents was only short-term. Moreover, clonal plants responded to different UV-B stress treatments with different growth strategies. The one-time stress was a eustress that increased genet biomass by increasing offspring leaf allocation and defensive allocation in comparison to the older offspring. In contrast, recurring stress was a distress that reduced genet biomass, increased the biomass of storage stolons, and allocated more defensive substances to the younger ramets. This study demonstrated that the growth of offspring and genets was clearly affected by parental experience, and parental epigenetic memory and the transgenerational effect may play important roles in this effect.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Cunxia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China; and Corresponding author.
| |
Collapse
|
14
|
Waseem M, Huang F, Wang Q, Aslam MM, Abbas F, Ahmad F, Ashraf U, Hassan W, Fiaz S, Ye X, Yu L, Ke Y. Identification, methylation profiling, and expression analysis of stress-responsive cytochrome P450 genes in rice under abiotic and phytohormones stresses. GM CROPS & FOOD 2021; 12:551-563. [PMID: 33877001 PMCID: PMC8820252 DOI: 10.1080/21645698.2021.1908813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytochrome P450 (CYP) is a large and complex eukaryotic gene superfamily with enzymatic activities involved in several physiological and regulatory processes. As an objective, an in-silico genome-wide DNA methylation (5mC) analysis was performed in rice (Oryza sativa cv. Zhonghua11), and the epigenetic role of CYPs in two abiotic stresses was observed. Being a stable representative mark, DNA-methylation alters the gene expression under stressful environmental conditions. Rice plants under salinity and drought stresses were analyzed through MeDIP-chip hybridization, and 14 unique genes of the CYP family were identified in the rice genome with varying degrees of methylation. The gene structure, promoter sequences, and phylogenetic analysis were performed. Furthermore, the responses of CYPs to various abiotic stresses, including salinity, drought, and cold were revealed. Similarly, the expression profile of potential CYPs was also investigated under various phytohormone stresses, which revealed the potential involvement of CYPs to hormone regulations. Overall, the current study provides evidence for CYP's stress regulation and fundamental for further characterization and understanding their epigenetic roles in gene expression regulation and environmental stress regulation in higher plants.
Collapse
Affiliation(s)
- Muhammad Waseem
- College of Horticulture, South China Agricultural University, P.R. China
| | - Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Qiyu Wang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Mehtab Muhammad Aslam
- College of Life Sciences, Joint International Research Laboratory of Water and 5 Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Farhat Abbas
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou P.R. China
| | - Fiaz Ahmad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing PR China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, Pakistan
| | - Waseem Hassan
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Yanguo Ke
- College of Economics and Management, Kunming University, Kunming China
| |
Collapse
|
15
|
Kumar J, Rai KM, Pirseyedi S, Elias EM, Xu S, Dill-Macky R, Kianian SF. Epigenetic regulation of gene expression improves Fusarium head blight resistance in durum wheat. Sci Rep 2020; 10:17610. [PMID: 33077800 PMCID: PMC7572394 DOI: 10.1038/s41598-020-73521-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Eight advanced durum-breeding lines were treated with 5-methyl-azacytidine to test the feasibility of generating sources of Fusarium head blight (FHB) resistance. Of the 800 treated seeds, 415 germinated and were advanced up to four (M4) generations by selfing. Thirty-two of the resulting 415 M4 lines were selected following preliminary screening and were further tested for FHB resistance for three years at two field locations, and in the greenhouse. Five of the 32 M4 lines showed less than 30% disease severity, as compared to the parental lines and susceptible checks. Fusarium-damaged kernels and deoxynivalenol analyses supported the findings of the field and greenhouse disease assessments. Two of the most resistant M4 lines were crossed to a susceptible parent, advanced to third generation (BC1:F3) and were tested for stability and inheritance of the resistance. About, one third of the BC1:F3 lines showed FHB resistance similar to their M4 parents. The overall methylation levels (%) were compared using FASTmC method, which did not show a significant difference between M4 and parental lines. However, transcriptome analysis of one M4 line revealed significant number of differentially expressed genes related to biosynthesis of secondary metabolites, MAPK signaling, photosynthesis, starch and sucrose metabolism, plant hormone signal transduction and plant-pathogen interaction pathways, which may have helped in improved FHB resistance.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Krishan M Rai
- Department of Microbial and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Elias M Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Steven Xu
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
16
|
Rehman M, Tanti B. Understanding epigenetic modifications in response to abiotic stresses in plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Wang J, Hao F, Song K, Jin W, Fu B, Wei Y, Shi Y, Guo H, Liu W. Identification of a Novel NtLRR-RLK and Biological Pathways That Contribute to Tolerance of TMV in Nicotiana tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:996-1006. [PMID: 32196398 DOI: 10.1094/mpmi-12-19-0343-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tobacco mosaic virus (TMV) infection can causes serious damage to tobacco crops. To explore the approach of preventing TMV infection of plants, two tobacco cultivars with different resistances to TMV were used to analyze transcription profiling before and after TMV infection. The involvement of biological pathways differed between the tolerant variety (Yuyan8) and the susceptible variety (NC89). In particular, the plant-virus interaction pathway was rapidly activated in Yuyan8, and specific resistance genes were enriched. Liquid chromatography tandem mass spectrometry analysis detected large quantities of antiviral substances in the tolerant Yuyan8. A novel Nicotiana tabacum leucine-rich repeat receptor kinase (NtLRR-RLK) gene was identified as being methylated and this was verified using bisulfite sequencing. Transient expression of TMV-green fluorescent protein in pRNAi-NtLRR-RLK transgenic plants confirmed that NtLRR-RLK was important for susceptibility to TMV. The specific protein interaction map generated from our study revealed that levels of BIP1, E3 ubiquitin ligase, and LRR-RLK were significantly elevated, and all were represented at node positions in the protein interaction map. The same expression tendency of these proteins was also found in pRNAi-NtLRR-RLK transgenic plants at 24 h after TMV inoculation. These data suggested that specific genes in the infection process can activate the immune signal cascade through different resistance genes, and the integration of signal pathways could produce resistance to the virus. These results contribute to the overall understanding of the molecular basis of plant resistance to TMV and in the long term could identify new strategies for prevention and control virus infection.
Collapse
Affiliation(s)
- Jing Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Fengsheng Hao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Kunfeng Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Wei
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weiqun Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Kuriyama K, Tabara M, Moriyama H, Kanazawa A, Koiwa H, Takahashi H, Fukuhara T. Disturbance of floral colour pattern by activation of an endogenous pararetrovirus, petunia vein clearing virus, in aged petunia plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:497-511. [PMID: 32100385 PMCID: PMC7496347 DOI: 10.1111/tpj.14728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 05/22/2023]
Abstract
White areas of star-type bicolour petals of petunia (Petunia hybrida) are caused by post-transcriptional gene silencing (PTGS) of the key enzyme of anthocyanin biosynthesis. We observed blotched flowers and a vein-clearing symptom in aged petunia plants. To determine the cause of blotched flowers, we focused on an endogenous pararetrovirus, petunia vein clearing virus (PVCV), because this virus may have a suppressor of PTGS (VSR). Transcripts and episomal DNAs derived from proviral PVCVs accumulated in aged plants, indicating that PVCV was activated as the host plant aged. Furthermore, DNA methylation of CG and CHG sites in the promoter region of proviral PVCV decreased in aged plants, suggesting that poor maintenance of DNA methylation activates PVCV. In parallel, de novo DNA methylation of CHH sites in its promoter region was also detected. Therefore, both activation and inactivation of PVCV occurred in aged plants. The accumulation of PVCV transcripts and episomal DNAs in blotched regions and the detection of VSR activity support a mechanism in which suppression of PTGS by PVCV causes blotched flowers.
Collapse
Affiliation(s)
- Kazunori Kuriyama
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| | - Midori Tabara
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
- Institute of Global Innovation ResearchTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| | - Akira Kanazawa
- Research Faculty of AgricultureHokkaido UniversityKita 9, Nishi 9, Kita‐kuSapporo060‐8589Japan
| | - Hisashi Koiwa
- Institute of Global Innovation ResearchTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
- Department of Horticultural SciencesTexas A&M UniversityCollege StationTX77843USA
| | - Hideki Takahashi
- Graduate School of Agricultural ScienceTohoku University468‐1, Aramaki‐Aza‐AobaSendai980‐0845Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
- Institute of Global Innovation ResearchTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| |
Collapse
|
19
|
Nguyen HM, Kim M, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G. Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:494. [PMID: 32411166 PMCID: PMC7199800 DOI: 10.3389/fpls.2020.00494] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/01/2020] [Indexed: 05/30/2023]
Abstract
While thermal priming and the relative role of epigenetic modifications have been widely studied in terrestrial plants, their roles remain unexplored in seagrasses so far. Here, we experimentally compared the ability of two different functional types of seagrass species, dominant in the Southern hemisphere, climax species Posidonia australis and pioneer species Zostera muelleri, to acquire thermal-stress memory to better survive successive stressful thermal events. To this end, a two-heatwave experimental design was conducted in a mesocosm setup. Findings across levels of biological organization including the molecular (gene expression), physiological (photosynthetic performances and pigments content) and organismal (growth) levels provided the first evidence of thermal priming in seagrasses. Non-preheated plants suffered a significant reduction in photosynthetic capacity, leaf growth and chlorophyll a content, while preheated plants were able to cope better with the recurrent stressful event. Gene expression results demonstrated significant regulation of methylation-related genes in response to thermal stress, suggesting that epigenetic modifications could play a central role in seagrass thermal stress memory. In addition, we revealed some interspecific differences in thermal responses between the two different functional types of seagrass species. These results provide the first insights into thermal priming and relative epigenetic modifications in seagrasses paving the way for more comprehensive forecasting and management of thermal stress in these marine foundation species in an era of rapid environmental change.
Collapse
Affiliation(s)
| | - Mikael Kim
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Peter J. Ralph
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Mathieu Pernice
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | | |
Collapse
|
20
|
Cadavid IC, Guzman F, de Oliveira-Busatto L, de Almeida RMC, Margis R. Transcriptional analyses of two soybean cultivars under salt stress. Mol Biol Rep 2020; 47:2871-2888. [PMID: 32227253 DOI: 10.1007/s11033-020-05398-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/25/2020] [Indexed: 01/12/2023]
Abstract
Soybean is an economically important plant, and its production is affected in soils with high salinity levels. It is important to understand the adaptive mechanisms through which plants overcome this kind of stress and to identify potential genes for improving abiotic stress tolerance. RNA-Seq data of two Glycine max cultivars, a drought-sensitive (C08) and a tolerant (Conquista), subjected to different periods of salt stress were analyzed. The transcript expression profile was obtained using a transcriptogram approach, comparing both cultivars and different times of treatment. After 4 h of salt stress, Conquista cultivar had 1400 differentially expressed genes, 647 induced and 753 repressed. Comparative expression revealed that 719 genes share the same pattern of induction or repression between both cultivars. Among them, 393 genes were up- and 326 down-regulated. Salt stress also modified the expression of 54 isoforms of miRNAs in Conquista, by the maturation of 39 different pre-miRNAs. The predicted targets for 12 of those mature miRNAs also have matches with 15 differentially expressed genes from our analyses. We found genes involved in important pathways related to stress adaptation. Genes from both ABA and BR signaling pathways were modulated, with possible crosstalk between them, and with a likely post-transcriptional regulation by miRNAs. Genes related to ethylene biosynthesis, DNA repair, and plastid translation process were those that could be regulated by miRNA.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Frank Guzman
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Av. La Molina, 1981, Lima 12, Perú
| | - Luisa de Oliveira-Busatto
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rita M C de Almeida
- Instituto de Física, Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto Nacional de Ciência E Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós Graduação Em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Rogerio Margis
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas (LGPP), Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves, 9500 - Prédio 43422, Laboratório 206, Porto Alegre, Brazil.
| |
Collapse
|
21
|
Xu P, Su H, Jin R, Mao Y, Xu A, Cheng H, Wang Y, Meng Q. Shading Effects on Leaf Color Conversion and Biosynthesis of the Major Secondary Metabolites in the Albino Tea Cultivar "Yujinxiang". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2528-2538. [PMID: 32011878 DOI: 10.1021/acs.jafc.9b08212] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Albino became a novel kind of tea cultivar in China recently. In this study, transcriptome and whole-genome bisulfite sequencing (WGBS) were employed to investigate the shading effects on leaf color conversion and biosynthesis of three major secondary metabolites in the albino tea cultivar "Yujinxiang". The increased leaf chlorophyll level was likely the major cause for shaded leaf greening from young pale or yellow leaf. In comparison with the control, the total catechin level of the shading group was significantly decreased and the abundance of caffeine was markedly increased, while the theanine level was nearly not influenced. Meanwhile, differentially expressed genes (DEGs) enriched in some biological processes and pathways were identified by transcriptome analysis. Furthermore, whole-genome DNA methylation analysis revealed that the global genomic DNA methylation patterns of the shading period were remarkably altered in comparison with the control. In addition, differentially methylated regions (DMRs) and the DMR-related DEG analysis indicated that the DMR-related DEGs were the critical participants in biosynthesis of the major secondary metabolites. These findings suggest that DNA methylation is probably responsible for changes in the contents of the major secondary metabolites in Yujinxiang.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Hui Su
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Rong Jin
- Agricultural Experiment Station , Zhejiang University , Zijingang Campus, Hangzhou , People's Republic of China
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Sciences , Hangzhou 310000 , People's Republic of China
| | - Anan Xu
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Haiyan Cheng
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Yuefei Wang
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Qing Meng
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
| |
Collapse
|
22
|
Fiust A, Rapacz M. Downregulation of three novel candidate genes is important for freezing tolerance of field and laboratory cold acclimated barley. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153049. [PMID: 31760347 DOI: 10.1016/j.jplph.2019.153049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Diversity arrays technology (DArT) marker sequences for barley were used for identifying new potential candidate genes for freezing tolerance (FT). We used quantitative trait loci (QTL) genetic linkage maps for FT and photosynthetic acclimation to cold for six- and two-row barley populations, and a set of 20 DArT markers obtained using the association mapping of parameters for photosynthetic acclimation to low temperatures in barley for the bioinformatics analyses. Several nucleotide and amino acid sequence, annotation databases and associated algorithms were used to identify the similarities of six of the marker sequences to potential genes involved in plant low temperature response. Gene ontology (GO) annotations based on similarities to database sequences were assigned to these marker sequences, and indicated potential involvement in signal transduction pathways in response to stress factors and epigenetic processes, as well as auxin transport mechanisms. Furthermore, relative gene expressions for three of six of new identified genes (Hv.ATPase, Hv.DDM1, and Hv.BIG) were assessed within four barley genotypes of different FT. A physiological assessment of FT was conducted based on plant survival rates in two field-laboratory and one laboratory experiments. The results suggested that plant survival rate after freezing but not the degree of freezing-induced leaf damage between the tested accessions can be correlated with the degree of low-temperature downregulation of the studied candidate genes, which encoded proteins involved in the control of plant growth and development. Additionally, candidate genes for qRT-PCR suitable for the analysis of cold acclimation response in barley were suggested after validation.
Collapse
Affiliation(s)
- Anna Fiust
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239, Krakow, Poland.
| | - Marcin Rapacz
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239, Krakow, Poland.
| |
Collapse
|
23
|
Method for Bisulfite Sequencing Data Analysis for Whole-Genome Level DNA Methylation Detection in Legumes. Methods Mol Biol 2020; 2107:127-145. [PMID: 31893445 DOI: 10.1007/978-1-0716-0235-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methylation of cytosines in DNA is the most stable type of epigenetic modification that is established and maintained by different enzymes. In plants, DNA methylation is inherited from one generation to another leaving an epigenetic mark as a memory of previous state, which may include encounter with stress or pathogen. Advancement in the next generation sequencing technologies has enabled the profiling of methylation marks. Whole-genome bisulfite sequencing (WGBS) has the potential to unravel the patterns of DNA methylation at single-base resolution. Though the sequencing technologies have evolved drastically, analysis of WGBS data still remains challenging. Here, we provide a methodology for performing WGBS data analysis along with critical steps for identification of methylation marks in plant genomes including legumes.
Collapse
|
24
|
Agarwal S, Khan S. Heavy Metal Phytotoxicity: DNA Damage. CELLULAR AND MOLECULAR PHYTOTOXICITY OF HEAVY METALS 2020. [DOI: 10.1007/978-3-030-45975-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Complex relationship between DNA methylation and gene expression due to Lr28 in wheat-leaf rust pathosystem. Mol Biol Rep 2019; 47:1339-1360. [DOI: 10.1007/s11033-019-05236-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
|
26
|
Tirnaz S, Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. TRENDS IN PLANT SCIENCE 2019; 24:1137-1150. [PMID: 31604599 DOI: 10.1016/j.tplants.2019.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
Crop diseases, in conjunction with climate change, are a major threat to global crop production. DNA methylation is an epigenetic mark and is involved in plants' biological processes, including development, stress adaptation, and genome evolution. By providing a new source of variation, DNA methylation introduces novel direction to both scientists and breeders with its potential in disease resistance enhancement. Here, we discuss the impact of pathogen-induced DNA methylation modifications on a host's transcriptome reprogramming and genome stability, as part of the plant's defense mechanisms. We also highlight the knowledge gaps that need to be investigated for understanding the entire role of DNA methylation in plant pathogen interactions. This will ultimately assist breeders toward improving resistance and decreasing yield losses.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
27
|
Genome-wide identification, classification, expression profiling and DNA methylation (5mC) analysis of stress-responsive ZFP transcription factors in rice (Oryza sativa L.). Gene 2019; 718:144018. [DOI: 10.1016/j.gene.2019.144018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
|
28
|
Wang C, Wang C, Zou J, Yang Y, Li Z, Zhu S. Epigenetics in the plant-virus interaction. PLANT CELL REPORTS 2019; 38:1031-1038. [PMID: 31065780 DOI: 10.1007/s00299-019-02414-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/25/2019] [Indexed: 05/23/2023]
Abstract
Plants have developed diverse molecular mechanisms to resist viruses. RNA silencing plays a dominant role in antiviral defense. Recent studies have correlated plant antiviral silencing to epigenetic modification in genomic DNA and protein by remodeling the expression levels of coding genes. The plant host methylation level is reprogrammed in response to viral challenge. Genomes of some viruses have been implicated in the epigenetic modification via small RNA-mediated transcriptional gene silencing and post-transcriptional gene silencing. These mechanisms can be primed prior to a virus attack through methylation changes for antiviral defense. This review highlights the findings concerning the methylation changes in plant-virus interactions and demonstrates a possible direction to improve the understanding of plant host methylation regulation in response to viral infection.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jingze Zou
- College of Biological Sciences, China Agricultural University, Beijing, 100083, China
| | - Yunshu Yang
- Beijing Academy of Food Sciences, Beijing, 100162, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Shuifang Zhu
- College of Plant Protection, China Agricultural University, Beijing, 100083, China.
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
29
|
Liang X, Hou X, Li J, Han Y, Zhang Y, Feng N, Du J, Zhang W, Zheng D, Fang S. High-resolution DNA methylome reveals that demethylation enhances adaptability to continuous cropping comprehensive stress in soybean. BMC PLANT BIOLOGY 2019; 19:79. [PMID: 30777019 PMCID: PMC6380062 DOI: 10.1186/s12870-019-1670-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/01/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Continuous cropping stress involves such factors as biological barriers, allelopathic autotoxicity, deterioration of soil physicochemical properties, and soil fertility imbalance and is regarded as a kind of comprehensive stress limiting soybean yield and quality. Genomic DNA methylation is an important regulatory mechanism for plants to resist various environmental stresses. Therefore, it is especially worthwhile to reveal genomic methylation characteristics under stress and clarify the relationship between DNA methylation status and continuous cropping stress adaptability in soybean. RESULTS We generated a genome-wide map of cytosine methylation induced by this kind of comprehensive stress in a tolerant soybean variety (Kang Xian 2, KX2) and a sensitive variety (He Feng, HF55) using whole-genome bisulfite sequencing (WGBS) technology. The expression of DNA demethylase genes was detected using real-time quantitative PCR (qRT-PCR). The functions of differentially methylated genes (DMGs) involved in stress response in biochemical metabolism and genetic information transmission were further assessed based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results showed that genomic DNA demethylation was closely related to continuous cropping comprehensive stress adaptability in soybean, which was further verified by the increasing expression of DNA demethylases ROS1 and DML. The demethylation of mCpG and mCpHpG (mCpApG preferred) contexts was more critical, which mainly occurred in gene-regulatory regions at the whole-chromosome scale. Moreover, this kind of stress adaptability may be related to various stress responders generated through strengthened glucose catabolism and amino acid and fatty acid anabolism, as well as fidelity transmission of genetic information. CONCLUSIONS Genomic DNA demethylation was closely associated with continuous cropping comprehensive stress adaptability, highlighting the promising potential of screening continuous cropping-tolerant cultivars by DNA methylation index and further exploring the application of DNA demethylases in soybean breeding.
Collapse
Affiliation(s)
- Xilong Liang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xue Hou
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agriculture Science, Daqing, 163316 China
| | - Yiqiang Han
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Naijie Feng
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Jidao Du
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Wenhui Zhang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Dianfeng Zheng
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Shumei Fang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| |
Collapse
|
30
|
Shi W, Hu X, Chen X, Ou X, Yang J, Geng Y. Increased population epigenetic diversity of the clonal invasive species Alternanthera philoxeroides in response to salinity stress. Genes Genet Syst 2018; 93:259-269. [PMID: 30568068 DOI: 10.1266/ggs.18-00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenetic modification can change the pattern of gene expression without altering the underlying DNA sequence, which may be adaptive in clonal plant species. In this study, we used MSAP (methylation-sensitive amplification polymorphism) to examine epigenetic variation in Alternanthera philoxeroides, a clonal invasive species, in response to salinity stress. We found that salinity stress could significantly increase the level of epigenetic diversity within a population. This effect increased with increasing stress duration and was specific to particular genotypes. In addition, the epigenetic modification of young plants seems less sensitive to salinity than that of mature plants. This elevated epigenetic diversity in response to environmental stress may compensate for genetic impoverishment and contribute to evolutionary potential in clonal species.
Collapse
Affiliation(s)
- Wen Shi
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University.,School of Life Sciences, Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University
| | - Xia Hu
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University
| | - Xiaojie Chen
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University
| | - Xiaokun Ou
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University
| | - Yupeng Geng
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University
| |
Collapse
|
31
|
Zoldoš V, Biruš I, Muratovic E, Šatovic Z, Vojta A, Robin O, Pustahija F, Bogunic F, Vicic Bockor V, Siljak-Yakovlev S. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions. Genome Biol Evol 2018; 10:291-303. [PMID: 29342280 PMCID: PMC5786246 DOI: 10.1093/gbe/evy010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpentine soil. Amplified fragment length polymorphism and methylation-sensitive amplification polymorphism analyses revealed that the three populations did not differentiate genetically, but were clearly separated in three distinct clusters according to DNA methylation profiles. Principal coordinate analysis showed that overall epigenetic variation was closely related to habitat conditions. A new methylation-sensitive amplification polymorphism scoring approach allowed identification of mainly unmethylated (φST = 0.190) and fully CpG methylated (φST = 0.118) subepiloci playing a role in overall population differentiation, in comparison with hemimethylated sites (φST = 0.073). In addition, unusual rDNA repatterning and the presence of B chromosomes bearing 5S rDNA loci were recorded in the population growing on serpentine soil, suggesting dynamic chromosome rearrangements probably linked to global genome demethylation, which might have reactivated some mobile elements. We discuss our results considering our earlier data on morphology and leaf anatomy of several L. bosniacum populations, and suggest a possible role of epigenetics as a key element in population differentiation associated with environmental stress in these particular lily populations.
Collapse
Affiliation(s)
- Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Ivan Biruš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Edina Muratovic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina
| | - Zlatko Šatovic
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Aleksandar Vojta
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Odile Robin
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Fatima Pustahija
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Faruk Bogunic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Vedrana Vicic Bockor
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Sonja Siljak-Yakovlev
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
32
|
Uthup TK, Karumamkandathil R, Ravindran M, Saha T. Heterografting induced DNA methylation polymorphisms in Hevea brasiliensis. PLANTA 2018; 248:579-589. [PMID: 29799082 DOI: 10.1007/s00425-018-2918-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/11/2018] [Indexed: 05/19/2023]
Abstract
Heterografting induced intraclonal epigenetic variations were detected among rubber plants. Interaction between genetically divergent root stock and scion tissues might have triggered these epigenetic changes which may eventually lead to intraclonal variability in rubber. DNA methylation in response to stress may be associated with the alteration in gene transcription leading to morphological changes in plants. Rubber tree is commercially propagated by bud grafting where the scion of a high yielding variety is grafted on to a genetically divergent root stock. Still, significant levels of intraclonal variations exist among them. Epigenetic changes associated with heterografting may be partly responsible for this conundrum. In the present study, an attempt was made to identify the impact of divergent root stock on the epigenome of scion in grafted rubber plants. Heterografts were developed by grafting eye buds from a single polyembryony derived seedling on to genetically divergent root stocks of unknown parentage. The plants were uniformly maintained and their DNA was subjected to MSAP analysis. Polymorphic DNA methylation bands corresponding to CG as well as the plant-specific CHG types of methylation were observed. Cloning of selected polymorphic regions and bisulfite sequencing confirmed the presence of methylation in the promoter and coding region of important genes including an LRR receptor kinase gene. Since divergent root stock is the major factor differentiating the grafted plants, the changes in DNA methylation patterns might have been triggered by the interaction between the two genetically different tissues of stock and scion. The study assumes importance in Hevea, because accumulation and maintenance of epigenetic changes in functional genes and promoters during subsequent cycles of vegetative propagation may contribute towards intraclonal variability eventually leading to altered phenotypes.
Collapse
Affiliation(s)
- Thomas K Uthup
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India.
| | - Rekha Karumamkandathil
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| | - Minimol Ravindran
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| | - Thakurdas Saha
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| |
Collapse
|
33
|
Bhatia H, Khemka N, Jain M, Garg R. Genome-wide bisulphite-sequencing reveals organ-specific methylation patterns in chickpea. Sci Rep 2018; 8:9704. [PMID: 29946142 PMCID: PMC6018830 DOI: 10.1038/s41598-018-27979-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is widely known to regulate gene expression in eukaryotes. Here, we unraveled DNA methylation patterns in cultivated chickpea to understand the regulation of gene expression in different organs. We analyzed the methylation pattern in leaf tissue of wild chickpea too, and compared it with cultivated chickpea. Our analysis indicated abundant CG methylation within gene-body and CHH methylation in intergenic regions of the chickpea genome in all the organs examined. Analysis of differentially methylated regions (DMRs) demonstrated a higher number of CG context DMRs in wild chickpea and CHH context DMRs in cultivated chickpea. We observed increased preponderance of hypermethylated DMRs in the promoter regions and hypomethylated DMRs in the genic regions in cultivated chickpea. Genomic location and context of the DMRs correlated well with expression of proximal genes. Our results put forth a positive correlation of promoter hypermethylation with increased transcript abundance via identification of DMR-associated genes involved in flower development in cultivated chickpea. The atypical correlation observed between promoter hypermethylation and increased transcript abundance might be dependent on 24-nt small RNAs and transcription factors binding to the promoter region. This study provides novel insights into DNA methylation patterns in chickpea and their role in regulation of gene expression.
Collapse
Affiliation(s)
- Himanshi Bhatia
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Niraj Khemka
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
34
|
Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare). EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Analysis of sulphur and chlorine induced DNA cytosine methylation alterations in fresh corn (Zea mays L. saccharata and rugosa) leaf tissues by methylation sensitive amplification polymorphism (MSAP) approach. Genes Genomics 2018; 40:913-925. [PMID: 30155706 DOI: 10.1007/s13258-018-0685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 01/24/2023]
Abstract
DNA (cytosine) methylation mechanism is another way through which plants respond to various cues including soil fertility amendments and abiotic stresses, and the mechanism has been used to infer some physiological, biochemical or adaptation processes. Despite numerous studies on global DNA methylation profiling in various crop species, however, researches on fresh corn (Zea mays L. saccharata or rugosa) remain largely unreported. The study aimed at investigating sulphur and chlorine induced DNA methylation changes in the fresh corn leaves of field-grown plants at the milk stage. Methylation sensitive amplification polymorphism (MSAP) technique was used to profile sulphur (S) and chlorine (Cl) induced DNA methylation patterns, levels and polymorphism alterations at the CCGG sites in fresh corn leaves of TDN21, JKN2000 and JKN928 hybrid cultivars. Twelve primer pairs used effectively detected 325 MSAP bands, exhibiting differentially methylated sites in the genomic DNA of all the three cultivars, with control showing higher (48.9-56.3%) type I bands as compared to sulphur (34.8-44.9%) and chlorine (40.9-47.4%) treatment samples. Consequently, total methylation levels were greater in S and Cl treatment samples than control; accounting for 43.7-59.7, 51.1-65.2 and 46.8-55.1% of total sites in TDN21, JKN2000 and JKN928, respectively. Full methylation of the internal cytosine was greater than hemi-methylation. Further, demethylation polymorphic loci significantly exceeded methylation polymorphic loci, being greater in S than Cl and control samples in all cultivars. Sulphur and chlorine have a profound influence on DNA methylation patterns and levels at the milk stage, principally by increasing the demethylation loci in the internal cytosine of the fresh corn genome. We speculate that these methylation alterations play an integral role in photosynthates assimilation and physiochemical pathways regulating quality parameters in kernels, as well as abiotic stress responses in fresh corn.
Collapse
|
36
|
Sudan J, Raina M, Singh R. Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 2018; 8:172. [PMID: 29556426 PMCID: PMC5845050 DOI: 10.1007/s13205-018-1202-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/07/2018] [Indexed: 10/17/2022] Open
Abstract
Plants have evolved various defense mechanisms including morphological adaptations, cellular pathways, specific signalling molecules and inherent immunity to endure various abiotic stresses during different growth stages. Most of the defense mechanisms are controlled by stress-responsive genes by transcribing and translating specific genes. However, certain modifications of DNA and chromatin along with small RNA-based mechanisms have also been reported to regulate the expression of stress-responsive genes and constitute another line of defense for plants in their struggle against stresses. More recently, studies have suggested that these modifications are heritable to the future generations as well, thereby indicating their possible role in the evolutionary mechanisms related to abiotic stresses.
Collapse
Affiliation(s)
- Jebi Sudan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Meenakshi Raina
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| |
Collapse
|
37
|
Paul A, Dasgupta P, Roy D, Chaudhuri S. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. PLANT MOLECULAR BIOLOGY 2017; 95:63-88. [PMID: 28741224 DOI: 10.1007/s11103-017-0636-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.
Collapse
Affiliation(s)
- Amit Paul
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Dipan Roy
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
38
|
Hossain MS, Kawakatsu T, Kim KD, Zhang N, Nguyen CT, Khan SM, Batek JM, Joshi T, Schmutz J, Grimwood J, Schmitz RJ, Xu D, Jackson SA, Ecker JR, Stacey G. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. THE NEW PHYTOLOGIST 2017; 214:808-819. [PMID: 28106918 DOI: 10.1111/nph.14421] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/01/2016] [Indexed: 05/23/2023]
Abstract
Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat).
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Taiji Kawakatsu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 30508602, Japan
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| | - Ning Zhang
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Cuong T Nguyen
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Saad M Khan
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Josef M Batek
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Robert J Schmitz
- Department of Genetics, The University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Dong Xu
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
39
|
Santos AP, Ferreira LJ, Oliveira MM. Concerted Flexibility of Chromatin Structure, Methylome, and Histone Modifications along with Plant Stress Responses. BIOLOGY 2017; 6:biology6010003. [PMID: 28275209 PMCID: PMC5371996 DOI: 10.3390/biology6010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
The spatial organization of chromosome structure within the interphase nucleus, as well as the patterns of methylome and histone modifications, represent intersecting layers that influence genome accessibility and function. This review is focused on the plastic nature of chromatin structure and epigenetic marks in association to stress situations. The use of chemical compounds (epigenetic drugs) or T-DNA-mediated mutagenesis affecting epigenetic regulators (epi-mutants) are discussed as being important tools for studying the impact of deregulated epigenetic backgrounds on gene function and phenotype. The inheritability of epigenetic marks and chromatin configurations along successive generations are interpreted as a way for plants to “communicate” past experiences of stress sensing. A mechanistic understanding of chromatin and epigenetics plasticity in plant response to stress, including tissue- and genotype-specific epigenetic patterns, may help to reveal the epigenetics contributions for genome and phenotype regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| | - Liliana J Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
40
|
Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress. Sci Rep 2017; 7:40819. [PMID: 28084460 PMCID: PMC5234020 DOI: 10.1038/srep40819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
Sweet potato is an important food and bio-energy crop, and investigating the mechanisms underlying salt tolerance will provide information for salt-tolerant breeding of this crop. Here, the root transcriptomes of the salt-sensitive variety Lizixiang and the salt-tolerant line ND98 were compared to identify the genes and pathways involved in salt stress responses. In total, 8,744 and 10,413 differentially expressed genes (DEGs) in Lizixiang and ND98, respectively, were involved in salt responses. A lower DNA methylation level was detected in ND98 than in Lizixiang. In both genotypes, the DEGs, which function in phytohormone synthesis and signalling and ion homeostasis, may underlie the different degrees of salt tolerance. Significant up-regulations of the genes involved in the jasmonic acid (JA) biosynthesis and signalling pathways and ion transport, more accumulation of JA, a higher degree of stomatal closure and a lower level of Na+ were found in ND98 compared to Lizixiang. This is the first report on transcriptome responses to salt tolerance in sweet potato. These results reveal that the JA signalling pathway plays important roles in the response of sweet potato to salt stress. This study provides insights into the mechanisms and genes involved in the salt tolerance of sweet potato.
Collapse
|
41
|
Meng C, Quan TY, Li ZY, Cui KL, Yan L, Liang Y, Dai JL, Xia GM, Liu SW. Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat. BMC Genomics 2017; 18:24. [PMID: 28056779 PMCID: PMC5217398 DOI: 10.1186/s12864-016-3421-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022] Open
Abstract
Background Soil alkalinity shows significant constraints to crop productivity; however, much less attention has been paid to analyze the effect of soil alkalinity on plant growth and development. Shanrong No. 4 (SR4) is an alkalinity tolerant bread wheat cultivar selected from an asymmetric somatic hybridization between the bread wheat cultivar Jinan 177 (JN177) and tall wheatgrass (Thinopyrum ponticum), which is a suitable material for studying alkalinity tolerant associate genes. Results The growth of SR4 plant seedlings was less inhibited than that of JN177 when exposed to alkalinity stress conditions. The root cytosolic Na+/K+ ratio in alkalinity stressed SR4 was lower than in JN177, while alkalinity stressed SR4 contained higher level of nutrient elements than in JN177. SR4 plant seedlings accumulated less malondialdehyde (MDA) and reactive oxygen species (ROS), it also showed higher activity of ROS scavenging enzymes than JN177 under alkalinity stress. The root intracellular pH decreased in both alkalinity stressed JN177 and SR4, however, it was much lower in SR4 than in JN177 under alkalinity stress. The transcriptomes of SR4 and JN177 seedlings exposed to alkalinity stress were analyzed by digital gene expression tag profiling method. Alkalinity stress conditions up- and down-regulated a large number of genes in the seedling roots that play the functions in the categories of transcription regulation, signal transduction and protein modification. Conclusions SR4 expresses a superior tolerance to alkaline stress conditions which is due to its strong absorbing ability for nutrient ions, a strong regulating ability for intracellular and rhizosphere pH and a more active ROS scavenging ability. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3421-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Meng
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Tai-Yong Quan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Zhong-Yi Li
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Kang-Li Cui
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Li Yan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Yu Liang
- Forest and Wetland Institute, Shandong Academy of Forestry, Jinan, 250014, People's Republic of China
| | - Jiu-Lan Dai
- Environment Research Institute, Shandong University, Jinan, 250100, People's Republic of China
| | - Guang-Min Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Shu-Wei Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
42
|
Viggiano L, de Pinto MC. Dynamic DNA Methylation Patterns in Stress Response. PLANT EPIGENETICS 2017. [DOI: 10.1007/978-3-319-55520-1_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Kellenberger RT, Schlüter PM, Schiestl FP. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa. PLoS One 2016; 11:e0166646. [PMID: 27870873 PMCID: PMC5117703 DOI: 10.1371/journal.pone.0166646] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022] Open
Abstract
Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP) analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.
Collapse
Affiliation(s)
- Roman T. Kellenberger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Florian P. Schiestl
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Kumar R, Chauhan PK, Khurana A. Identification and expression profiling of DNA methyltransferases during development and stress conditions in Solanaceae. Funct Integr Genomics 2016; 16:513-28. [DOI: 10.1007/s10142-016-0502-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022]
|
45
|
Yao Y, Bilichak A, Golubov A, Kovalchuk I. Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination. PLANT SIGNALING & BEHAVIOR 2016; 11:e1151599. [PMID: 26901311 PMCID: PMC4991315 DOI: 10.1080/15592324.2016.1151599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 05/31/2023]
Abstract
Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis.
Collapse
Affiliation(s)
- Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrey Golubov
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Igor Kovalchuk
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
46
|
Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct 2016; 34:289-98. [PMID: 27003927 DOI: 10.1002/cbf.3183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X-chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amr Rafat Elhamamsy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
47
|
Centomani I, Sgobba A, D'Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. PROTOPLASMA 2015; 252:1451-9. [PMID: 25712591 DOI: 10.1007/s00709-015-0772-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 05/24/2023]
Abstract
The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.
Collapse
Affiliation(s)
- Isabella Centomani
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Nunzio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, via A. del Portillo 21, 00128, Rome, Italy
| | - Silvio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
48
|
Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 2015; 5:14922. [PMID: 26449881 PMCID: PMC4598828 DOI: 10.1038/srep14922] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that play an important role in gene regulation in response to environmental conditions. The understanding of DNA methylation at the whole genome level can provide insights into the regulatory mechanisms underlying abiotic stress response/adaptation. We report DNA methylation patterns and their influence on transcription in three rice (Oryza sativa) cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant; Pokkali, salinity-tolerant) via an integrated analysis of whole genome bisulphite sequencing and RNA sequencing. We discovered extensive DNA methylation at single-base resolution in rice cultivars, identified the sequence context and extent of methylation at each site. Overall, methylation levels were significantly different in the three rice cultivars. Numerous differentially methylated regions (DMRs) among different cultivars were identified and many of which were associated with differential expression of genes important for abiotic stress response. Transposon-associated DMRs were found coupled to the transcript abundance of nearby protein-coding gene(s). Small RNA (smRNA) abundance was found to be positively correlated with hypermethylated regions. These results provide insights into interplay among DNA methylation, gene expression and smRNA abundance, and suggest a role in abiotic stress adaptation in rice.
Collapse
|
49
|
Pandey N, Pandey-Rai S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. PLANTA 2015; 242:869-879. [PMID: 25998525 DOI: 10.1007/s00425-015-2323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
UV-B-caused DNA hypomethylation and UV-B-mediated epigenetic activation of additional WRKY-binding site(s) in the DBR2 promoter may contribute to the overexpression of the DBR2 gene in Artemisia annua. DNA methylation is one of the key mechanisms behind stress-induced transcriptional switch off/on. Here, we evaluate the DNA methylation level in response to UV-B radiation in Artemisia annua which produces artemisinin, a sesquiterpene that has been recommended by WHO for the frontline treatment of malaria. However, the drug is facing serious shortage due to its low concentration in plants. UV-B treatment (3 h) enhanced artemisinin concentration up to 1.91-fold as compared to control. A key regulatory gene of artemisinin biosynthesis, DBR2 was upregulated under UV-B. This study presents observations regarding contributions of DNA methylation to the gene regulation using DBR2 as an example. Restriction digestion of genomic DNA by isoschizomers (MspI and HpaII) suggested UV-B involvement in DNA hypomethylation in A. annua. The global level of DNA methylation (R) was 3.4 and 5.9% for UV-B treated and control plants, respectively, attesting hypomethylation of DNA in response to UV-B. Further bisulfite sequencing PCR showed demethylation at two CHG sites in 18S rRNA gene. Similarly, bisulfite sequencing of promoter region of DBR2 has demonstrated demethylation at 4 CG-, 4 CHH- and 2 CHG-sites. In silico analysis revealed UV-B-mediated demethylation at seven putative transcription factor binding sites including WRKY, which are positive regulators of artemisinin biosynthesis. UV-B treatment has resulted in activation of additional WRKY-binding site in UV-B-treated plants compared with single active WRKY-binding site in control and this could be the probable reason for overexpression of DBR2. It is suggested that DNA demethylation is an important epigenetic response to UV-B radiation in A. annua that surely will provide new horizons to further elucidate the mechanistic evidence of plant's responses to UV-B radiation.
Collapse
Affiliation(s)
- Neha Pandey
- Laboratory of Morphogenesis, Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | |
Collapse
|
50
|
Aulakh SS, Veilleux RE, Tang G, Flinn BS. Characterization of a potato activation-tagged mutant, nikku, and its partial revertant. PLANTA 2015; 241:1481-1495. [PMID: 25772042 DOI: 10.1007/s00425-015-2272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
A potato mutant with a strong stress-response phenotype, and a partial mutant revertant, were characterized. Gene expression patterns and DNA cytosine methylation varied between these and wild-type, indicating a role for DNA cytosine methylation changes in the gene expression and visible phenotypes. Morphological and molecular studies were conducted to compare potato cv. Bintje, a Bintje activation-tagged mutant (nikku), and nikku revertant phenotype plants. Morphological studies revealed that nikku plants exhibited an extremely dwarf phenotype, had small hyponastic leaves, were rootless, and infrequently produced small tubers compared to wild-type Bintje. The overall phenotype was suggestive of a constitutive stress response, which was further supported by the greater expression level of several stress-responsive genes in nikku. Unlike the nikku mutant, the revertant exhibited near normal shoot elongation, larger leaves and consistent rooting. The reversion appeared partial, and was not the result of a loss of 35S enhancer copies from the original nikku mutant. Southern blot analyses indicated the presence of a single T-DNA insertion on chromosome 12 in the mutant. Gene expression studies comparing Bintje, nikku and revertant phenotype plants indicated transcriptional activation/repression of several genes flanking both sides of the insertion in the mutant, suggesting that activation tagging had pleiotropic effects in nikku. In contrast, gene expression levels for many, but not all, of the same genes in the revertant were similar to Bintje, indicating some reversion at the gene expression level as well. DNA methylation studies indicated differences in cytosine methylation status of the 35S enhancers between the nikku mutant and its revertant. In addition, global DNA cytosine methylation varied between Bintje, the nikku mutant and the revertant, suggesting involvement in gene expression changes, as well as mutant phenotype.
Collapse
|