1
|
Courret C, Hemmer LW, Wei X, Patel PD, Chabot BJ, Fuda NJ, Geng X, Chang CH, Mellone BG, Larracuente AM. Turnover of retroelements and satellite DNA drives centromere reorganization over short evolutionary timescales in Drosophila. PLoS Biol 2024; 22:e3002911. [PMID: 39570997 PMCID: PMC11620609 DOI: 10.1371/journal.pbio.3002911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/05/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Centromeres reside in rapidly evolving, repeat-rich genomic regions, despite their essential function in chromosome segregation. Across organisms, centromeres are rich in selfish genetic elements such as transposable elements and satellite DNAs that can bias their transmission through meiosis. However, these elements still need to cooperate at some level and contribute to, or avoid interfering with, centromere function. To gain insight into the balance between conflict and cooperation at centromeric DNA, we take advantage of the close evolutionary relationships within the Drosophila simulans clade-D. simulans, D. sechellia, and D. mauritiana-and their relative, D. melanogaster. Using chromatin profiling combined with high-resolution fluorescence in situ hybridization on stretched chromatin fibers, we characterize all centromeres across these species. We discovered dramatic centromere reorganization involving recurrent shifts between retroelements and satellite DNAs over short evolutionary timescales. We also reveal the recent origin (<240 Kya) of telocentric chromosomes in D. sechellia, where the X and fourth centromeres now sit on telomere-specific retroelements. Finally, the Y chromosome centromeres, which are the only chromosomes that do not experience female meiosis, do not show dynamic cycling between satDNA and TEs. The patterns of rapid centromere turnover in these species are consistent with genetic conflicts in the female germline and have implications for centromeric DNA function and karyotype evolution. Regardless of the evolutionary forces driving this turnover, the rapid reorganization of centromeric sequences over short evolutionary timescales highlights their potential as hotspots for evolutionary innovation.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lucas W. Hemmer
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Xiaolu Wei
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Prachi D. Patel
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Bryce J. Chabot
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Nicholas J. Fuda
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Xuewen Geng
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amanda M. Larracuente
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
2
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
3
|
Nibau C, Gonzalo A, Evans A, Sweet‐Jones W, Phillips D, Lloyd A. Meiosis in allopolyploid Arabidopsis suecica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1110-1122. [PMID: 35759495 PMCID: PMC9545853 DOI: 10.1111/tpj.15879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Polyploidy is a major force shaping eukaryote evolution but poses challenges for meiotic chromosome segregation. As a result, first-generation polyploids often suffer from more meiotic errors and lower fertility than established wild polyploid populations. How established polyploids adapt their meiotic behaviour to ensure genome stability and accurate chromosome segregation remains an active research question. We present here a cytological description of meiosis in the model allopolyploid species Arabidopsis suecica (2n = 4x = 26). In large part meiosis in A. suecica is diploid-like, with normal synaptic progression and no evidence of synaptic partner exchanges. Some abnormalities were seen at low frequency, including univalents at metaphase I, anaphase bridges and aneuploidy at metaphase II; however, we saw no evidence of crossover formation occurring between non-homologous chromosomes. The crossover number in A. suecica is similar to the combined number reported from its diploid parents Arabidopsis thaliana (2n = 2x = 10) and Arabidopsis arenosa (2n = 2x = 16), with an average of approximately 1.75 crossovers per chromosome pair. This contrasts with naturally evolved autotetraploid A. arenosa, where accurate chromosome segregation is achieved by restricting crossovers to approximately 1 per chromosome pair. Although an autotetraploid donor is hypothesized to have contributed the A. arenosa subgenome to A. suecica, A. suecica harbours diploid A. arenosa variants of key meiotic genes. These multiple lines of evidence suggest that meiosis in the recently evolved allopolyploid A. suecica is essentially diploid like, with meiotic adaptation following a very different trajectory to that described for autotetraploid A. arenosa.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Adrián Gonzalo
- John Innes CentreColney LaneNorwichNR4 7UHUK
- Department of Biology, Institute of Molecular Plant BiologySwiss Federal Institute of Technology (ETH) ZürichZürich8092Switzerland
| | - Aled Evans
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - William Sweet‐Jones
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Dylan Phillips
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| |
Collapse
|
4
|
Naish M, Alonge M, Wlodzimierz P, Tock AJ, Abramson BW, Schmücker A, Mandáková T, Jamge B, Lambing C, Kuo P, Yelina N, Hartwick N, Colt K, Smith LM, Ton J, Kakutani T, Martienssen RA, Schneeberger K, Lysak MA, Berger F, Bousios A, Michael TP, Schatz MC, Henderson IR. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 2021; 374:eabi7489. [PMID: 34762468 PMCID: PMC10164409 DOI: 10.1126/science.abi7489] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Piotr Wlodzimierz
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Andrew J. Tock
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Bradley W. Abramson
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Schmücker
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Bhagyshree Jamge
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Christophe Lambing
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Pallas Kuo
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Natasha Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nolan Hartwick
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kelly Colt
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lisa M. Smith
- School of Biosciences and Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences and Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Tetsuji Kakutani
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Korbinian Schneeberger
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | | | - Todd P. Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
5
|
Bodrug-Schepers A, Stralis-Pavese N, Buerstmayr H, Dohm JC, Himmelbauer H. Quinoa genome assembly employing genomic variation for guided scaffolding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3577-3594. [PMID: 34365519 PMCID: PMC8519820 DOI: 10.1007/s00122-021-03915-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
We propose to use the natural variation between individuals of a population for genome assembly scaffolding. In today's genome projects, multiple accessions get sequenced, leading to variant catalogs. Using such information to improve genome assemblies is attractive both cost-wise as well as scientifically, because the value of an assembly increases with its contiguity. We conclude that haplotype information is a valuable resource to group and order contigs toward the generation of pseudomolecules. Quinoa (Chenopodium quinoa) has been under cultivation in Latin America for more than 7500 years. Recently, quinoa has gained increasing attention due to its stress resistance and its nutritional value. We generated a novel quinoa genome assembly for the Bolivian accession CHEN125 using PacBio long-read sequencing data (assembly size 1.32 Gbp, initial N50 size 608 kbp). Next, we re-sequenced 50 quinoa accessions from Peru and Bolivia. This set of accessions differed at 4.4 million single-nucleotide variant (SNV) positions compared to CHEN125 (1.4 million SNV positions on average per accession). We show how to exploit variation in accessions that are distantly related to establish a genome-wide ordered set of contigs for guided scaffolding of a reference assembly. The method is based on detecting shared haplotypes and their expected continuity throughout the genome (i.e., the effect of linkage disequilibrium), as an extension of what is expected in mapping populations where only a few haplotypes are present. We test the approach using Arabidopsis thaliana data from different populations. After applying the method on our CHEN125 quinoa assembly we validated the results with mate-pairs, genetic markers, and another quinoa assembly originating from a Chilean cultivar. We show consistency between these information sources and the haplotype-based relations as determined by us and obtain an improved assembly with an N50 size of 1079 kbp and ordered contig groups of up to 39.7 Mbp. We conclude that haplotype information in distantly related individuals of the same species is a valuable resource to group and order contigs according to their adjacency in the genome toward the generation of pseudomolecules.
Collapse
Affiliation(s)
- Alexandrina Bodrug-Schepers
- Institute of Computational Biology, Department of Biotechnology, Universität für Bodenkultur, Vienna, Austria
| | - Nancy Stralis-Pavese
- Institute of Computational Biology, Department of Biotechnology, Universität für Bodenkultur, Vienna, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology and Department of Crop Sciences, Universität für Bodenkultur, Tulln, Austria
| | - Juliane C Dohm
- Institute of Computational Biology, Department of Biotechnology, Universität für Bodenkultur, Vienna, Austria.
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, Universität für Bodenkultur, Vienna, Austria.
| |
Collapse
|
6
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
7
|
Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V. Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility. FRONTIERS IN PLANT SCIENCE 2019; 10:774. [PMID: 31281325 PMCID: PMC6596448 DOI: 10.3389/fpls.2019.00774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 05/02/2023]
Abstract
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
Collapse
Affiliation(s)
- Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Katarzyna Zelkowska
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Marzec
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
8
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
9
|
Schubert V, Ruban A, Houben A. Chromatin Ring Formation at Plant Centromeres. FRONTIERS IN PLANT SCIENCE 2016; 7:28. [PMID: 26913037 PMCID: PMC4753331 DOI: 10.3389/fpls.2016.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/10/2016] [Indexed: 05/11/2023]
Abstract
We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
- *Correspondence: Veit Schubert
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
- Department of Genetics, Biotechnology, Plant Breeding and Seed Science, Russian State Agrarian University - Moscow Timiryazev Agricultural AcademyMoscow, Russia
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| |
Collapse
|
10
|
Lermontova I, Sandmann M, Mascher M, Schmit AC, Chabouté ME. Centromeric chromatin and its dynamics in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:4-17. [PMID: 25976696 DOI: 10.1111/tpj.12875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 05/22/2023]
Abstract
Centromeres are chromatin structures that are required for proper separation of chromosomes during mitosis and meiosis. The centromere is composed of centromeric DNA, often enriched in satellite repeats, and kinetochore complex proteins. To date, over 100 kinetochore components have been identified in various eukaryotes. Kinetochore assembly begins with incorporation of centromeric histone H3 variant CENH3 into centromeric nucleosomes. Protein components of the kinetochore are either present at centromeres throughout the cell cycle or localize to centromeres transiently, prior to attachment of microtubules to each kinetochore in prometaphase of mitotic cells. This is the case for the spindle assembly checkpoint (SAC) proteins in animal cells. The SAC complex ensures equal separation of chromosomes between daughter nuclei by preventing anaphase onset before metaphase is complete, i.e. the sister kinetochores of all chromosomes are attached to spindle fibers from opposite poles. In this review, we focus on the organization of centromeric DNA and the kinetochore assembly in plants. We summarize recent advances regarding loading of CENH3 into the centromere, and the subcellular localization and protein-protein interactions of Arabidopsis thaliana proteins involved in kinetochore assembly and function. We describe the transcriptional activity of corresponding genes based on in silico analysis of their promoters and cell cycle-dependent expression. Additionally, barley homologs of all selected A. thaliana proteins have been identified in silico, and their sequences and domain structures are presented.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Michael Sandmann
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
11
|
Finseth FR, Dong Y, Saunders A, Fishman L. Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive. Mol Biol Evol 2015; 32:2694-706. [PMID: 26104011 DOI: 10.1093/molbev/msv145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins. Here, we characterize the molecular evolutionary patterns of CENH3, the centromere-defining histone variant, in Mimulus monkeyflowers, a genus with one of the few known cases of active centromere-associated female meiotic drive. First, we identify a novel duplication of CENH3 in diploid Mimulus, including in lineages with actively driving centromeres. Second, we demonstrate long-term adaptive evolution at several sites in the N-terminus of CENH3, a region with some meiosis-specific functions that putatively interacts with centromeric DNA. Finally, we infer that the paralogs evolve under different selective regimes; some sites in the N-terminus evolve under positive selection in the pro-orthologs or only one paralog (CENH3_B) and the paralogs exhibit significantly different patterns of polymorphism within populations. Our finding of long-term, adaptive evolution at CENH3 in the context of centromere-associated meiotic drive supports an antagonistic, coevolutionary battle for evolutionary dominance between centromeric DNA and binding proteins.
Collapse
Affiliation(s)
| | - Yuzhu Dong
- Division of Biological Sciences, University of Montana, Missoula Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Arpiar Saunders
- Division of Biological Sciences, University of Montana, Missoula Department of Genetics, Harvard Medical School, Boston, MA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula
| |
Collapse
|
12
|
Abstract
The centromere-the primary constriction of monocentric chromosomes-is essential for correct segregation of chromosomes during mitosis and meiosis. Centromeric DNA varies between different organisms in sequence composition and extension. The main components of centromeric and pericentromeric DNA of Brassicaceae species are centromeric satellite repeats. Centromeric DNA initiates assembly of the kinetochore, the large protein complex where the spindle fibers attach during nuclear division to pull sister chromatids apart. Kinetochore assembly is initiated by incorporation of the centromeric histone H3 cenH3 into centromeric nucleosomes. The spindle assembly checkpoint acts during mitosis and meiosis at centromeres and maintains genome stability by preventing chromosome segregation before all kinetochores are correctly attached to microtubules. The function of the spindle assembly checkpoint in plants is still poorly understood. Here, we review recent advances of studies on structure and functional importance of centromeric DNA of Brassicaceae, assembly and function of cenH3 in Arabidopsis thaliana and characterization of core SAC proteins of A. thaliana in comparison with non-plant homologues.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany,
| | | | | |
Collapse
|
13
|
Bilinski P, Distor K, Gutierrez-Lopez J, Mendoza GM, Shi J, Dawe RK, Ross-Ibarra J. Diversity and evolution of centromere repeats in the maize genome. Chromosoma 2014; 124:57-65. [PMID: 25190528 DOI: 10.1007/s00412-014-0483-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/21/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Centromere repeats are found in most eukaryotes and play a critical role in kinetochore formation. Though centromere repeats exhibit considerable diversity both within and among species, little is understood about the mechanisms that drive centromere repeat evolution. Here, we use maize as a model to investigate how a complex history involving polyploidy, fractionation, and recent domestication has impacted the diversity of the maize centromeric repeat CentC. We first validate the existence of long tandem arrays of repeats in maize and other taxa in the genus Zea. Although we find considerable sequence diversity among CentC copies genome-wide, genetic similarity among repeats is highest within these arrays, suggesting that tandem duplications are the primary mechanism for the generation of new copies. Nonetheless, clustering analyses identify similar sequences among distant repeats, and simulations suggest that this pattern may be due to homoplasious mutation. Although the two ancestral subgenomes of maize have contributed nearly equal numbers of centromeres, our analysis shows that the majority of all CentC repeats derive from one of the parental genomes, with an even stronger bias when examining the largest assembled contiguous clusters. Finally, by comparing maize with its wild progenitor teosinte, we find that the abundance of CentC likely decreased after domestication, while the pericentromeric repeat Cent4 has drastically increased.
Collapse
Affiliation(s)
- Paul Bilinski
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Schubert V, Lermontova I, Schubert I. The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 2013; 122:517-33. [PMID: 23929493 DOI: 10.1007/s00412-013-0424-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
Abstract
In plants as in other eukaryotes, the structural maintenance of chromosome (SMC) protein complexes cohesin, condensin and SMC5/6 are essential for sister chromatid cohesion, chromosome condensation, DNA repair and recombination. The presence of paralogous genes for various components of the different SMC complexes suggests the diversification of their biological functions during the evolution of higher plants. In Arabidopsis thaliana, we identified two candidate genes (Cap-D2 and Cap-D3) which may express conserved proteins presumably associated with condensin. In silico analyses using public databases suggest that both genes are controlled by factors acting in a cell cycle-dependent manner. Cap-D2 is essential because homozygous T-DNA insertion mutants were not viable. The heterozygous mutant showed wild-type growth habit but reduced fertility. For Cap-D3, we selected two homozygous mutants expressing truncated transcripts which are obviously not fully functional. Both mutants show reduced pollen fertility and seed set (one of them also reduced plant vigour), a lower chromatin density and frequent (peri)centromere association in interphase nuclei. Sister chromatid cohesion was impaired compared to wild-type in the cap-D3 mutants but not in the heterozygous cap-D2 mutant. At superresolution (Structured Illumination Microscopy), we found no alteration of chromatin substructure for both cap-D mutants. Chromosome-associated polypeptide (CAP)-D3 and the cohesin subunit SMC3 form similar but positionally non-overlapping reticulate structures in 2C-16C nuclei, suggesting their importance for interphase chromatin architecture in differentiated nuclei. Thus, we presume that CAP-D proteins are required for fertility, growth, chromatin organisation, sister chromatid cohesion and in a process preventing the association of centromeric repeats.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany,
| | | | | |
Collapse
|
15
|
Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 2012; 121:369-87. [PMID: 22476443 DOI: 10.1007/s00412-012-0367-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
The spatial chromatin organisation and molecular interactions within and between chromatin domains and chromosome territories (CTs) are essential for fundamental processes such as replication, transcription and DNA repair via homologous recombination. To analyse the distribution and interaction of whole CTs, centromeres, (sub)telomeres and ~100-kb interstitial chromatin segments in endopolyploid nuclei, specific FISH probes from Arabidopsis thaliana were applied to 2-64C differentiated leaf nuclei. Whereas CTs occupy a distinct and defined volume of the nucleus and do not obviously intermingle with each other in 2-64C nuclei, ~100-kb sister chromatin segments within these CTs become more non-cohesive with increasing endopolyploidy. Centromeres, preferentially located at the nuclear periphery, may show ring- or half-moon like shapes in 2C and 4C nuclei. Sister centromeres tend to associate up to the 8C level. From 16C nuclei on, they become progressively separated. The higher the polyploidy level gets, the more separate chromatids are present. Due to sister chromatid separation in highly endopolyploid nuclei, the centromeric histone variant CENH3, the 180-bp centromeric repeats and pericentromeric heterochromatin form distinct subdomains at adjacent but not intermingling positions. The (sub)telomeres are frequently associated with each other and with the nucleolus and less often with centromeres. The extent of chromatid separation and of chromatin decondensation at subtelomeric chromatin segments varies between chromosome arms. A mainly random distribution and similar shapes of CTs even at higher ploidy levels indicate that in general no substantial CT reorganisation occurs during endopolyploidisation. Non-cohesive sister chromatid regions at chromosome arms and at the (peri)centromere are accompanied by a less dense chromatin conformation in highly endopolyploid nuclei. We discuss the possible function of this conformation in comparison to transcriptionally active regions at insect polytene chromosomes.
Collapse
|
16
|
Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-i T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T. Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 2012; 26:705-13. [PMID: 22431508 DOI: 10.1101/gad.183871.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The plant genome evolves with rapid proliferation of LTR-type retrotransposons, which is associated with their clustered accumulation in gene-poor regions, such as centromeres. Despite their major role for plant genome evolution, no mobile LTR element with targeted integration into gene-poor regions has been identified in plants. Here, we report such targeted integrations de novo. We and others have previously shown that an ATCOPIA93 family retrotransposon in Arabidopsis thaliana is mobilized when the DNA methylation machinery is compromised. Although ATCOPIA93 family elements are low copy number in the wild-type A. thaliana genome, high-copy-number related elements are found in the wild-type Arabidopsis lyrata genome, and they show centromere-specific localization. To understand the mechanisms for the clustered accumulation of the A. lyrata elements directly, we introduced one of them, named Tal1 (Transposon of Arabidopsis lyrata 1), into A. thaliana by transformation. The introduced Tal1 was retrotransposed in A. thaliana, and most of the retrotransposed copies were found in centromeric repeats of A. thaliana, suggesting targeted integration. The targeted integration is especially surprising because the centromeric repeat sequences differ considerably between A. lyrata and A. thaliana. Our results revealed unexpectedly dynamic controls for evolution of the transposon-rich heterochromatic regions.
Collapse
Affiliation(s)
- Sayuri Tsukahara
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Deposition, turnover, and release of CENH3 at Arabidopsis centromeres. Chromosoma 2011; 120:633-40. [PMID: 21842230 DOI: 10.1007/s00412-011-0338-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/14/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The kinetochore is a complex multiprotein structure located at centromeres and required for the proper segregation of chromosomes during mitosis and meiosis. An important role in kinetochore assembly and function plays the centromeric histone H3 variant (CENH3). Cell cycle stage of CENH3 deposition to centromeres varies between different organisms. We confirmed by in vivo studies that deposition of Arabidopsis CENH3 takes place at centromeres during G2 and demonstrated that additionally a low turnover of CENH3 occurs along the cell cycle, apparently for replacement of damaged protein. Furthermore, enhanced yellow fluorescent protein (EYFP)-CENH3 of photobleached chromocenters is not replaced by EYFP-CENH3 molecules from unbleached centromeres of the same nucleus, indicating a stable incorporation of CENH3 into centromeric nucleosomes. In differentiated endopolyploid nuclei however, the amount of CENH3 at centromeres declines with age.
Collapse
|
18
|
Expression of CENH3 alleles in synthesized allopolyploid Oryza species. J Genet Genomics 2011; 37:703-11. [PMID: 21035096 DOI: 10.1016/s1673-8527(09)60088-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 12/29/2022]
Abstract
Synthesized allopolyploids are valuable materials for comparative analyses of two or more distinct genomes, such as the expression changes (activation, inactivation or differential expression) of orthologous genes following allopolyploidization. CENH3 is a centromere- specific histone H3 variant and has been regarded as a central component in kinetochore formation and centromere function. In this study, interspecific hybrids of Oryza genus (AA × CC, AA × CCDD) and their backcross progenies were produced, and the genome constitutions were identified as AC, ACC, ACD, AACD, or AA(CD) by Genomic in situ hybridization (GISH). We further cloned and sequenced the CENH3 genes from O. sativa (AA), O. officinalis (CC) and O. latifolia (CCDD). Sequencing of RT-PCR products revealed that CENH3_C2 and CENH3_D, the two CENH3 alleles from O. latifolia, showed polymorphism in several sites, while CENH3_C2 and CENH3_C1 from O. officinalis were different at only two amino acids positions. Moreover, we found that the CENH3 genes from both parents are expressed in interspecific hybrids and their progenies. Specifically, based on our cDNA sequencing data, the ratio of expression level between CENH3_A and CENH3_C1 was approximately 1 in AC and 0.5 in ACC genomes, respectively. As a result, the CENH3 expression patterns shed more light on the inter-coordination between varied centromeric DNA sequences and highly conserved kinetochore protein in synthesized allopolyploids of Oryza genus.
Collapse
|
19
|
Hunter B, Bomblies K. Progress and Promise in using Arabidopsis to Study Adaptation, Divergence, and Speciation. THE ARABIDOPSIS BOOK 2010; 8:e0138. [PMID: 22303263 PMCID: PMC3244966 DOI: 10.1199/tab.0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fundamental questions remain to be answered on how lineages split and new species form. The Arabidopsis genus, with several increasingly well characterized species closely related to the model system A. thaliana, provides a rare opportunity to address key questions in speciation research. Arabidopsis species, and in some cases populations within a species, vary considerably in their habitat preferences, adaptations to local environments, mating system, life history strategy, genome structure and chromosome number. These differences provide numerous open doors for understanding the role these factors play in population divergence and how they may cause barriers to arise among nascent species. Molecular tools available in A. thaliana are widely applicable to its relatives, and together with modern comparative genomic approaches they will provide new and increasingly mechanistic insights into the processes underpinning lineage divergence and speciation. We will discuss recent progress in understanding the molecular basis of local adaptation, reproductive isolation and genetic incompatibility, focusing on work utilizing the Arabidopsis genus, and will highlight several areas in which additional research will provide meaningful insights into adaptation and speciation processes in this genus.
Collapse
Affiliation(s)
- Ben Hunter
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA, USA
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA, USA
| |
Collapse
|
20
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
21
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1:166-92. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1020166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
22
|
Tek AL, Kashihara K, Murata M, Nagaki K. Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res 2010; 18:337-47. [PMID: 20204495 DOI: 10.1007/s10577-010-9119-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The centromere as a kinetochore assembly site is fundamental to the partitioning of genetic material during cell division. In order to determine the functional centromeres of soybean, we characterized the soybean centromere-specific histone H3 (GmCENH3) protein and developed an antibody against the N-terminal end. Using this antibody, we cloned centromere-associated DNA sequences by chromatin immunoprecipitation. Our analyses indicate that soybean centromeres are composed of two distinct satellite repeats (GmCent-1 and GmCent-4) and retrotransposon-related sequences (GmCR). The possible allopolyploid origin of the soybean genome is discussed in view of the centromeric satellite sequences present.
Collapse
Affiliation(s)
- Ahmet L Tek
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
| | | | | | | |
Collapse
|
23
|
Dantas LG, Guerra M. Chromatin differentiation between Theobroma cacao L. and T. grandiflorum Schum. Genet Mol Biol 2010; 33:94-8. [PMID: 21637611 PMCID: PMC3036076 DOI: 10.1590/s1415-47572009005000103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/16/2009] [Indexed: 11/29/2022] Open
Abstract
A comparative analysis of mitotic chromosomes of Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) was performed aiming to identify cytological differences between the two most important species of this genus. Both species have symmetric karyotypes, with 2n = 20 metacentric chromosomes ranging in size from 2.00 to 1.19 μm (cacao) and from 2.21 to 1.15 μm (cupuaçu). The interphase nuclei of both species were of the arreticulate type, displaying up to 20 chromocentres, which were more regularly shaped in cacao than in cupuaçu. Prophase chromosomes of both species were more condensed in the proximal region, sometimes including the whole short arm. Both species exhibited only one pair of terminal heterochromatic bands, positively stained with chromomycin A 3 , which co-localized with the single 45S rDNA site. Each karyotype displayed a single 5S rDNA site in the proximal region of another chromosome pair. Heterochromatic bands were also observed on the centromeric/pericentromeric regions of all 20 chromosomes of cacao after C-banding followed by Giemsa or DAPI staining, whereas in cupuaçu they were never detected. These data suggest that the chromosomes of both species have been largely conserved and their pericentromeric chromatin is the only citologically differentiated region.
Collapse
Affiliation(s)
- Liliane G Dantas
- Laboratório de Citogenética Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Pernambuco, Recife Brazil
| | | |
Collapse
|
24
|
Nagaki K, Terada K, Wakimoto M, Kashihara K, Murata M. Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells. Chromosome Res 2010; 18:203-11. [PMID: 20084454 DOI: 10.1007/s10577-009-9108-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
The centromere is a region utilized for spindle attachment on a eukaryotic chromosome and essential for accurate chromatid segregation. In most eukaryotes, centromeres have specific DNA sequences and are capable of assembling specific proteins to form a complex called the kinetochore. Among these proteins, centromeric histone H3 (CENH3) is one of the most fundamental, since CENH3s have been found in all investigated functional centromeres and recruits other centromeric proteins. In this study, the localization of alien CENH3s were analyzed in Arabidopsis and tobacco-cultured cells to determine the interaction between species-specific centromeric DNA and CENH3. Results showed that CENH3 of Arabidopsis and tobacco were localized on centromeres in the tobacco-cultured cells, unlike the case with CENH3 of rice and Luzula. In addition to these CENH3s, CENH3 of Luzula was partially localized in the Arabidopsis cultured cells. These data suggest that only evolutionally close CENH3s are able to target centromeres in alien species. Furthermore, the ability to target alien centromeres of histone fold domains was investigated using amino-terminal deleted CENH3s.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki, Japan.
| | | | | | | | | |
Collapse
|
25
|
Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I. Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 2009; 118:591-605. [PMID: 19533160 DOI: 10.1007/s00412-009-0220-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/22/2009] [Indexed: 12/19/2022]
Abstract
In contrast to yeast, plant interphase nuclei often display incomplete alignment (cohesion) along sister chromatid arms. Sister chromatid cohesion mediated by the multi-subunit cohesin complex is essential for correct chromosome segregation during nuclear divisions and for DNA recombination repair. The cohesin complex consists of the conserved proteins SMC1, SMC3, SCC3, and an alpha-kleisin subunit. Viable homozygous mutants could be selected for the Arabidopsis thaliana alpha-kleisins SYN1, SYN2, and SYN4, which can partially compensate each other. For the kleisin SYN3 and for the single-copy genes SMC1, SMC3, and SCC3, only heterozygous mutants were obtained that displayed between 77% and 97% of the wild-type transcript level. Compared to wild-type nuclei, sister chromatid alignment was significantly decreased along arms in 4C nuclei of the homozygous syn1 and syn4 and even of the heterozygous smc1, smc3, scc3, and syn3 mutants. Knocking out SYN1 and SYN4 additionally impaired sister centromere cohesion. Homozygous mutants of SWITCH1 (required for meiotic sister chromatid alignment) displayed sterility and decreased sister arm alignment. For the cohesin loading complex subunit SCC2, only heterozygous mutants affecting sister centromere alignment were obtained. Defects of the alpha-kleisin SYN4, which impair sister chromatid alignment in 4C differentiated nuclei, do apparently not disturb alignment during prometaphase nor cause aneuploidy in meristematic cells. The syn2, 3, 4 scc3 and swi1 mutants display a high frequency of anaphases with bridges (~10% to >20% compared to 2.6% in wild type). Our results suggest that (a) already a slight reduction of the average transcript level in heterozygous cohesin mutants may cause perturbation of cohesion, at least in some leaf cells at distinct loci; (b) the decreased sister chromatid alignment in cohesin mutants can obviously not fully be compensated by other cohesion mechanisms such as DNA concatenation; (c) some cohesin genes, in addition to cohesion, might have further essential functions (e.g., for genome stability, apparently by facilitating correct recombination repair of double-strand breaks).
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I. The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. THE PLANT CELL 2009; 21:2688-99. [PMID: 19737979 PMCID: PMC2768936 DOI: 10.1105/tpc.108.060525] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/13/2009] [Accepted: 08/24/2009] [Indexed: 05/18/2023]
Abstract
Sister chromatids are often arranged as incompletely aligned entities in interphase nuclei of Arabidopsis thaliana. The STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC) 5/6 complex, together with cohesin, is involved in double-strand break (DSB) repair by sister chromatid recombination in yeasts and mammals. Here, we analyzed the function of genes in Arabidopsis. The wild-type allele of SMC5 is essential for seed development. Each of the two SMC6 homologs of Arabidopsis is required for efficient repair of DNA breakage via intermolecular homologous recombination in somatic cells. Alignment of sister chromatids is enhanced transiently after X-irradiation (and mitomycin C treatment) in wild-type nuclei. In the smc5/6 mutants, the x-ray-mediated increase in sister chromatid alignment is much lower and delayed. The reduced S phase-established cohesion caused by a knockout mutation in one of the alpha-kleisin genes, SYN1, also perturbed enhancement of sister chromatid alignment after irradiation, suggesting that the S phase-established cohesion is a prerequisite for correct DSB-dependent cohesion. The radiation-sensitive51 mutant, deficient in heteroduplex formation during DSB repair, showed wild-type frequencies of sister chromatid alignment after X-irradiation, implying that the irradiation-mediated increase in sister chromatid alignment is a prerequisite for, rather than a consequence of, DNA strand exchange between sister chromatids. Our results suggest that the SMC5/6 complex promotes sister chromatid cohesion after DNA breakage and facilitates homologous recombination between sister chromatids.
Collapse
Affiliation(s)
- Koichi Watanabe
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Michael Pacher
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Stefanie Dukowic
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Holger Puchta
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
- Address correspondence to
| |
Collapse
|
27
|
Abstract
Centromeres play a pivotal role in the life of a eukaryote cell, perform an essential and conserved function, but this has not led to a standard centromere structure. It remains currently unclear, how the centromeric function is achieved by widely differing structures. Since centromeres are often large and consist mainly of repetitive sequences they have only been analyzed in great detail in a handful of organisms. The genome of Dictyostelium discoideum, a valuable model organism, was described a few years ago but its centromere organization remained largely unclear. Using available sequence information we reconstructed the putative centromere organization in three of the six chromosomes of D. discoideum. They mainly consist of one type of transposons that is confined to centromeric regions. Centromeres are dynamic due to transposon integration, but an optimal centromere size seems to exist in D. discoideum. One centromere probably has expanded recently, whereas another underwent major rearrangements. In addition to insights into the centromere organization and dynamics of a protist eukaryote, this work also provides a starting point for the analysis of the evolution of centromere structures in social amoebas by comparative genomics.
Collapse
Affiliation(s)
- Gernot Glöckner
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany.
| | | |
Collapse
|
28
|
Nagaki K, Walling J, Hirsch C, Jiang J, Murata M. Structure and evolution of plant centromeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:153-79. [PMID: 19521815 DOI: 10.1007/978-3-642-00182-6_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | | | |
Collapse
|
29
|
Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). ANNALS OF BOTANY 2008; 102:521-30. [PMID: 18682437 PMCID: PMC2701778 DOI: 10.1093/aob/mcn131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The aim of this work was the identification and molecular characterization of novel sugar beet (Beta vulgaris) repetitive sequences to unravel the impact of repetitive DNA on size and evolution of Beta genomes via amplification and diversification. METHODS Genomic DNA and a pool of B. vulgaris repetitive sequences were separately used as probes for a screening of high-density filters from a B. vulgaris plasmid library. Novel repetitive motifs were identified by sequencing and further used as probes for Southern analyses in the genus Beta. Chromosomal localization of the repeats was analysed by fluorescent in situ hybridization on chromosomes of B. vulgaris and two other species of the section Beta. KEY RESULTS Two dispersed repetitive families pDvul1 and pDvul2 and the tandemly arranged repeat family pRv1 were isolated from a sugar beet plasmid library. The dispersed repetitive families pDvul1 and pDvul2 were identified in all four sections of the genus Beta. The members of the pDvul1 and pDvul2 family are scattered over all B. vulgaris chromosomes, although amplified to a different extent. The pRv1 satellite repeat is exclusively present in species of the section Beta. The centromeric satellite pBV1 by structural variations of the monomer and interspersion of pRv1 units forms complex satellite structures, which are amplified in different degrees on the centromeres of 12 chromosomes of the three species of the Beta section. CONCLUSIONS The complexity of the pBV1 satellite family observed in the section Beta of the genus Beta and, in particular, the strong amplification of the pBV1/pRv1 satellite in the domesticated B. vulgaris indicates the dynamics of centromeric satellite evolution during species radiation within the genus. The dispersed repeat families pDvul1 and pDvul2 might represent derivatives of transposable elements.
Collapse
Affiliation(s)
- Gerhard Menzel
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daryna Dechyeva
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daniela Holtgräwe
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Bernd Weisshaar
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Thomas Schmidt
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
- For correspondence. E-mail
| |
Collapse
|
30
|
Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:1027-1034. [PMID: 18088310 DOI: 10.1111/j.1365-313x.2007.03394.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) is one characteristic of the plasticity of the eukaryotic genome. It was found in various non-plant organisms from yeast to humans. EccDNA is heterogeneous in size and contains sequences derived primarily from repetitive chromosomal DNA. Here, we report the occurrence of eccDNA in small and large genome plant species, as identified using two-dimensional gel electrophoresis. We show that eccDNA is readily detected in both Arabidopsis thaliana and Brachycome dichromosomatica, reflecting a normal phenomenon that occurs in wild-type plants. The size of plant eccDNA ranges from > 2 kb to < 20 kb, which is similar to the sizes found in other organisms. These DNA molecules correspond to 5S ribosomal DNA (rDNA), non-coding chromosomal high-copy tandem repeats and telomeric DNA of both species. Circular multimers of the repeating unit of 5S rDNA were identified in both species. In addition, similar multimers were also demonstrated with the B. dichromosomatica repetitive element Bdm29. Such circular multimers of tandem repeats were found in animal models, suggesting a common mechanism for eccDNA formation among eukaryotes. This mechanism may involve looping-out via intrachromosomal homologous recombination. The implications of these results on genome plasticity and evolutionary processes are discussed.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
31
|
Berr A, Schubert I. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 2007; 176:853-63. [PMID: 17409060 PMCID: PMC1894613 DOI: 10.1534/genetics.107.073270] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/15/2007] [Indexed: 12/21/2022] Open
Abstract
Whole-mount fluorescence in situ hybridization (FISH) was applied to Arabidopsis thaliana seedlings to determine the three-dimensional (3D) interphase chromosome territory (CT) arrangement and heterochromatin location within the positional context of entire tissues or in particular cell types of morphologically well-preserved seedlings. The interphase chromosome arrangement was found to be similar between all inspected meristematic and differentiated root and shoot cells, indicating a lack of a gross reorganization during differentiation. The predominantly random CT arrangement (except for a more frequent association of the homologous chromosomes bearing a nucleolus organizer) and the peripheric location of centromeric heterochromatin were as previously observed for flow-sorted nuclei, but centromeres tend to fuse more often in nonendoreduplicating cells and NORs in differentiated cells. After mitosis, sister nuclei revealed a symmetric arrangement of homologous CTs waning with the progress of the cell cycle or in the course of differentiation. Thus, the interphase chromosome arrangement in A. thaliana nuclei seems to be constrained mainly by morphological features such as nuclear shape, presence or absence of a nucleolus organizer on chromosomes, nucleolar volume, and/or endopolyploidy level.
Collapse
Affiliation(s)
| | - Ingo Schubert
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
| |
Collapse
|
32
|
Schubert V, Kim YM, Berr A, Fuchs J, Meister A, Marschner S, Schubert I. Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei. Mol Genet Genomics 2007; 278:167-76. [PMID: 17522894 DOI: 10.1007/s00438-007-0242-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/20/2007] [Accepted: 04/21/2007] [Indexed: 01/07/2023]
Abstract
The chromosome arrangement in interphase nuclei is of growing interest, e.g., the spatial vicinity of homologous sequences is decisive for efficient repair of DNA damage by homologous recombination, and close alignment of sister chromatids is considered as a prerequisite for their bipolar orientation and subsequent segregation during nuclear division. To study the degree of homologous pairing and of sister chromatid alignment in plants, we applied fluorescent in situ hybridisation with specific bacterial artificial chromosome inserts to interphase nuclei. Previously we found in Arabidopsis thaliana and in A. lyrata positional homologous pairing at random, and, except for centromere regions, sister chromatids were frequently not aligned. To test whether these features are typical for higher plants or depend on genome size, chromosome organisation and/or phylogenetic affiliation, we investigated distinct individual loci in other species. The positional pairing of these loci was mainly random. The highest frequency of sister alignment (in >93% of homologues) was found for centromeres, some rDNA and a few other high copy loci. Apparently, somatic homologous pairing is not a typical feature of angiosperms, and sister chromatid aligment is not obligatory along chromosome arms. Thus, the high frequency of chromatid exchanges at homologous positions after mutagen treatment needs another explanation than regular somatic pairing of homologues (possibly an active search of damaged sites for homology). For sister chromatid exchanges a continuous sister chromatid alignment is not required. For correct segregation, permanent alignment of sister centromeres is sufficient.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Two novel repetitive sequence families were isolated from Turritis glabra (2n = 2x = 12). These two repeat families are similar to those of centromeric repeats in Arabidopsis thaliana, are co-localized on one chromosome pair, and differ by about 20% from each other. Phylogenetic analysis revealed that the two repeat families of T. glabra are more similar to each other than to the centromeric repeat families of other Arabidopsis and related species. The relationships of satellite sequences reflected the species phylogeny, indicating that the replacement of satellite sequences has occurred in each species lineage independently, and shared variants could not have existed for a long time between species.
Collapse
Affiliation(s)
- Akira Kawabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
34
|
Kawabe A, Charlesworth D. Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata. J Mol Evol 2006; 64:237-47. [PMID: 17160639 DOI: 10.1007/s00239-006-0097-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 10/03/2006] [Indexed: 11/28/2022]
Abstract
We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK.
| | | |
Collapse
|
35
|
Berr A, Pecinka A, Meister A, Kreth G, Fuchs J, Blattner FR, Lysak MA, Schubert I. Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:771-83. [PMID: 17118036 DOI: 10.1111/j.1365-313x.2006.02912.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In contrast to the situation described for mammals and Drosophila, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei of Arabidopsis thaliana (n = 5) are predominantly random except for a more frequent association of the chromosomes bearing a homologous nucleolus organizer region. To find out whether this chromosome arrangement is also characteristic for other species of the genus Arabidopsis, we investigated Arabidopsis lyrata ssp. lyrata (n = 8), one of the closest relatives of A. thaliana. First, we determined the size of each chromosome and chromosome arm, the sequence type of centromeric repeats and their distribution between individual centromeres and the position of the 5S/45S rDNA arrays in A. lyrata. Then we demonstrated that CT arrangement, homologous pairing and sister chromatid alignment of distinct euchromatic and/or heterochromatic regions within A. lyrata interphase nuclei are similar to that in A. thaliana nuclei. Thus, the arrangement of interphase chromosomes appears to be conserved between both taxa that diverged about 5 million years ago. Since the chromosomes of A. lyrata resemble those of the presumed ancestral karyotype, a similar arrangement of interphase chromosomes is also to be expected for other closely related diploid species of the Brassicaceae family.
Collapse
Affiliation(s)
- Alexandre Berr
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kawabe A, Nasuda S, Charlesworth D. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 2006; 174:2021-32. [PMID: 17028323 PMCID: PMC1698631 DOI: 10.1534/genetics.106.063628] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Arabidopsis halleri and lyrata have three different major centromeric satellite sequences, a unique finding for a diploid Arabidopsis species. Since centromeric histones coevolve with centromeric satellites, these proteins would be predicted to show signs of selection when new centromere satellites have recently arisen. We isolated centromeric protein genes from A. halleri and lyrata and found that one of them, HTR12 (CENP-A), is duplicated, while CENP-C is not. Phylogenetic analysis indicates that the HTR12 duplication occurred after these species diverged from A. thaliana. Genetic mapping shows that HTR12 copy B has the same genomic location as the A. thaliana gene; the other copy (A, at the other end of the same chromosome) is probably the new copy. To test for selection since the duplication, we surveyed diversity at both HTR12 loci within A. lyrata. Overall, there is no strong evidence for an "evolutionary arms race" causing multiple replacement substitutions. The A. lyrata HTR12B sequences fall into three classes of haplotypes, apparently maintained for a long time, but they all encode the same amino acid sequence. In contrast, HTR12A has low diversity, but many variants are amino acid replacements, possibly due to independent selective sweeps within populations of the species.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, Edinburgh University, UK.
| | | | | |
Collapse
|
37
|
Kawabe A, Nasuda S. Polymorphic chromosomal specificity of centromere satellite families in Arabidopsis halleri ssp. gemmifera. Genetica 2006; 126:335-42. [PMID: 16636927 DOI: 10.1007/s10709-005-0718-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 07/07/2005] [Indexed: 11/26/2022]
Abstract
The chromosomal localizations of repetitive DNA clusters (ribosomal DNA and centromere satellites) were analyzed by fluorescent in situ hybridization in five strains of Arabidopsis halleri ssp. gemmifera. All five A. gemmifera strains have three chromosome pairs with 45S (5.8S-16S-26S) rDNA loci, and one pair with both 5S and 45S rDNA loci. These localizations are different from that of A. thaliana. Very unusually, there are three families of centromeric satellite DNAs (pAa, pAge1, and pAge2), and they showed polymorphism among the five strains studied. Overall, we found four different centromere satellite compositions. A plant from Fumuro was heterozygous for the chromosome specificities of centromere satellite families, possibly due to a reciprocal translocation involving centromere regions. Changes of centromeric satellite repeats appear to be rapid and frequent events in the history of A. gemmifera, and seem to occur by exchanging clusters as units.
Collapse
Affiliation(s)
- Akira Kawabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, 606-8502, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
38
|
Kawabe A, Hansson B, Hagenblad J, Forrest A, Charlesworth D. Centromere locations and associated chromosome rearrangements in Arabidopsis lyrata and A. thaliana. Genetics 2006; 173:1613-9. [PMID: 16648590 PMCID: PMC1526690 DOI: 10.1534/genetics.106.057182] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyzed linkage and chromosomal positions of genes in A. lyrata ssp. petraea that are located near the centromere (CEN) regions of A. thaliana, using at least two genes from the short and long arms of each chromosome. In our map, genes from all 10 A. thaliana chromosome arms are also tightly linked in A. lyrata. Genes from the regions on the two sides of CEN5 have distant map localizations in A. lyrata (genes on the A. thaliana short-arm genes are on linkage group AL6, and long-arm genes are on AL7), but genes from the other four A. thaliana centromere regions remain closely linked in A. lyrata. The observation of complete linkage between short- and long-arm centromere genes, but not between genes in other genome regions that are separated by similar physical distances, suggests that crossing-over frequencies near the A. lyrata ssp. petraea centromere regions are low, as in A. thaliana. Thus, the centromere positions appear to be conserved between A. thaliana and A. lyrata, even though three centromeres have been lost in A. thaliana, and the core satellite sequences in the two species are very different. We can now definitively identify the three centromeres that were eliminated in the fusions that formed the A. thaliana chromosomes. However, we cannot tell whether genes were lost along with these centromeres, because such genes are absent from the A. thaliana genome, which is the sole source of markers for our mapping.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Bao W, Zhang W, Yang Q, Zhang Y, Han B, Gu M, Xue Y, Cheng Z. Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Mol Genet Genomics 2006; 275:421-30. [PMID: 16463049 DOI: 10.1007/s00438-006-0103-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/12/2006] [Indexed: 11/26/2022]
Abstract
Oryza officinalis (CC, 2n = 24) and Oryza rhizomatis (CC, 2n = 24) belong to the Oryza genus, which contains more than 20 identified wild rice species. Although much has been known about the molecular composition and organization of centromeres in Oryza sativa, relatively little is known of its wild relatives. In the present study, we isolated and characterized a 126-bp centromeric satellite (CentO-C) from three bacterial artificial chromosomes of O. officinalis. In addition to CentO-C, low abundance of CentO satellites is also present in O. officinalis. In order to determine the chromosomal locations and distributions of CentO-C (126-bp), CentO (155 bp) and TrsC (366 bp) satellite within O. officinalis, fluorescence in situ hybridization examination was done on pachytene or metaphase I chromosomes. We found that only ten centromeres (excluding centromere 7 and 2) contain CentO-C arrays in O. officinalis, while centromere 7 comprises CentO satellites, and centromere 2 is devoid of any detectable satellites. For TrsC satellites, it was detected at multiple subtelomeric regions in O. officinalis, however, in O. rhizomatis, TrsC sequences were detected both in the four centromeric regions (CEN 3, 4, 10, 11) and the multiple subtelomeric regions. Therefore, these data reveal the evolutionary diversification pattern of centromere DNA within/or between close related species, and could provide an insight into the dynamic evolutionary processes of rice centromere.
Collapse
Affiliation(s)
- Weidong Bao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|