1
|
Liu Z, Gao D. The Cause-Effect Model of Master Sex Determination Gene Acquisition and the Evolution of Sex Chromosomes. Int J Mol Sci 2025; 26:3282. [PMID: 40244140 PMCID: PMC11989894 DOI: 10.3390/ijms26073282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The canonical model of vertebrate sex chromosome evolution predicts a one-way trend toward degradation. However, most sex chromosomes in lower vertebrates are homomorphic. Recent progress in studies of sex determination has resulted in the discovery of more than 30 master sex determination (MSD) genes, most of which are from teleost fish. An analysis of MSD gene acquisition, recombination suppression, and sex chromosome-specific sequences revealed correlations in the modes of MSD gene acquisition and the evolution of sex chromosomes. Sex chromosomes remain homomorphic with MSD genes acquired by simple mutations, gene duplications, allelic variations, or neofunctionalization; in contrast, they become heteromorphic with MSD genes acquired by chromosomal inversion, fusion, and fission. There is no recombination suppression with sex chromosomes carrying MSD genes gained through simple mutations. In contrast, there is extensive recombination suppression with sex chromosomes carrying MSD genes gained through chromosome inversion. There is limited recombination suppression with sex chromosomes carrying MSD genes gained through transposition or translocation. We propose a cause-effect model that predicts sex chromosome evolution as a consequence of the acquisition modes of MSD genes, which explains the evolution of sex chromosomes in various vertebrates. A key factor determining the trend of sex chromosome evolution is whether non-homologous regions are created during the acquisition of MSD genes. Chromosome inversion creates inversely homologous but directly non-homologous sequences, which lead to recombination suppression but retain recombination potential. Over time, recurrent recombination in the inverted regions leads to the formation of strata and may cause the degradation of sex chromosomes. Depending on the nature of deletions in the inverted regions, sex chromosomes may evolve with dosage compensation, or the selective retention of haplo-insufficient genes may be used as an alternative strategy.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN 38505, USA
| | | |
Collapse
|
2
|
Advances in chemokines of teleost fish species. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Muñoz-Atienza E, Aquilino C, Syahputra K, Al-Jubury A, Araújo C, Skov J, Kania PW, Hernández PE, Buchmann K, Cintas LM, Tafalla C. CK11, a Teleost Chemokine with a Potent Antimicrobial Activity. THE JOURNAL OF IMMUNOLOGY 2019; 202:857-870. [PMID: 30610164 DOI: 10.4049/jimmunol.1800568] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
Abstract
CK11 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to both mammalian CCL27 and CCL28 chemokines, strongly transcribed in skin and gills in homeostasis, for which an immune role had not been reported to date. In the current study, we have demonstrated that CK11 is not chemotactic for unstimulated leukocyte populations from central immune organs or mucosal tissues but instead exerts a potent antimicrobial activity against a wide range of rainbow trout pathogens. Our results show that CK11 strongly inhibits the growth of different rainbow trout Gram-positive and Gram-negative bacteria, namely Lactococcus garvieae, Aeromonas salmonicida subsp. salmonicida, and Yersinia ruckeri and a parasitic ciliate Ichthyophthirius multifiliis Similarly to mammalian chemokines and antimicrobial peptides, CK11 exerted its antimicrobial activity, rapidly inducing membrane permeability in the target pathogens. Further transcriptional studies confirmed the regulation of CK11 transcription in response to exposure to some of these pathogens in specific conditions. Altogether, our studies related to phylogenetic relations, tissue distribution, and biological activity point to CK11 as a potential common ancestor of mammalian CCL27 and CCL28. To our knowledge, this study constitutes the first report of a fish chemokine with antimicrobial activity, thus establishing a novel role for teleost chemokines in antimicrobial immunity that supports an evolutionary relationship between chemokines and antimicrobial peptides.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Animal Health Research Centre, National Institute for Agricultural and Food Research, Valdeolmos 28130, Madrid, Spain
| | - Carolina Aquilino
- Animal Health Research Centre, National Institute for Agricultural and Food Research, Valdeolmos 28130, Madrid, Spain
| | - Khairul Syahputra
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Azmi Al-Jubury
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos, Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jakob Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Per W Kania
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Pablo E Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos, Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark; and
| | - Luis M Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos, Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Centre, National Institute for Agricultural and Food Research, Valdeolmos 28130, Madrid, Spain;
| |
Collapse
|
4
|
Li W, Pan X, Cheng W, Cheng Y, Yin Y, Chen J, Xu G, Xie L. Serum biochemistry, histology and transcriptomic profile analysis reflect liver inflammation and damage following dietary histamine supplementation in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2018; 77:83-90. [PMID: 29571769 DOI: 10.1016/j.fsi.2018.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Previous studies suggested that diets containing high levels of histamine influenced digestive system of aquatic animals. In addition, the exogenous histamine was first detoxified by diamine oxidase in the intestine, while the rest of histamine was further detoxified in the liver. Thus, based on the evidence from the previous studies, we hypothesized that high levels of histamine may lead to damage on liver of the aquatic animals. Here, in current attempt, we sought to investigate the toxic effect of histamine on yellow catfish (Pelteobagrus fulvidraco) liver physiology and pathogenesis. In the present study, yellow catfish were fed for 56 days on diets supplemented with 1000 mg kg-1 histamine (His) or a basal diet as the control group (Con). A significant change on the morphology of the intestine and liver was observed, followed with an induction of serum activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Furthermore, the transcriptomic analysis was performed to gain an overview of the gene expression profile in liver between control and histamine supplemented groups. Through the bioinformatics analysis, 431 differentially expressed genes were identified. Among these genes, Gene Ontology enrichment analysis (GO) suggests that immune-related genes are significantly dysregulated. In addition, TNF signaling pathway is enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG), and is also the dominant pathway in immune system, suggesting that the inflammatory response and apoptosis of hepatocytes are induced by exogenous histamine.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China; Department of Plastic Surgery, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, 510632, Guangdong Province, PR China
| | - Weixuan Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China
| | - Yulong Yin
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China
| | - Jintao Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong Province, PR China.
| |
Collapse
|
5
|
Zhu J, Gan X, Ao Q, Shen X, Tan Y, Chen M, Luo Y, Wang H, Jiang H, Li C. Basal polarization of the immune responses to Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2018; 75:336-345. [PMID: 29454032 DOI: 10.1016/j.fsi.2018.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
One of the highest priority areas for improvement is the development of effective strategies for decreasing disease mortality levels in aquaculture production, a better understanding of the components of the fish immune system and their functions in the context of pathogen invasion is needed. Tilapia is the most common fish in South China, and Streptococcus agalactiae has become the most serious disease problem for tilapia industry in China. Here, we profiled gene expression differences between tilapia differing in their susceptibility to S. agalactiae both basally (before infection) and at three early timepoints post-infection (5 h, 50 h, and 7 d). Between group comparisons revealed 5756 unique genes differentially expressed greater than 2-fold at one or more timepoints. And the resistant fish showed much more strong ability in pathogen recognition, antigen presentation, immune activation, while the susceptible fish showed fast activation of apoptosis. Taken together, the immune profiles expand our knowledge for molecular mechanisms for disease resistance, as well as provide solid molecular resources for further identification of the candidate markers for disease-resistant selection and evaluation of disease prevention and treatment options for tilapia industry.
Collapse
Affiliation(s)
- Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China; Guangxi University, Nanning, Guangxi 530004, China
| | - Xi Gan
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Qiuwei Ao
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Xiashuang Shen
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Yun Tan
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Ming Chen
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | - Hui Wang
- Guangxi Academy of Fishery Sciences, Guangxi 530021, China
| | | | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Fu Q, Yang Y, Li C, Zeng Q, Zhou T, Li N, Liu Y, Liu S, Liu Z. The CC and CXC chemokine receptors in channel catfish (Ictalurus punctatus) and their involvement in disease and hypoxia responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:241-251. [PMID: 28842182 DOI: 10.1016/j.dci.2017.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Chemokines are vital regulators of cell mobilization for immune surveillance, inflammation, and development. Chemokines signal through binding to their receptors that are a superfamily of seven-transmembrane domain G-coupled receptors. Recently, a complete repertoire of both CC and CXC chemokines have been identified in channel catfish, but nothing is known about their receptors. In this study, a set of 29 CC chemokine receptor (CCR) genes and 8 CXC chemokine receptor (CXCR) genes were identified and annotated from the channel catfish genome. Extensive phylogenetic and comparative genomic analyses were conducted to annotate these genes, revealing fish-specific CC chemokine receptors, and lineage-specific tandem duplications of chemokine receptors in the teleost genomes. With 29 genes, the channel catfish genome harbors the largest numbers of CC chemokine receptors among all the genomes characterized. Analysis of gene expression after bacterial infections indicated that the chemokine receptors were regulated in a gene-specific manner. Most differentially expressed chemokine receptors were up-regulated after Edwardsiella ictaluri and Flavobacterium columnare infection. Among which, CXCR3 and CXCR4 were observed to participate in immune responses to both bacterial infections, indicating their potential roles in catfish immune activities. In addition, CXCR3.2 was significantly up-regulated in ESC-susceptible fish, and CXCR4b was mildly induced in ESC-resistant fish, further supporting the significant roles of CXCR3 and CXCR4 in catfish immune responses. CXCR4b and CCR9a were both up-regulated not only after bacterial infection, but also after hypoxia stress, providing the linkage between bacterial infection and low oxygen stresses. These results should be valuable for comparative immunological studies and provide insights into their roles in disease and stress responses.
Collapse
Affiliation(s)
- Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
7
|
Fu Q, Yang Y, Li C, Zeng Q, Zhou T, Li N, Liu Y, Li Y, Wang X, Liu S, Li D, Liu Z. The chemokinome superfamily: II. The 64 CC chemokines in channel catfish and their involvement in disease and hypoxia responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:97-108. [PMID: 28322933 DOI: 10.1016/j.dci.2017.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 05/21/2023]
Abstract
Chemokines are a superfamily of structurally related chemotactic cytokines exerting significant roles in regulating cell migration and activation. Based on the arrangement of the first four cysteine residues, they are classified into CC, CXC, C and CX3C subfamilies. In this study, a complete set of 64 CC chemokine ligand (CCL) genes was systematically identified, annotated, and characterized from the channel catfish genome. Extensive phylogenetic and comparative genomic analyses supported their annotations, allowing establishment of their orthologies, revealing fish-specific CC chemokines and the expansion of CC chemokines in the teleost genomes through lineage-specific tandem duplications. With 64 genes, the channel catfish genome harbors the largest numbers of CC chemokines among all the genomes characterized to date, however, they fall into 11 distinct CC chemokine groups. Analysis of gene expression after bacterial infections indicated that the CC chemokines were regulated in a gene-specific and time-dependent manner. While only one member of CCL19 (CCL19a.1) was significantly up-regulated after Edwardsiella ictaluri infection, all CCL19 members (CCL19a.1, CCL19a.2 and CCL19b) were significantly induced after Flavobacterium columnare infection. In addition, CCL19a.1, CCL19a.2 and CCL19b were also drastically up-regulated in ESC-susceptible fish, but not in resistant fish, suggesting potential significant roles of CCL19 in catfish immune responses. High expression levels of certain CC appeared to be correlated with susceptibility to diseases and intolerance to hypoxia.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
8
|
Gao FX, Wang Y, Zhang QY, Mou CY, Li Z, Deng YS, Zhou L, Gui JF. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes. BMC Genomics 2017; 18:561. [PMID: 28738780 PMCID: PMC5525251 DOI: 10.1186/s12864-017-3945-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. Results To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A+, candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A+, F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as “chemokine signaling pathway”, “Toll-like receptor signaling pathway” and others, were remarkably much more than those from clone A+ and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A+. In contrast to strong immune defense in resistant clone H, susceptible clone A+ showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A+ failed to resist virus offensive and evidently induced apoptosis or death. Conclusions Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3945-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuan-Sheng Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
9
|
Wang X, Liu S, Yang Y, Fu Q, Abebe A, Liu Z. Identification of NF-κB related genes in channel catfish and their expression profiles in mucosal tissues after columnaris bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:27-38. [PMID: 28063885 DOI: 10.1016/j.dci.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Interactions of NF-κB family, IκB family and IKK complex are the key components of NF-κB pathway that is essential for many biological processes including innate and adaptive immunity, inflammation and stress responses. In spite of their importance, systematic analysis of these genes in fish has been lacking. Here we report a systematic study of the NF-κB related genes in channel catfish. Five NF-κB family genes, five IκB family genes and three IKK complex genes were identified in the channel catfish genome. Annotation of these 13 NF-κB related genes was further confirmed by phylogenetic and syntenic analysis. Negative selection was found to play a crucial role in the adaptive evolution of these genes. Expression profiles of NF-κB related genes after Flavobacterium columnare (columnaris) infection were determined by analysis of the existing RNA-Seq dataset. The majority of NF-κB related genes were significantly regulated in mucosal tissues of gill, skin and intestine after columnaris infection, indicating their potential involvement in host defense responses. Distinct expression patterns of NF-κB related genes were observed in susceptible and resistant catfish in response to columnaris infection, suggesting that expression of these genes may contribute to the variations in disease resistance/susceptibility of catfish.
Collapse
Affiliation(s)
- Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ash Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
10
|
Liu QN, Xin ZZ, Chai XY, Jiang SH, Li CF, Zhang DZ, Zhou CL, Tang BP. Identification of differentially expressed genes in the spleens of polyriboinosinic polyribocytidylic acid (poly I:C)-stimulated yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2016; 56:278-285. [PMID: 27368543 DOI: 10.1016/j.fsi.2016.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The yellow catfish, Pelteobagrus fulvidraco (Siluriformes: Bagridae) is an economically important fish in China. However, genomic research and resources on this species are largely unavailable and still in infancy. In the present study, we constructed a cDNA library following poly I:C injection to screen for immune response genes in the spleens of P. fulvidraco using suppression subtractive hybridization (SSH). A total of 420 putative expressed sequence tag (EST) clones were identified at 24 h post-injection, which contain 103 genes consisting of 25 immune response genes, 12 cytoskeleton genes, 7 cell cycle and apoptosis genes, 7 respiration and energy metabolism genes, 7 transport genes, 26 metabolism genes, 10 stress response genes, 9 translational regulation genes, and 71 unknown genes. Real-time quantitative reverse transcription-PCR (qRT-PCR) results revealed that a set of randomly selected immune response genes were identified to be up-regulated after 24 h of poly I:C stimulation compared to controls. Our study provides an annotation of immune genes in detail and insight into fish immunity.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China.
| |
Collapse
|
11
|
Liu QN, Xin ZZ, Chai XY, Jiang SH, Li CF, Zhang HB, Ge BM, Zhang DZ, Zhou CL, Tang BP. Characterization of immune-related genes in the yellow catfish Pelteobagrus fulvidraco in response to LPS challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 56:248-254. [PMID: 27235365 DOI: 10.1016/j.fsi.2016.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Fish are considered an excellent model for studies in comparative immunology as they are a representative population of lower vertebrates linked to invertebrate evolution. To gain a better understanding of the immune response in fish, we constructed a subtractive cDNA library from the head kidney of lipopolysaccharide-stimulated yellow catfish (Pelteobagrus fulvidraco) using suppression subtractive hybridization (SSH). A total of 300 putative EST clones were identified which contained 95 genes, including 27 immune-related genes, 7 cytoskeleton-related genes, 3 genes involved in the cell cycle and apoptosis, 9 respiration and energy metabolism-related genes, 7 genes related to transport, 24 metabolism-related genes, 10 genes involved in stress responses, seven genes involved in regulation of transcription and translation and 59 unknown genes. Using real-time quantitative reverse transcription PCR, a subset of randomly selected genes involved in the immune response to lipopolysaccharide challenge were investigated to verify the reliability of the SSH data which identified 16 up-regulated genes. The genes identified in this study provide novel insight into the immune response in fish.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Bao-Ming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China.
| |
Collapse
|
12
|
Nakharuthai C, Areechon N, Srisapoome P. Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:207-228. [PMID: 26853931 DOI: 10.1016/j.dci.2016.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Two full-length cDNAs encoding CC chemokine genes in Nile tilapia (Oreochromis niloticus) (On-CC1 and On-CC2) were cloned and characterized. On-CC1 and On-CC2 showed signature cysteine motifs consisting of four cysteines. The expression levels of On-CC1 and On-CC2 were analyzed by RT-PCR, which showed that low expression of these two genes was only observed in the peripheral blood leukocytes (PBLs) and spleen of normal fish. Expression levels of these two molecules were quantified in 13 tissues of fish infected with virulent strains of Streptococcus agalactiae and Flavobacterium columnare. Most tissues, especially PBLs, the spleen and the liver, expressed significantly higher mRNA levels than the controls, particularly at 12 and 24 h after infection (P < 0.05). The current study strongly indicates that CC chemokine genes in Nile tilapia are crucially involved in the early immune responses to pathogens. Functional analyses clearly demonstrated that 10 and 100 μg/ml of recombinant rOn-CC1 and rOn-CC2 proteins efficiently enhanced the phagocytic activity (in vitro) of Nile tilapia phagocytes. Finally, Southern blot analysis and searching in Ensembl databases demonstrated that two different functional CC chemokine genes and other pseudogene fragments were discovered in the Nile tilapia genome.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Nontawith Areechon
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
13
|
Fu Q, Li Y, Yang Y, Li C, Yao J, Zeng Q, Qin Z, Liu S, Li D, Liu Z. Septin genes in channel catfish (Ictalurus punctatus) and their involvement in disease defense responses. FISH & SHELLFISH IMMUNOLOGY 2016; 49:110-121. [PMID: 26700173 DOI: 10.1016/j.fsi.2015.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Septins are an evolutionarily conserved family of GTP-binding proteins. They are involved in diverse processes including cytokinesis, apoptosis, infection, neurodegeneration and neoplasia. In this study, through thorough data mining of existed channel catfish genomic resources, we identified a complete set of 15 septin genes. Septins were classified into four subgroups according to phylogenetic analysis. Extensive comparative genomic analysis, including domain and syntenic analysis, supported their annotation and orthologies. The expression patterns of septins in channel catfish were examined in healthy tissues and after infection with two major bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. In healthy channel catfish, most septin genes were ubiquitously expressed and presented diversity patterns in various tissues, especially mucosal tissues, proposing the significant roles septin genes may play in maintaining homeostasis and host immune response activities. After bacterial infections, most septin genes were regulated, but opposite direction in expression profiles were found with the two bacterial pathogens: the differentially expressed septin genes were down-regulated in the intestine after E. ictaluri infection while generally up-regulated in the gill after F. columnare infection, suggesting a pathogen-specific and tissue-specific pattern of regulation. Taken together, these results suggested that septin genes may play complex and important roles in the host immune responses to bacterial pathogens in channel catfish.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
14
|
Dong X, Ye Z, Song L, Su B, Zhao H, Peatman E, Li C. Expression profile analysis of two cathepsin S in channel catfish (Ictalurus punctatus) mucosal tissues following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 48:112-118. [PMID: 26626584 DOI: 10.1016/j.fsi.2015.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/17/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Cathepsin S belongs to the papain family of cysteine protease, and is considered to play key roles in immune responses after bacterial challenge. However, despite the recognized importance of Cathepsin S in immunity, no studies have systematically characterized Cathepsin S in catfish. In this regard, here, we characterized the Cathepsin S gene family in channel catfish, and investigated their expression patterns following two different Gram-negative bacterial challenge. In the present study, two Cathepsin S genes (ctss and ctssa) were captured in channel catfish. In comparison to other species, the catfish Cathepsin S genes are highly conserved in their structural features. Phylogenetic analysis indicated the strongest phylogenetic relationship with zebrafish, which is consistent with their evolutional relationships. Tissue distribution analysis revealed that Cathepsin S genes were ubiquitously expressed in catfish tissues. Following bacterial infection, the Cathepsin S genes were significantly up-regulated at most time-points in mucosal surfaces, with an acute response post Edwardsiella ictaluri infection. Obviously, the expression profiles were quite distinct between two Cathepsin S genes, across the tissues and between pathogens, suggesting that Cathepsin S genes may exert disparate roles in mucosal immune responses. Our findings here, provide early insight into the immune functions of Cathepsin S in catfish; however, further studies are needed to determine the mechanisms of Cathepsin S for antigen presentation during inflammatory processes and innate host defense.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Hao LX, Li MF. Molecular characterization and expression analysis of nine CC chemokines in half-smooth tongue sole, Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:717-724. [PMID: 26470888 DOI: 10.1016/j.fsi.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Chemokines are a large, diverse group of small cytokines that can be classified into several families, including the CC chemokine family, which plays a pivotal role in host defense by inducing leukocyte chemotaxis under physiological and inflammatory conditions. Here we studied 9 CC chemokines from half-smooth tongue sole (Cynoglossus semilaevis). Phylogenetic analysis divided these chemokines into four groups. The tissue specific expression patterns of the 9 chemokines under normal physiological conditions varied much, with most chemokines highly expressed in immune organs, while some other chemokines showing high expression levels in non-immune organs. In addition, the 9 chemokines exhibited similar or distinctly different expression profiles in response to the challenge of virus and intracellular and extracellular bacterial pathogens. These results indicate that in tongue sole, CC chemokines may be involved in different immune responses as homeostatic or inflammatory chemokines.
Collapse
Affiliation(s)
- Lian-xu Hao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Bird S, Tafalla C. Teleost Chemokines and Their Receptors. BIOLOGY 2015; 4:756-84. [PMID: 26569324 PMCID: PMC4690017 DOI: 10.3390/biology4040756] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specifically zebrafish (Daniorerio), rainbow trout (Oncorhynchusmykiss) and catfish (Ictaluruspunctatus), outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.
Collapse
Affiliation(s)
- Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Waikato 3240, New Zealand.
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, Madrid 28130, Spain.
| |
Collapse
|
17
|
Jiang C, Zhang J, Yao J, Liu S, Li Y, Song L, Li C, Wang X, Liu Z. Complement regulatory protein genes in channel catfish and their involvement in disease defense response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:33-41. [PMID: 26111998 DOI: 10.1016/j.dci.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.
Collapse
Affiliation(s)
- Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
18
|
Mo ZQ, Chen RA, Li YW, Huang XZ, Li AX, Luo XC, Dan XM. Characterization and expression analysis of two novel CCR6 chemokine receptors and their three potential ligands CCL20Ls of grouper (Epinephelus coioides) post Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2015; 47:280-288. [PMID: 26384847 DOI: 10.1016/j.fsi.2015.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
CCR6 have been demonstrated playing an important role in immune cells homing to mucosal tissues, mediating antigen presentation and immune response in mammals. CCR6 in lower vertebrate leukocyte homing has not yet been revealed. Cryptocaryon irritans is believed to be a good pathogen model for skin and gill mucosal immunity. In this study, we identified two CCR6s and their three possible ligands CCL20 like cDNA sequences, designated as grouper EcCCR6A, EcCCR6B, EcCCL20L1, EcCCL20L2 and EcCCL20L3. It is interesting to find that EcCCR6A has a longer second extracellular loop than EcCCR6B, which is more similar to mammalian CCR6. Tissue distribution analysis showed that EcCCR6A pronouncedly dominates in gill and brain while EcCCR6B dominates in head kidney, trunk kidney and thymus. Three chemokine ligands have their own distinct expression pattern in health grouper tissues. EcCCL20L1 dominates in spleen and head kidney, EcCCL20L2 dominates in gill and thymus, whereas EcCCL20L3 dominates in skin and brain. The expression patterns of these chemokines and chemokine receptors were detected in C. irritans infected grouper and the results showed that EcCCR6A, EcCCR6B and EcCCL20L1 were significantly up-regulated in the skin of C. irritans infected fish, which indicated these two chemokine receptors and their ligand may play important role in immune cells' homing to skin mucosal immune tissues under pathogen caused inflammation.
Collapse
Affiliation(s)
- Ze-Quan Mo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xia-Zi Huang
- State Key Laboratory of Biocontrol/Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China.
| | - Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
19
|
Hu YH, Zhang J. CsCCL17, a CC chemokine of Cynoglossus semilaevis, induces leukocyte trafficking and promotes immune defense against viral infection. FISH & SHELLFISH IMMUNOLOGY 2015; 45:771-779. [PMID: 26052018 DOI: 10.1016/j.fsi.2015.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/16/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
CC chemokines are the largest subfamily of chemokines, which are important components of the innate immune system. To date, sequences of several CC chemokines have been identified in half-smooth tongue sole (Cynoglossus semilaevis); however, the activities and functions of these putative chemokines remain unknown. Herein, we characterized a CC chemokine, CsCCL17, from tongue sole, and examined its activity. CsCCL17 contains a 303 bp open reading frame, which encodes a polypeptide of 100 amino acids with a molecular mass of 12 kDa CsCCL17 is phylogenetically related to the CCL17/22 group of CC chemokines and possesses the typical arrangement of four cysteines and an SCCR motif found in known CC chemokines. Under normal physiological conditions, CsCCL17 expression was detected in spleen, liver, heart, gill, head kidney, muscle, brain, and intestine. When the fish were infected by bacterial and viral pathogens, CsCCL17 expression was significantly up-regulated in a time-dependent manner. Chemotactic analysis showed that recombinant CsCCL17 (rCsCCL17) induced migration of peripheral blood leukocytes. A mutagenesis study showed that when the two cysteine residues in the SCCR motif were replaced by serine, no apparent chemotactic activity was observed in the mutant protein rCsCCL17M. rCsCCL17 enhanced the resistance of tongue sole against viral infection, but rCsCCL17M lacked this antiviral effect. Taken together, these findings indicate that CsCCL17 is a functional CC chemokine with the ability to recruit leukocytes and enhance host immune defense in a manner that requires the conserved SCCR motif.
Collapse
Affiliation(s)
- Yong-Hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
20
|
Yao J, Mu W, Liu S, Zhang J, Wen H, Liu Z. Identification, phylogeny and expression analysis of suppressors of cytokine signaling in channel catfish. Mol Immunol 2015; 64:276-84. [DOI: 10.1016/j.molimm.2014.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 02/08/2023]
|
21
|
Chen C, Hu YH, Xiao ZZ, Sun L. SmCCL19, a CC chemokine of turbot Scophthalmus maximus, induces leukocyte trafficking and promotes anti-viral and anti-bacterial defense. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1677-82. [PMID: 24012750 DOI: 10.1016/j.fsi.2013.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 05/21/2023]
Abstract
Chemokines are classified into several different subfamilies, of which CC chemokines constitute the largest subfamily in teleost. The prominent structural characteristic of CC chemokines is the presence of an Asp-Cys-Cys-Leu (DCCL) motif. To date, cDNA sequences of several CC chemokines have been identified in turbot (Scophthalmus maximus), however, the activity and function of these putative chemokines remain unknown. In this study, we examined the biological effect of the turbot CC chemokine SmCCL19, which has been previously reported as KC70 and shown to be regulated in expression by bacterial infection. To facilitate functional analysis, recombinant SmCCL19 (rSmCCL19) and a mutant form of SmCCL19, SmCCL19M, that bears serine substitutions at the two cysteine residues of the DCCL motif were purified from Escherichia coli. Chemotactic analysis showed that rSmCCL19 induced migration of head kidney leukocytes in a dose-dependent manner, whereas rSmCCL19M caused no apparent cellular migration. To examine the in vivo effect of rSmCCL19, turbot were administered with rSmCCL19 or rSmCCL19M before being inoculated with viral and bacterial pathogens. Subsequent tissue infection analysis showed that the viral and bacterial loads in rSmCCL19-adminsitered fish were significantly reduced, whereas the pathogen loads in rSmCCL19M-adminsitered fish were largely comparable to those in the control fish. Consistent with these observations, significant inductions of immune relevant genes were observed in rSmCCL19-adminsitered fish but not in rSmCCL19M-adminsitered fish. Taken together, these results indicate that SmCCL19 recruits leukocytes and augments host immune defense in a manner that depends on the conserved DCCL motif.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
22
|
Zhang J, Liu S, Rajendran KV, Sun L, Zhang Y, Sun F, Kucuktas H, Liu H, Liu Z. Pathogen recognition receptors in channel catfish: III phylogeny and expression analysis of Toll-like receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:185-194. [PMID: 23396097 DOI: 10.1016/j.dci.2013.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Toll-like receptors (TLRs) were the earliest characterized and the most extensively studied pathogen recognition receptors (PRRs). The majority of tetrapod TLR orthologs have been found in teleost fish. In addition, a group of "fish-specific" TLRs have been identified. In catfish, a number of TLR-related sequences have been reported, but systematic phylogenetic analyses have not been conducted. In this study, we conducted phylogenetic and comparative analysis of 20 catfish TLR genes against their counterparts from various species. TLR25 and TLR26 are TLRs identified only in channel catfish. Phylogenetic analyses suggested that four catfish TLR genes have duplicated copies in the genome, i.e., TLR4, TLR5, TLR8, and TLR20. Six fish-specific TLRs were identified, and the vast majority of these belong to the TLR11 subfamily. In healthy catfish tissues, most of the tested TLR genes were ubiquitously expressed although expression levels varied among the 11 tested tissues. We tested nine TLRs for their expression in response to Edwardsiella ictaluri infection. They were significantly up-regulated in the spleen and liver, but down-regulated in the head kidney, suggesting their involvement in the immune responses against the intracellular bacterial pathogen in a tissue-specific manner in catfish, perhaps through rapid migration of phagocytes to infection sites.
Collapse
Affiliation(s)
- Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Feng J, Su Y, Guo Z, Xu L, Sun X, Wang Y. Identification and expression analysis of a CC chemokine from cobia (Rachycentron canadum). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:459-469. [PMID: 22955963 DOI: 10.1007/s10695-012-9711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
Chemokines are small, secreted cytokine peptides known principally for their ability to induce migration and activation of leukocyte populations and regulate the immune response mechanisms. The cobia (Rachycentron canadum), a marine finfish species, has a great potential for net cage aquaculture in the South China Sea. We isolated and characterized a CC chemokine cDNA from cobia-designated RcCC2. Its cDNA is 783 bp in length and encodes a putative protein of 110 amino acids. Homology and phylogenetic analysis revealed that the RcCC2 gene, which contains four conserved cysteine residues, shares a high degree of similarity with other known CC chemokine sequences and is closest to the CCL19/21 clade. The mRNA of RcCC2 is expressed constitutively in all tested tissues, including gill, liver, muscle, spleen, kidney, head kidney, skin, brain, stomach, intestine and heart, but not blood, with the highest level of expression in gill and liver. The reverse transcription quantitative polymerase chain reaction was used to examine the expression of the RcCC2 gene in immune-related tissues, including head kidney, spleen and liver, following intraperitoneal injection of the viral mimic polyriboinosinic polyribocytidylic acid, formalin-killed Vibrio carchariae (bacterial vaccine) and phosphate-buffered saline as a control. RcCC2 gene expression was up-regulated differentially in head kidney, spleen and liver during 12 h after challenge. These results indicate that the RcCC2 gene is inducible and is involved in immune responses, suggesting RcCC2 has an important role in the early stage of viral and bacterial infections.
Collapse
Affiliation(s)
- Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
24
|
Li C, Wang R, Su B, Luo Y, Terhune J, Beck B, Peatman E. Evasion of mucosal defenses during Aeromonas hydrophila infection of channel catfish (Ictalurus punctatus) skin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:447-455. [PMID: 23219904 DOI: 10.1016/j.dci.2012.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
The mucosal surfaces of fish serve as the first line of defense against the myriad of aquatic pathogens present in the aquatic environment. The immune repertoire functioning at these interfaces is still poorly understood. The skin, in particular, must process signals from several fronts, sensing and integrating environmental, nutritional, social, and health cues. Pathogen invasion can disrupt this delicate homeostasis with profound impacts on signaling throughout the organism. Here, we investigated the transcriptional effects of virulent Aeromonas hydrophila infection in channel catfish skin, Ictalurus punctatus. We utilized a new 8 × 60 K Agilent microarray for catfish to examine gene expression profiles at critical early timepoints following challenge--2 h, 8 h, and 12 h. Expression of a total of 2,168 unique genes was significantly perturbed during at least one timepoint. We observed dysregulation of genes involved in antioxidant, cytoskeletal, immune, junctional, and nervous system pathways. In particular, A. hydrophila infection rapidly altered a number of potentially critical lectins, chemokines, interleukins, and other mucosal factors in a manner predicted to enhance its ability to adhere to and invade the catfish host.
Collapse
Affiliation(s)
- Chao Li
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhu LY, Nie L, Zhu G, Xiang LX, Shao JZ. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:39-62. [PMID: 22504163 DOI: 10.1016/j.dci.2012.04.001] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/18/2012] [Accepted: 04/05/2012] [Indexed: 05/31/2023]
Abstract
Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Gao L, Du X, Su H, Gao X, Li Y, Bao X, Liu W, He C. The polymorphisms of chemokine gene in channel catfish (Ictalurus punctatus) and the associations with susceptibility/resistance to Edwardsiella ictaluri. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-0874-2-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Abstract
Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish.
Collapse
|
28
|
Class II, major histocompatibility complex, transactivator (CIITA) in channel catfish: identification and expression patterns responding to different pathogens. Mol Biol Rep 2012; 39:11041-50. [DOI: 10.1007/s11033-012-2007-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023]
|
29
|
Sun F, Peatman E, Li C, Liu S, Jiang Y, Zhou Z, Liu Z. Transcriptomic signatures of attachment, NF-κB suppression and IFN stimulation in the catfish gill following columnaris bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:169-180. [PMID: 22669032 DOI: 10.1016/j.dci.2012.05.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
Outbreaks of columnaris disease (Flavobacterium columnare) are common in wild and cultured freshwater fish worldwide. Disease occurrences, particularly those caused by virulent genomovar II isolates, in aquaculture species such as channel catfish can be devastating. In contrast to other important aquaculture pathogens, little is known about host immune responses to columnaris. Adhesion of F. columnare to gill tissue has been correlated in some previous studies to virulence and host susceptibility. Here, therefore, we conducted the first transcriptomic profiling of host responses to columnaris following an experimental challenge. We utilized Illumina-based RNA-seq expression profiling to examine transcript profiles at three timepoints (4h, 24h, and 48h) in catfish gill after bath immersion infection. Enrichment and pathway analyses of the differentially expressed genes revealed several central signatures following infection. These included the dramatic upregulation of a rhamnose-binding lectin, with putative roles in bacterial attachment and aggregation, suppression of NF-κB signalling via IκBs, BCL-3, TAX1BP1, and olfactomedin 4, and strong induction of IFN-inducible responses including iNOS2b, IFI44, and VHSV genes. Fifteen differentially expressed genes with varying expression profiles by RNA-seq, were validated by QPCR (correlation coefficients 0.85-0.94, p-value <0.001). Our results highlight several putative immune pathways and individual candidate genes deserving of further investigation in the context of development of therapeutic regimens and laying the foundation for selection of resistant catfish lines against columnaris.
Collapse
Affiliation(s)
- Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Ballesteros NA, Saint-Jean SSR, Encinas PA, Perez-Prieto SI, Coll JM. Oral immunization of rainbow trout to infectious pancreatic necrosis virus (Ipnv) induces different immune gene expression profiles in head kidney and pyloric ceca. FISH & SHELLFISH IMMUNOLOGY 2012; 33:174-185. [PMID: 22521628 DOI: 10.1016/j.fsi.2012.03.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
Induction of neutralizing antibodies and protection by oral vaccination with DNA-alginates of rainbow trout Oncorhynchus mykiss against infectious pancreatic necrosis virus (IPNV) was recently reported. Because orally induced immune response transcript gene profiles had not been described yet neither in fish, nor after IPNV vaccination, we studied them in head kidney (an immune response internal organ) and a vaccine entry tissue (pyloric ceca). By using an oligo microarray enriched in immune-related genes validated by RTqPCR, the number of increased transcripts in head kidney was higher than in pyloric ceca while the number of decreased transcripts was higher in pyloric ceca than in head kidney. Confirming previous reports on intramuscular DNA vaccination or viral infection, mx genes increased their transcription in head kidney. Other transcript responses such as those corresponding to interferons, their receptors and induced proteins (n=91 genes), VHSV-induced genes (n=25), macrophage-related genes (n=125), complement component genes (n=176), toll-like receptors (n=31), tumor necrosis factors (n=32), chemokines and their receptors (n=121), interleukines and their receptors (n=119), antimicrobial peptides (n=59), and cluster differentiation antigens (n=58) showed a contrasting and often complementary behavior when head kidney and pyloric ceca were compared. For instance, classical complement component transcripts increased in head kidney while only alternative pathway transcripts increased in pyloric ceca, different β-defensins increased in head kidney but remained constant in pyloric ceca. The identification of new gene markers on head kidney/pyloric ceca could be used to follow up and/or to improve immunity during fish oral vaccination.
Collapse
Affiliation(s)
- Natalia A Ballesteros
- Centro de Investigaciones Biologicas, CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Rajendran KV, Zhang J, Liu S, Peatman E, Kucuktas H, Wang X, Liu H, Wood T, Terhune J, Liu Z. Pathogen recognition receptors in channel catfish: II. Identification, phylogeny and expression of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:381-389. [PMID: 22387588 DOI: 10.1016/j.dci.2012.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
Vertebrates including teleost fish have evolved an array of pathogen recognition receptors (PRRs) for detecting and responding to various pathogen-associated molecular patterns (PAMPs), including Toll-like receptors (TLRs), nucleotide-binding domain, leucine-rich repeat containing receptors (NLRs), and the retinoic acid inducible gene I (RIG-I) like receptors (RLRs). As a part of the series of studies targeted to characterize catfish PRRs, we described 22 NLR receptors in the sister contribution. Here in this study, we focused on cytosolic PRRs recognizing nucleotide pathogen-associated molecular patterns (PAMPs) of invading viruses, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR receptors). Three RLRs with DExD/H domain containing RNA helicases, retinoic acid inducible gene-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2), were identified from channel catfish, Ictalurus punctatus. The catfish RIG-I encodes 937 amino acids that contains two CARDs, a DExDc, a HELICc and a RD domains. MDA5 encodes 1005 amino acids with all the domains identified for RIG-I. LGP2 encodes 677 amino acids that contain other domains but not the CARD domain at the N-terminus. Phylogenetic analyses of the three genes of catfish showed close clustering with their counterparts from other teleost fish. All the genes were found to be constitutively expressed in various tissues of catfish with minor variations. Channel catfish ovarian cells when infected with channel catfish virus showed significant increase in the transcript abundance of all the three genes. Further, RLR genes showed significant increases in expression in the liver tissue collected at different time-points after bacterial infection as well. The results indicate that the catfish RLRs may play important roles in antiviral and anti-bacterial immune responses.
Collapse
Affiliation(s)
- K V Rajendran
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, Peatman E. RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2012; 32:816-827. [PMID: 22366064 DOI: 10.1016/j.fsi.2012.02.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
The mucosal surfaces of fish (gill, skin, gastrointestinal tract) are important sites of bacterial exposure and host defense mechanisms. In mammalian systems, the intestinal epithelium is well characterized as both a selectively permeable barrier regulated by junctional proteins and as a primary site of infection for a number of enteric pathogens including viruses, bacteria, and parasites. The causative bacterium of enteric septicemia of catfish, Edwardsiella ictaluri, is believed to gain entry through the intestinal epithelium, with previous research using a rat intestinal epithelial cell line (IEC-6) indicating actin polymerization and receptor-mediated endocytosis as potential mechanisms of uptake. Here, we utilized high-throughput RNA-seq to characterize the role of the intestinal epithelial barrier following E. ictaluri challenge. A total of 197.6 million reads were obtained and assembled into 176,481 contigs with an average length of 893.7 bp and N50 of 1676 bp. The assembled contigs contained 14,457 known unigenes, including 2719 genes not previously identified in other catfish transcriptome studies. Comparison of digital gene expression between challenged and control samples revealed 1633 differentially expressed genes at 3 h, 24 h, and 3 day following exposure. Gene pathway analysis of the differentially expressed gene set indicated the centrality of actin cytoskeletal polymerization/remodelling and junctional regulation in pathogen entry and subsequent inflammatory responses. The expression patterns of fifteen differentially expressed genes related to intestinal epithelial barrier dysfunction were validated by quantitative real-time RT-PCR (average correlation coeff. 0.92, p < 0.001). Our results set a foundation for future studies comparing mechanisms of pathogen entry and mucosal immunity across several important catfish pathogens including E. ictaluri, Edwardsiellatarda, Flavobacterium columnare, and virulent atypical Aeromonas hydrophila. Understanding of molecular mechanisms of pathogen entry during infection will provide insight into strategies for selection of resistant catfish brood stocks against various diseases.
Collapse
Affiliation(s)
- Chao Li
- Department of Fisheries and Allied Aquacultures, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rajendran KV, Zhang J, Liu S, Kucuktas H, Wang X, Liu H, Sha Z, Terhune J, Peatman E, Liu Z. Pathogen recognition receptors in channel catfish: I. Identification, phylogeny and expression of NOD-like receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:77-86. [PMID: 22200599 DOI: 10.1016/j.dci.2011.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 05/31/2023]
Abstract
Innate immune system plays a significant role in all multicellular organisms. The key feature of the system is its ability to recognize and respond to invading microorganisms. Vertebrates including teleost fish have evolved an array of pathogen recognition receptors (PRRs) for detecting and responding to various pathogen-associated molecular patterns (PAMPs), including Toll-like receptors (TLRs), nucleotide-binding domain, leucine-rich repeat containing receptors (NLRs), and the retinoic acid inducible gene I (RIG-I) like receptors (RLRs). In this study, we identified 22 NLRs including six members of the NLR-A subfamily (NODs), two members of the NLR-B subfamily, 11 members of the NLR-C subfamily, and three genes that do not belong to any of these three subfamilies: Apaf1, CIITA, and NACHT-P1. Phylogenetic analysis indicated that orthologs of the mammalian NOD1, NOD2, NOD3, NOD4, and NOD5 were all identified in catfish. In addition, an additional truncated NOD3-like gene was also identified in catfish. While the identities of subfamily A NLRs could be established, the identities of the NLR-B and NLR-C subfamilies were inconclusive at present. Expression of representative NLR genes was analyzed using RT-PCR and qRT-PCR. In healthy catfish tissues, all the tested NLR genes were found to be ubiquitously expressed in all 11 tested catfish tissues. Analysis of expression of these representative NLR genes after bacterial infection with Edwardsiella ictaluri revealed a significant up-regulation of all tested genes in the spleen and liver, but a significant down-regulation in the intestine and head kidney, suggesting their involvement in the immune responses of catfish against the intracellular bacterial pathogen in a tissue-specific manner. The up-regulation and down-regulation of the tested genes exhibited an amazing similarity of expression profiles after infection, suggesting the co-regulation of these genes.
Collapse
Affiliation(s)
- K V Rajendran
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pridgeon JW, Mu X, Klesius PH. Expression profiles of seven channel catfish antimicrobial peptides in response to Edwardsiella ictaluri infection. JOURNAL OF FISH DISEASES 2012; 35:227-237. [PMID: 22324346 DOI: 10.1111/j.1365-2761.2011.01343.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Using quantitative polymerase chain reaction (QPCR), the relative transcriptional levels of seven channel catfish antimicrobial peptide (AMP) genes (NK-lysin type 1, NK-lysin type 2, NK-lysin type 3, bactericidal permeability-increasing protein, cathepsin D, hepcidin and liver-expressed AMP 2) in response to Edwardsiella ictaluri infection were determined. None of the AMP genes tested was significantly upregulated at 2 h post-infection. Hepcidin was the only one that was significantly (P<0.05) upregulated at 4, 6 and 12 h post-infection. At 24 and 48 h post-infection, four AMPs (hepcidin, NK-lysin type 1, NK-lysin type 3 and cathepsin D) were significantly (P<0.05) upregulated. Among all the AMPs that were significantly upregulated at different time points, hepcidin at 4, 6 and 12 h post-infection was upregulated the most. When catfish were injected with different doses of E. ictaluri, all lethal doses were able to induce significant (P <0.05) upregulation of hepcidin in the posterior kidney, whereas sublethal doses failed to induce any significant upregulation of hepcidin. In vitro growth studies revealed that the presence of synthetic hepcidin peptide at a concentration of 16 μm or higher significantly inhibited the cell proliferation of E. ictaluri. Taken together, our results suggest that hepcidin might play an important role in the channel catfish defence against E. ictaluri infection.
Collapse
Affiliation(s)
- J W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, Auburn, AL 36832, USA.
| | | | | |
Collapse
|
35
|
Alejo A, Tafalla C. Chemokines in teleost fish species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1215-22. [PMID: 21414348 DOI: 10.1016/j.dci.2011.03.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 03/06/2011] [Indexed: 05/21/2023]
Abstract
Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response.
Collapse
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130 Madrid, Spain
| | | |
Collapse
|
36
|
Li YX, Sun JS, Sun L. An inflammatory CC chemokine of Cynoglossus semilaevis is involved in immune defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:446-52. [PMID: 21723394 DOI: 10.1016/j.fsi.2011.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/13/2011] [Accepted: 06/19/2011] [Indexed: 05/21/2023]
Abstract
Chemokines are a family of small cytokines that regulate leukocyte migration. Based on the arrangement of the first two cysteine residues, chemokines are classified into four groups called CXC(α), CC(β), C, and CX(3)C. In this study, we identified a CC chemokine, CsCCK1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its biological activity. The deduced amino acid sequence of CsCCK1 contains 111 amino acid residues and is phylogenetically belonging to the CCL19/21/25 group of CC chemokines. CsCCK1 possesses a DCCL motif that is highly conserved among CC chemokines. Quantitative real time RT-PCR analysis showed that the expression of CsCCK1 was relatively abundant in immune organs under normal physiological conditions and was upregulated by experimental infection of a bacterial pathogen. Purified recombinant CsCCK1 (rCsCCK1) induced chemotaxis in peripheral blood leukocytes (PBL) of both tongue sole and turbot (Scophthalmus maximus) in a dose-dependent manner. Mutation of the CC residues in the DCCL motif by serine substitution completely abolished the biological activity of rCsCCK1. When rCsCCK1, but not the mutant protein, was added to the cell culture of PBL, it enhanced cellular resistance against intracellular bacterial infection. Taken together, these results indicate that CsCCK1 is a functional CC chemokine whose biological activity depends on the DCCL motif and that CsCCK1 plays a role in host immune defense against bacterial infection.
Collapse
Affiliation(s)
- Yong-xin Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | |
Collapse
|
37
|
Cheng YZ, Wang RX, Sun YN, Xu TJ. Molecular characterization of miiuy croaker CC chemokine gene and its expression following Vibrio anguillarum injection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:148-154. [PMID: 21414411 DOI: 10.1016/j.fsi.2011.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
A CC chemokine gene was isolated from miiuy croaker (Miichthys miiuy) by expressed sequence tag analysis. The Mimi-CC cDNA contains an open reading frame of 429 nucleotides encoding 142 amino acid residues. The deduced Mimi-CC possesses the typical arrangement of four cysteines as found in other known CC chemokines (C³¹, C³², C⁵⁶, and C⁷⁰). It shares 15.3%-37.4% identity to CC chemokines of mammal and teleost. Phylogenetic analysis showed that miiuy croaker was most closely related to Atlantic cod. Genomic analysis revealed that Mimi-CC gene consists of four exons and three introns, which is not typical of CC chemokines but resembles that of CXC chemokines. Real-time quantitative RT-PCR demonstrated that Mimi-CC is constitutively expressed in most tissues including lymphoid organs, and the highest expression of Mimi-CC transcripts in normal tissues was observed in muscle. Challenge of miiuy croaker with Vibrio anguillarum resulted in significant changes in the expression of CC chemokine transcripts in four tissues, especially in kidney and spleen.
Collapse
Affiliation(s)
- Yuan-zhi Cheng
- Key Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang province 316000, PR China
| | | | | | | |
Collapse
|
38
|
Chen SL, Liu Y, Dong XL, Meng L. Cloning, characterization, and expression analysis of a CC chemokine gene from turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:147-155. [PMID: 20467856 DOI: 10.1007/s10695-008-9218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/30/2008] [Indexed: 05/29/2023]
Abstract
The chemokines are a superfamily of chemotactic cytokines playing an important role in leukocyte chemotaxis. Here, a turbot head kidney cDNA library was constructed in which KC70 was identified as a CC chemokine. Unknown 5' and 3' parts of the cDNA were amplified by 5' and 3' rapid amplification of cDNA ends (RACE). The complete cDNA of KC70 contains a 59-bp 5' UTR, a 336-bp ORF, and a 152-bp 3' UTR. Four exons and three introns were identified in KC70. Phylogenetic analysis showed that KC70 was similar to CCL19. In normal turbot KC70 was expressed in all tissues except brain and skin. Infection of turbot with pathogenic bacteria significantly increased expression of KC70 in the liver. Expression of KC70 in head kidney first increased and then decreased after bacterial challenge. No significant change was observed in the spleen after bacterial challenge. During embryonic development, KC70 was highly expressed after the gastrula stage. These results indicated KC70 plays important and multiple roles in turbot immune response.
Collapse
Affiliation(s)
- S L Chen
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Nanjing Road 106, Qingdao 266071, China.
| | | | | | | |
Collapse
|
39
|
Pridgeon JW, Russo R, Shoemaker CA, Klesius PH. Expression profiles of toll-like receptors in anterior kidney of channel catfish, Ictalurus punctatus (Rafinesque), acutely infected by Edwardsiella ictaluri. JOURNAL OF FISH DISEASES 2010; 33:497-505. [PMID: 20384909 DOI: 10.1111/j.1365-2761.2010.01159.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Using quantitative PCR (QPCR), the relative transcriptional levels of five toll-like receptors (TLR2, TLR3, TLR5, TLR20a and TLR21) were studied in the channel catfish, Ictalurus punctatus (Rafinesque), under uninfected and acutely infected conditions [1-, 2-, 4-, 6-, 12-, 24-, 36- and 48-h post-injection (hpi)]. Under uninfected conditions, the transcriptional levels of the five TLRs were significantly lower than that of 18S rRNA (P < 0.001). QPCR results also revealed that the transcriptional levels of TLR20a and TLR5 were higher than those of TLR2, TLR3 or TLR21. The transcriptional level of TLR3 was significantly lower than that of the other four TLRs (P < 0.001). However, when channel catfish were acutely infected by Edwardsiella ictaluri through intraperitoneal injection, the transcriptional levels of TLRs increased significantly (P < 0.005) at 6 hpi. Among the five TLRs studied, the transcriptional levels of TLR3, TLR5 and TLR21 were never significantly lower than under uninfected conditions (P = 0.16, 0.27 and 0.19, respectively), suggesting these three TLRs might play important roles in host defence against infection by E. ictaluri. The amount of E. ictaluri in the anterior kidney increased at 12 and 24 hpi but decreased at 36 and 48 hpi. Our results suggest that TLRs are important components in the immune system in the channel catfish, and their rapid transcriptional upregulation (within 6 hpi) in response to acute E. ictaluri infection might be important for survival from enteric septicaemia of catfish.
Collapse
Affiliation(s)
- J W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, Auburn, AL 36832, USA.
| | | | | | | |
Collapse
|
40
|
Liu Z. Development of genomic resources in support of sequencing, assembly, and annotation of the catfish genome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:11-7. [PMID: 20430707 DOI: 10.1016/j.cbd.2010.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 12/11/2022]
Abstract
Major progress has been made in catfish genomics including construction of high-density genetic linkage maps, BAC-based physical maps, and integration of genetic linkage and physical maps. Large numbers of ESTs have been generated from both channel catfish and blue catfish. Microarray platforms have been developed for the analysis of genome expression. Genome repeat structures are studied, laying grounds for whole genome sequencing. USDA recently approved funding of the whole genome sequencing project of catfish using the next generation sequencing technologies. Generation of the whole genome sequence is a historical landmark of catfish research as it opens the real first step of the long march toward genetic enhancement. The research community needs to be focused on aquaculture performance and production traits, take advantage of the unprecedented genome information and technology, and make real progress toward genetic improvements of aquaculture brood stocks.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Fisheries and Allied Aquacultures, Auburn University, AL 36849, USA.
| |
Collapse
|
41
|
Pridgeon JW, Shoemaker CA, Klesius PH. Identification and expression profile of multiple genes in the anterior kidney of channel catfish induced by modified live Edwardsiella ictaluri vaccination. Vet Immunol Immunopathol 2009; 134:184-98. [PMID: 19800135 DOI: 10.1016/j.vetimm.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/13/2009] [Indexed: 01/01/2023]
Abstract
Using PCR-select subtractive cDNA hybridization technique, 57 expressed sequence tags (ESTs) were isolated from 240 clones of a modified live Edwardsiella ictaluri vaccinated vs. sham-vaccinated channel catfish anterior kidney subtractive library. The transcription levels of the 57 ESTs in response to E. ictaluri vaccination were then evaluated by quantitative PCR (QPCR). Of the 57 ESTs, 43 were induced at least 2-fold higher in all three vaccinated fish compared to unvaccinated control fish. Of the 43 upregulated genes, five were consistently upregulated greater than 10-fold, including two highly upregulated (>20-fold) glycosyltransferase and Toll-like receptor 5. The transcriptional levels of GTPase 1, coatomer protein complex zeta 1, and type II arginine deiminase were consistently induced greater than 10-fold. MHC class I alpha chain and transposase were upregulated greater than 10-fold in two of the three vaccinated fish. The 43 upregulated genes also included 19 moderately upregulated (3-10-fold) and 17 slightly upregulated (2-3-fold). Our results suggest that subtractive cDNA hybridization and QPCR are powerful cost-effective techniques to identify differentially expressed genes in response to modified live E. ictaluri vaccination.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, Auburn, AL 36832, USA.
| | | | | |
Collapse
|
42
|
Sha Z, Abernathy JW, Wang S, Li P, Kucuktas H, Liu H, Peatman E, Liu Z. NOD-like subfamily of the nucleotide-binding domain and leucine-rich repeat containing family receptors and their expression in channel catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:991-999. [PMID: 19414032 DOI: 10.1016/j.dci.2009.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/03/2009] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
The NLRs (nucleotide-binding domain and leucine-rich repeat containing family receptors) are a recently identified family of pattern recognition receptors in vertebrates. Several subfamilies of NLRs have been characterized in human, mouse, and zebrafish, but studies of NLRs in other species, especially teleost species, have been lacking. Here we report characterization of five NLRs from channel catfish: NOD1, NOD2, NLRC3, NLRC5, and NLRX1. Structural analysis indicated that the genes were organized in a similar fashion as in the mammals and in zebrafish. Phylogenetic analysis suggested that they were orthologous to the NOD-like subfamily of NLRs. All five NOD-like genes exist as a single copy gene in the catfish genome. Hybridization of gene-specific probes allowed mapping of three NLR genes to the catfish physical map, laying a foundation for genome characterization and for establishing orthologies with NLR genes from other species. These genes are widely expressed in various tissues and leukocyte cell lines. While the majority of the NLR genes appeared to be constitutively expressed, NOD1 was induced after infection with a bacterial pathogen, Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC), suggesting its involvement in immunity against the intracellular pathogen.
Collapse
Affiliation(s)
- Zhenxia Sha
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures, Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, 203 Swingle Hall, Auburn, AL 36849 USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu Y, Chang M, Wu S, Nie P. Characterization of C–C chemokine receptor subfamily in teleost fish. Mol Immunol 2009; 46:498-504. [DOI: 10.1016/j.molimm.2008.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
|
44
|
Dunham RA. Transgenic fish resistant to infectious diseases, their risk and prevention of escape into the environment and future candidate genes for disease transgene manipulation. Comp Immunol Microbiol Infect Dis 2008; 32:139-61. [PMID: 18249446 DOI: 10.1016/j.cimid.2007.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2007] [Indexed: 12/11/2022]
Abstract
Transgenic fish have been produced that have improved growth, disease resistance, survival in cold and body composition, have altered color, that can act as bioindicators for estrogenic pollutants and that can produce pharmaceutical proteins. The largest amount of transgenic research has focused on growth hormone transfer. A relatively small amount of research has focused on enhancing disease resistance, but significant enhancement has been accomplished. Pleiotropic effects from the transfer of other transgenes, particularly growth hormone gene can alter disease resistance in both positive and negative ways. Most negative effects for all transgenes appear to lower fitness traits, which is positive for biological containment. Transgenic fish appear to pose little environmental risk, but this research is not fully conclusive. To expedite commercialization and minimize environmental risk, transgenic sterilization research is underway. A large amount of functional genomics research has resulted in a much better understanding of gene expression when fish are experiencing disease epizootics. This information may allow the future design of more effective transgenic approaches to address disease resistance.
Collapse
Affiliation(s)
- Rex A Dunham
- Department of Fisheries and Allied Aquacultures, Auburn University, Alabama 36849, USA.
| |
Collapse
|
45
|
Peatman E, Terhune J, Baoprasertkul P, Xu P, Nandi S, Wang S, Somridhivej B, Kucuktas H, Li P, Dunham R, Liu Z. Microarray analysis of gene expression in the blue catfish liver reveals early activation of the MHC class I pathway after infection with Edwardsiella ictaluri. Mol Immunol 2008; 45:553-66. [PMID: 17599411 DOI: 10.1016/j.molimm.2007.05.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/13/2007] [Indexed: 01/03/2023]
Abstract
The acute nature of disease outbreaks in aquaculture settings has served to emphasize the importance of the innate immune response of fish for survival and led to the recent identification and characterization of many of its components. Catfish, the predominant aquaculture species in the United States, is an important model for the study of the teleost immune system. However, transcriptomic-level studies of disease-related gene expression in catfish have only recently been initiated, and understanding of immune responses to pathogen infections is limited. Here, we have developed and utilized a 28K in situ oligonucleotide microarray composed of blue catfish (Ictalurus furcatus) and channel catfish (Ictalurus punctatus) transcripts. While channel catfish accounts for the majority of commercial production, the closely related blue catfish possesses several economically important phenotypic traits. Microarray analysis of gene expression changes in blue catfish liver after infection with Gram-negative bacterium Edwardsiella ictaluri indicated the strong upregulation of several pathways involved in the inflammatory immune response and potentially in innate disease resistance. A multifaceted response to infection could be observed, encompassing the complement cascade, iron regulation, inflammatory cell signaling, and antigen processing and presentation. The induction of several components of the MHC class I-related pathway following infection with an intracellular bacterium is reported here for the first time in fish. A comparison with previously published expression profiles in the channel catfish liver was also made and the microarray results extended by use of quantitative RT-PCR. Our results add to the understanding of the teleost immune responses and provide a solid foundation for future functional characterization, genetic mapping, and QTL analysis of immunity-related genes from catfish.
Collapse
Affiliation(s)
- Eric Peatman
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures, Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Baoprasertkul P, Xu P, Peatman E, Kucuktas H, Liu Z. Divergent Toll-like receptors in catfish (Ictalurus punctatus): TLR5S, TLR20, TLR21. FISH & SHELLFISH IMMUNOLOGY 2007; 23:1218-1230. [PMID: 17981052 DOI: 10.1016/j.fsi.2007.06.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 05/10/2007] [Accepted: 06/01/2007] [Indexed: 05/25/2023]
Abstract
Toll-like receptors (TLR) mediate pathogen recognition in vertebrate species through detection of conserved microbial ligands. Families of TLR molecules have been described from the genomes of the teleost fish model species zebrafish and Takifugu, but much research remains to characterize the full length sequences and pathogen specificities of individual TLR members in fish. While the majority of these pathogen receptors are conserved among vertebrate species with clear orthologues present in fish for most mammalian TLRs, several interesting differences are present in the TLR repertoire of teleost fish when compared to that of mammals. A soluble form of TLR5 has been reported from salmonid fish and Takifugu rubripes which is not present in mammals, and a large group of TLRs (arbitrarily numbered 19-23) was identified from teleost genomes with no easily discernible orthologues in mammals. To better understand these teleost adaptations to the TLR family, we have isolated, sequenced, and characterized the full-length cDNA and gene sequences of TLR5S, TLR20, and TLR21 from catfish as well as studied their expression pattern in tissues. We also mapped these genes to bacterial artificial chromosome (BAC) clones for genome analysis. While TLR5S appeared to be common in teleost fish, and TLR21 is common to birds, amphibians and fish, TLR20 has only been identified in zebrafish and catfish. Phylogenetic analysis of catfish TLR20 indicated that it is closely related to murine TLR11 and TLR12, two divergent TLRs about which little is known. All three genes appear to exist in catfish as single copy genes.
Collapse
Affiliation(s)
- Puttharat Baoprasertkul
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
47
|
Sha Z, Xu P, Takano T, Liu H, Terhune J, Liu Z. The warm temperature acclimation protein Wap65 as an immune response gene: its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 2007; 45:1458-69. [PMID: 17920125 DOI: 10.1016/j.molimm.2007.08.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
The warm temperature acclimation related 65kDa protein (Wap65) in teleost fish shares high structural similarities with mammalian hemopexins. Recent studies using microarray analysis indicated that this temperature acclimation protein may also be involved in immune responses. To provide evidence of its potential involvement in immune responses after bacterial infections, we have identified and characterized two types of Wap65 genes in channel catfish, referred to as Wap65-1 and Wap65-2, respectively. While Wap65-1 and Wap65-2 are both structurally similar to the mammalian hemopexins, they exhibit highly differential patterns of spatial expression. Wap65-1 was expressed in a wide range of tissues, whereas Wap65-2 was only expressed in the liver. Their regulation with warm temperature and bacterial infections was also highly different: Wap65-1 was constitutively expressed, whereas Wap65-2 was highly regulated by both warm temperature and bacterial infections, and warm temperature and bacterial infections appeared to synergistically induce the expression of Wap65-2. The great contrast of expression patterns and regulation of the two catfish Wap65 genes suggested both neofunctionalization and partitioning of their functions. Phylogenetic analysis indicated that the duplicated catfish Wap65 genes were evolved not only from whole genome duplication, but also from tandem, intrachromosomal gene duplications. Taken together, the results of this study suggest that Wap65 genes are not only important for its classical role as a warm temperature acclimation protein, but more importantly, may also function as an immune response protein.
Collapse
Affiliation(s)
- Zhenxia Sha
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
48
|
Xu P, Wang S, Liu L, Thorsen J, Kucuktas H, Liu Z. A BAC-based physical map of the channel catfish genome. Genomics 2007; 90:380-8. [PMID: 17582737 DOI: 10.1016/j.ygeno.2007.05.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 01/12/2023]
Abstract
Catfish is the major aquaculture species in the United States. To enhance its genome studies involving genetic linkage and comparative mapping, a bacterial artificial chromosome (BAC) contig-based physical map of the channel catfish (Ictalurus punctatus) genome was generated using four-color fluorescence-based fingerprints. Fingerprints of 34,580 BAC clones (5.6x genome coverage) were generated for the FPC assembly of the BAC contigs. A total of 3307 contigs were assembled using a cutoff value of 1x10(-20). Each contig contains an average of 9.25 clones with an average size of 292 kb. The combined contig size for all contigs was 0.965 Gb, approximately the genome size of the channel catfish. The reliability of the contig assembly was assessed by both hybridization of gene probes to BAC clones contained in the fingerprinted assembly and validation of randomly selected contigs using overgo probes designed from BAC end sequences. The presented physical map should greatly enhance genome research in the catfish, particularly aiding in the identification of genomic regions containing genes underlying important performance traits.
Collapse
Affiliation(s)
- Peng Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
49
|
Li P, Peatman E, Wang S, Feng J, He C, Baoprasertkul P, Xu P, Kucuktas H, Nandi S, Somridhivej B, Serapion J, Simmons M, Turan C, Liu L, Muir W, Dunham R, Brady Y, Grizzle J, Liu Z. Towards the ictalurid catfish transcriptome: generation and analysis of 31,215 catfish ESTs. BMC Genomics 2007; 8:177. [PMID: 17577415 PMCID: PMC1906771 DOI: 10.1186/1471-2164-8-177] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 06/18/2007] [Indexed: 12/20/2022] Open
Abstract
Background EST sequencing is one of the most efficient means for gene discovery and molecular marker development, and can be additionally utilized in both comparative genome analysis and evaluation of gene duplications. While much progress has been made in catfish genomics, large-scale EST resources have been lacking. The objectives of this project were to construct primary cDNA libraries, to conduct initial EST sequencing to generate catfish EST resources, and to obtain baseline information about highly expressed genes in various catfish organs to provide a guide for the production of normalized and subtracted cDNA libraries for large-scale transcriptome analysis in catfish. Results A total of 17 cDNA libraries were constructed including 12 from channel catfish (Ictalurus punctatus) and 5 from blue catfish (I. furcatus). A total of 31,215 ESTs, with average length of 778 bp, were generated including 20,451 from the channel catfish and 10,764 from blue catfish. Cluster analysis indicated that 73% of channel catfish and 67% of blue catfish ESTs were unique within the project. Over 53% and 50% of the channel catfish and blue catfish ESTs, respectively, had significant similarities to known genes. All ESTs have been deposited in GenBank. Evaluation of the catfish EST resources demonstrated their potential for molecular marker development, comparative genome analysis, and evaluation of ancient and recent gene duplications. Subtraction of abundantly expressed genes in a variety of catfish tissues, identified here, will allow the production of low-redundancy libraries for in-depth sequencing. Conclusion The sequencing of 31,215 ESTs from channel catfish and blue catfish has significantly increased the EST resources in catfish. The EST resources should provide the potential for microarray development, polymorphic marker identification, mapping, and comparative genome analysis.
Collapse
Affiliation(s)
- Ping Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Eric Peatman
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shaolin Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jinian Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Chongbo He
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Puttharat Baoprasertkul
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Peng Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Huseyin Kucuktas
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Samiran Nandi
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Benjaporn Somridhivej
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jerry Serapion
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Micah Simmons
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Cemal Turan
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Lei Liu
- The W. M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yolanda Brady
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - John Grizzle
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
50
|
Peatman E, Liu Z. Evolution of CC chemokines in teleost fish: a case study in gene duplication and implications for immune diversity. Immunogenetics 2007; 59:613-23. [PMID: 17541578 DOI: 10.1007/s00251-007-0228-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/11/2007] [Indexed: 01/26/2023]
Abstract
Chemokines are a superfamily of cytokines responsible for regulating cell migration under both inflammatory and physiological conditions. CC chemokines are the largest subfamily of chemokines, with 28 members in humans. A subject of intense study in mammalian species, the known functional roles of CC chemokines ligands in both developmental and disease conditions continue to expand. They are also an important family for the study of gene copy number variation and tandem duplication in mammalian species. However, little is known regarding the evolutionary origin and status of these ligands in primitive vertebrates such as teleost fish. In this paper, we review the evolution of the teleost fish CC chemokine gene family, noting evidence of widespread tandem gene duplications and examining the implications of this phenomenon on immune diversity. Through extensive phylogenetic analysis of the CC chemokine sets of four teleost species, zebrafish, catfish, rainbow trout, and Atlantic salmon, we identified seven large groups of CC chemokines. It appeared that several major groups of CC chemokines are highly related including the CCL19/21/25 group, the CCL20 group, CCL27/28 group, and the fish-specific group. In the three remaining groups that contained the largest number of members, the CCL17/22 group, the MIP group, and the MCP group, similarities among species members were obscured by rapid, tandem duplications that may contribute to immune diversity.
Collapse
Affiliation(s)
- Eric Peatman
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | | |
Collapse
|