1
|
Kita K, Uchida M, Arie T, Teraoka T, Kaku H, Kanda Y, Mori M, Arazoe T, Kamakura T. The MAT1 locus is required for microconidia-mediated sexual fertility in the rice blast fungus. FEMS Microbiol Lett 2024; 371:fnae004. [PMID: 38305094 DOI: 10.1093/femsle/fnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
Rice blast fungus (Pyricularia oryzae) is a heterothallic ascomycete that causes the most destructive disease in cultivated rice worldwide. This fungus reproduces sexually and asexually, and its mating type is determined by the MAT1 locus, MAT1-1 or MAT1-2. Interestingly, most rice-infecting field isolates show a loss of female fertility, but the MAT1 locus is highly conserved in female-sterile isolates. In this study, we performed a functional analysis of MAT1 using the CRISPR/Cas9 system in female- and male-fertile isolates and female-sterile (male-fertile) isolates. Consistent with a previous report, MAT1 was essential for sexual reproduction but not for asexual reproduction. Meanwhile, deletion mutants of MAT1-1-1, MAT1-1-2, and MAT1-1-3 exhibited phenotypes different from those of other previously described isolates, suggesting that the function of MAT1-1 genes and/or their target genes in sexual reproduction differs among strains or isolates. The MAT1 genes, excluding MAT1-2-6, retained their functions even in female-sterile isolates, and deletion mutants lead to loss or reduction of male fertility. Although MAT1 deletion did not affect microconidia (spermatia) production, microconidia derived from the mutants could not induce perithecia formation. These results indicated that MAT1 is required for microconidia-mediated male fertility in addition to female fertility in P. oryzae .
Collapse
Affiliation(s)
- Kohtetsu Kita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| | - Momotaka Uchida
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 1830054, Japan
| | - Tohru Teraoka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 1830054, Japan
| | - Hisatoshi Kaku
- JICA Tsukuba Center, Japan International Coorporation Agency, 3-6 Koyadai, Tsukuba, Ibaraki 3050074, Japan
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 3058602, Japan
| | - Yasukazu Kanda
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 3058602, Japan
| | - Masaki Mori
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 3058602, Japan
| | - Takayuki Arazoe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 2788510, Japan
| |
Collapse
|
2
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Wilson AM, Wingfield MJ, Wingfield BD. Truncation of MAT1-2-7 Deregulates Developmental Pathways Associated with Sexual Reproduction in Huntiella omanensis. Microbiol Spectr 2022; 10:e0142522. [PMID: 36154282 PMCID: PMC9602353 DOI: 10.1128/spectrum.01425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022] Open
Abstract
The MAT1-1-1 and MAT1-2-1 genes are thought to be the master regulators of sexual development in most ascomycete fungi, and they are often essential for this process. In contrast, it has been suggested that the secondary mating-type genes act to calibrate the sexual cycle and can be dispensable. Recent functional characterization of genes such as Aspergillus fumigatus MAT1-2-4, Huntiella omanensis MAT1-2-7, and Botrytis cinerea MAT1-1-5 has, however, shown that these secondary genes may play more central roles in the sexual pathway and are essential for the production of mature fruiting structures. We used a comparative transcriptome sequencing (RNA-seq) experiment to show that the truncation of MAT1-2-7 in the wood inhabiting H. omanensis residing in the Ceratocystidaceae is associated with the differential expression of approximately 25% of all the genes present in the genome, including the transcriptional regulators ste12, wc-2, sub1, VeA, HMG8, and pro1. This suggests that MAT1-2-7 may act as a transcription factor and that ΔMAT1-2-7 mutant sterility is the result of layered deregulation of a variety of signaling and developmental pathways. This study is one of only a few that details the functional characterization of a secondary MAT gene in a nonmodel species. Given that this gene is present in other Ceratocystidaceae species and that there are diverse secondary MAT genes present throughout the Pezizomycotina, further investigation into this gene and others like it will provide a clearer understanding of sexual development in these eukaryotes. IMPORTANCE Secondary mating-type genes are being described almost as quickly as new fungal genomes are being sequenced. Understanding the functions of these genes has lagged behind their description, in part due to limited taxonomic distribution, lack of conserved functional domains, and difficulties with regard to genetic manipulation protocols. This study aimed to address this by investigating a novel mating-type gene, MAT1-2-7, for which two independent mutant strains were generated in a previous study. We characterized the molecular response to the truncation of this gene in a nonmodel, wood-infecting fungus and showed that it resulted in widespread differential expression throughout the transcriptome of this fungus. This suggests that secondary MAT genes may play a more important role than previously thought. This study also emphasizes the need for further research into the life cycles of nonmodel fungi, which often exhibit unique features that are very different from the systems understood from model species.
Collapse
Affiliation(s)
- A. M. Wilson
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - M. J. Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - B. D. Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Wilson AM, Wilken PM, Wingfield MJ, Wingfield BD. Genetic Networks That Govern Sexual Reproduction in the Pezizomycotina. Microbiol Mol Biol Rev 2021; 85:e0002021. [PMID: 34585983 PMCID: PMC8485983 DOI: 10.1128/mmbr.00020-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sexual development in filamentous fungi is a complex process that relies on the precise control of and interaction between a variety of genetic networks and pathways. The mating-type (MAT) genes are the master regulators of this process and typically act as transcription factors, which control the expression of genes involved at all stages of the sexual cycle. In many fungi, the sexual cycle typically begins when the mating pheromones of one mating type are recognized by a compatible partner, followed by physical interaction and fertilization. Subsequently, highly specialized sexual structures are formed, within which the sexual spores develop after rounds of meiosis and mitosis. These spores are then released and germinate, forming new individuals that initiate new cycles of growth. This review provides an overview of the known genetic networks and pathways that are involved in each major stage of the sexual cycle in filamentous ascomycete fungi.
Collapse
Affiliation(s)
- Andi M. Wilson
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - P. Markus Wilken
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Michael J. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Brenda D. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
5
|
Lütkenhaus R, Breuer J, Nowrousian M. Functional characterization of the developmental genes asm2, asm3, and spt3 required for fruiting body formation in the filamentous ascomycete Sordaria macrospora. Genetics 2021; 219:iyab103. [PMID: 34849873 PMCID: PMC8633134 DOI: 10.1093/genetics/iyab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023] Open
Abstract
The formation of fruiting bodies is one of the most complex developmental processes in filamentous ascomycetes. It requires the development of sexual structures that give rise to meiosporangia (asci) and meiotic spores (ascospores) as well as surrounding structures for protection and dispersal of the spores. Previous studies have shown that these developmental processes are accompanied by significant changes of the transcriptome, and comparative transcriptomics of different fungi as well as the analysis of transcriptome changes in developmental mutants have aided in the identification of differentially regulated genes that are themselves involved in regulating fruiting body development. In previous analyses, we used transcriptomics to identify the genes asm2 and spt3, which result in developmental phenotypes when deleted in Sordaria macrospora. In this study, we identified another gene, asm3, required for fruiting body formation, and performed transcriptomics analyses of Δasm2, Δasm3, and Δspt3. Deletion of spt3, which encodes a subunit of the SAGA complex, results in a block at an early stage of development and drastic changes in the transcriptome. Deletion mutants of asm2 and asm3 are able to form fruiting bodies, but have defects in ascospore maturation. Transcriptomics analysis of fruiting bodies revealed a large overlap in differentially regulated genes in Δasm2 and Δasm3 compared to the wild type. Analysis of nuclear distribution during ascus development showed that both mutants undergo meiosis and postmeiotic divisions, suggesting that the transcriptomic and morphological changes might be related to defects in the morphogenesis of structural features of the developing asci and ascospores.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Jan Breuer
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| |
Collapse
|
6
|
Wan JN, Li Y, Guo T, Ji GY, Luo SZ, Ji KP, Cao Y, Tan Q, Bao DP, Yang RH. Whole-Genome and Transcriptome Sequencing of Phlebopus portentosus Reveals Its Associated Ectomycorrhizal Niche and Conserved Pathways Involved in Fruiting Body Development. Front Microbiol 2021; 12:732458. [PMID: 34659161 PMCID: PMC8511702 DOI: 10.3389/fmicb.2021.732458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023] Open
Abstract
Phlebopus portentosus (Berk. and Broome) Boedijin, a widely consumed mushroom in China and Thailand, is the first species in the order Boletaceae to have been industrially cultivated on a large scale. However, to date, the lignocellulose degradation system and molecular basis of fruiting body development in P. portentosus have remained cryptic. In the present study, genome and transcriptome sequencing of P. portentosus was performed during the mycelium (S), primordium (P), and fruiting body (F) stages. A genome of 32.74 Mb with a 48.92% GC content across 62 scaffolds was obtained. A total of 9,464 putative genes were predicted from the genome, of which the number of genes related to plant cell wall-degrading enzymes was much lower than that of some saprophytic mushrooms with specific ectomycorrhizal niches. Principal component analysis of RNA-Seq data revealed that the gene expression profiles at all three stages were different. The low expression of plant cell wall-degrading genes also confirmed the limited ability to degrade lignocellulose. The expression profiles also revealed that some conserved and specific pathways were enriched in the different developmental stages of P. portentosus. Starch and sucrose metabolic pathways were enriched in the mycelium stage, while DNA replication, the proteasome and MAPK signaling pathways may be associated with maturation. These results provide a new perspective for understanding the key pathways and hub genes involved in P. portentosus development.
Collapse
Affiliation(s)
- Jia-Ning Wan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ting Guo
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Yan Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Shun-Zhen Luo
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Kai-Ping Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Yang Cao
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Qi Tan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
7
|
|
8
|
The Glyoxysomal Protease LON2 Is Involved in Fruiting-Body Development, Ascosporogenesis and Stress Resistance in Sordaria macrospora. J Fungi (Basel) 2021; 7:jof7020082. [PMID: 33530609 PMCID: PMC7911957 DOI: 10.3390/jof7020082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
Microbodies, including peroxisomes, glyoxysomes and Woronin bodies, are ubiquitous dynamic organelles that play important roles in fungal development. The ATP-dependent chaperone and protease family Lon that maintain protein quality control within the organelle significantly regulate the functionality of microbodies. The filamentous ascomycete Sordaria macrospora is a model organism for studying fruiting-body development. The genome of S. macrospora encodes one Lon protease with the C-terminal peroxisomal targeting signal (PTS1) serine-arginine-leucine (SRL) for import into microbodies. Here, we investigated the function of the protease SmLON2 in sexual development and during growth under stress conditions. Localization studies revealed a predominant localization of SmLON2 in glyoxysomes. This localization depends on PTS1, since a variant without the C-terminal SRL motif was localized in the cytoplasm. A ΔSmlon2 mutant displayed a massive production of aerial hyphae, and produced a reduced number of fruiting bodies and ascospores. In addition, the growth of the ΔSmlon2 mutant was completely blocked under mild oxidative stress conditions. Most of the defects could be complemented with both variants of SmLON2, with and without PTS1, suggesting a dual function of SmLON2, not only in microbody, but also in cytosolic protein quality control.
Collapse
|
9
|
Transcriptomic analysis of the orchestrated molecular mechanisms underlying fruiting body initiation in Chinese cordyceps. Gene 2020; 763:145061. [DOI: 10.1016/j.gene.2020.145061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023]
|
10
|
Yong M, Yu J, Pan X, Yu M, Cao H, Qi Z, Du Y, Zhang R, Song T, Yin X, Chen Z, Liu W, Liu Y. MAT1-1-3, a Mating Type Gene in the Villosiclava virens, Is Required for Fruiting Bodies and Sclerotia Formation, Asexual Development and Pathogenicity. Front Microbiol 2020; 11:1337. [PMID: 32714294 PMCID: PMC7344243 DOI: 10.3389/fmicb.2020.01337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
Villosiclava virens is the prevalent causative pathogen of rice false smut, a destructive rice disease. Mating-type genes play a vital role in the evolution of mating systems in fungi. Some fungi have lost MAT1-1-3, one of the mating-type genes, during evolution, whereas others still retain MAT1-1-3. However, how MAT1-1-3 regulates the sexual development of heterothallic V. virens remains unknown. Here, we generated the MAT1-1-3 mutants, which exhibited defects in vegetative growth, stress response, pathogenicity, sclerotia formation and fruiting body maturation. An artificial outcrossing inoculation assay showed that the Δmat1-1-3 mutant was unable to produce sclerotia. Unexpectedly, the Δmat1-1-3 mutant could form immature fruiting bodies without mating on potato sucrose agar medium (PSA) compared with the wild-type strain, most likely by activating the truncated MAT1-2-1 transcription to regulate the sexual development. Moreover, RNA-seq data showed that knockout of MAT1-1-3 results in misregulation of a subset of genes involved in sexual development, MAPK signaling, cell wall integrity, autophagy, epigenetic modification, and transcriptional regulation. Collectively, this study reveals that MAT1-1-3 is required for asexual and sexual development, and pathogenicity of V. virens, thereby provides new insights into the function of mating-type genes in the fungi life cycle and infection process.
Collapse
Affiliation(s)
- Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
11
|
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int J Mol Sci 2020; 21:E2645. [PMID: 32290169 PMCID: PMC7177237 DOI: 10.3390/ijms21072645] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| |
Collapse
|
12
|
Teichert I, Pöggeler S, Nowrousian M. Sordaria macrospora: 25 years as a model organism for studying the molecular mechanisms of fruiting body development. Appl Microbiol Biotechnol 2020; 104:3691-3704. [PMID: 32162092 PMCID: PMC7162830 DOI: 10.1007/s00253-020-10504-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Abstract Fruiting bodies are among the most complex multicellular structures formed by fungi, and the molecular mechanisms that regulate their development are far from understood. However, studies with a number of fungal model organisms have started to shed light on this developmental process. One of these model organisms is Sordaria macrospora, a filamentous ascomycete from the order Sordariales. This fungus has been a genetic model organism since the 1950s, but its career as a model organism for molecular genetics really took off in the 1990s, when the establishment of a transformation protocol, a mutant collection, and an indexed cosmid library provided the methods and resources to start revealing the molecular mechanisms of fruiting body development. In the 2000s, “omics” methods were added to the S. macrospora tool box, and by 2020, 58 developmental genes have been identified in this fungus. This review gives a brief overview of major method developments for S. macrospora, and then focuses on recent results characterizing different processes involved in regulating development including several regulatory protein complexes, autophagy, transcriptional and chromatin regulation, and RNA editing. Key points •Sordaria macrospora is a model system for analyzing fungal fruiting body development. •More than 100 developmental mutants are available for S. macrospora. •More than 50 developmental genes have been characterized in S. macrospora.
Collapse
Affiliation(s)
- Ines Teichert
- General and Molecular Botany, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
13
|
Integrative Activity of Mating Loci, Environmentally Responsive Genes, and Secondary Metabolism Pathways during Sexual Development of Chaetomium globosum. mBio 2019; 10:mBio.02119-19. [PMID: 31822585 PMCID: PMC6904875 DOI: 10.1128/mbio.02119-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal diversity has amazed evolutionary biologists for decades. One societally important aspect of this diversity manifests in traits that enable pathogenicity. The opportunistic pathogen Chaetomium globosum is well adapted to a high-humidity environment and produces numerous secondary metabolites that defend it from predation. Many of these chemicals can threaten human health. Understanding the phases of the C. globosum life cycle in which these products are made enables better control and even utilization of this fungus. Among its intriguing traits is that it both is self-fertile and lacks any means of propagule-based asexual reproduction. By profiling genome-wide gene expression across the process of sexual reproduction in C. globosum and comparing it to genome-wide gene expression in the model filamentous fungus N. crassa and other closely related fungi, we revealed associations among mating-type genes, sexual developmental genes, sexual incompatibility regulators, environmentally responsive genes, and secondary metabolic pathways. The origins and maintenance of the rich fungal diversity have been longstanding issues in evolutionary biology. To investigate how differences in expression regulation contribute to divergences in development and ecology among closely related species, transcriptomes were compared between Chaetomium globosum, a homothallic pathogenic fungus thriving in highly humid ecologies, and Neurospora crassa, a heterothallic postfire saprotroph. Gene expression was quantified in perithecia at nine distinct morphological stages during nearly synchronous sexual development. Unlike N. crassa, expression of all mating loci in C. globosum was highly correlated. Key regulators of the initiation of sexual development in response to light stimuli—including orthologs of N. crassasub-1, sub-1-dependent gene NCU00309, and asl-1—showed regulatory dynamics matching between C. globosum and N. crassa. Among 24 secondary metabolism gene clusters in C. globosum, 11—including the cochliodones biosynthesis cluster—exhibited highly coordinated expression across perithecial development. C. globosum exhibited coordinately upregulated expression of histidine kinases in hyperosmotic response pathways—consistent with gene expression responses to high humidity we identified in fellow pathogen Fusarium graminearum. Bayesian networks indicated that gene interactions during sexual development have diverged in concert with the capacities both to reproduce asexually and to live a self-compatible versus self-incompatible life cycle, shifting the hierarchical roles of genes associated with conidiation and heterokaryon incompatibility in N. crassa and C. globosum. This divergence supports an evolutionary history of loss of conidiation due to unfavorable combinations of heterokaryon incompatibility in homothallic species.
Collapse
|
14
|
Lütkenhaus R, Traeger S, Breuer J, Carreté L, Kuo A, Lipzen A, Pangilinan J, Dilworth D, Sandor L, Pöggeler S, Gabaldón T, Barry K, Grigoriev IV, Nowrousian M. Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics 2019; 213:1545-1563. [PMID: 31604798 PMCID: PMC6893386 DOI: 10.1534/genetics.119.302749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefanie Traeger
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, 37077 Göttingen, Germany
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Kerrie Barry
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
15
|
Li X, Wang F, Liu Q, Li Q, Qian Z, Zhang X, Li K, Li W, Dong C. Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes. BMC Genomics 2019; 20:337. [PMID: 31054562 PMCID: PMC6500587 DOI: 10.1186/s12864-019-5708-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese cordyceps, also known as Chinese caterpillar fungus (Ophiocordyceps sinensis, syn. Cordyceps sinensis), is of particular interest for its cryptic life cycle and economic and ecological importance. The large-scale artificial cultivation was succeeded recently after several decades of efforts and attempts. However, the induction of primordium, sexual development of O. sinensis and the molecular basis of its lifestyle still remain cryptic. RESULTS The developmental transcriptomes were analyzed for six stages covering the whole developmental process, including hyphae (HY), sclerotium (ST), primordium (PR), young fruiting body (YF), developed fruiting body (DF) and mature fruiting body (MF), with a focus on the expression of sexual development-related genes. Principal component analysis revealed that the gene expression profiles at the stages of primordium formation and fruiting body development are more similar than those of the undifferentiated HY stage. The PR and MF stages grouped together, suggesting that primordium differentiation and sexual maturation have similar expression patterns. Many more DEGs were identified between the ST and HY stages, covering 47.5% of the O. sinensis genome, followed by the comparisons between the ST and PR stages. Using pairwise comparisons and weighted gene coexpression network analysis, modules of coexpressed genes and candidate hub genes for each developmental stage were identified. The four mating type loci genes expressed during primordium differentiation and sexual maturation; however, spatiotemporal specificity of gene expression indicated that they also expressed during the anamorphic HY stage. The four mating type genes were not coordinately expressed, suggesting they may have divergent roles. The expression of the four mating type genes was highest in the fertile part and lowest in the sclerotium of the MF stage, indicating that there is tissue specificity. Half of genes related to mating signaling showed as the highest expression in the ST stage, indicating fruiting was initiated in the ST stage. CONCLUSIONS These results provide a new perspective to understanding of the key pathways and hub genes, and sexual development-related gene profile in the development of Chinese cordyceps. It will be helpful for underlying sexual reproduction, and add new information to existing models of fruiting body development in edible fungi.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Quanping Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., LTD, Dongguan, 523850 Guangdong China
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., LTD, Dongguan, 523850 Guangdong China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Wenjia Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., LTD, Dongguan, 523850 Guangdong China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
16
|
It's All in the Genes: The Regulatory Pathways of Sexual Reproduction in Filamentous Ascomycetes. Genes (Basel) 2019; 10:genes10050330. [PMID: 31052334 PMCID: PMC6562746 DOI: 10.3390/genes10050330] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Sexual reproduction in filamentous ascomycete fungi results in the production of highly specialized sexual tissues, which arise from relatively simple, vegetative mycelia. This conversion takes place after the recognition of and response to a variety of exogenous and endogenous cues, and relies on very strictly regulated gene, protein, and metabolite pathways. This makes studying sexual development in fungi an interesting tool in which to study gene-gene, gene-protein, and protein-metabolite interactions. This review provides an overview of some of the most important genes involved in this process; from those involved in the conversion of mycelia into sexually-competent tissue, to those involved in the development of the ascomata, the asci, and ultimately, the ascospores.
Collapse
|
17
|
He J, Cui Z, Ji X, Luo Y, Wei Y, Zhang Q. Novel Histidine Kinase Gene HisK2301 from Rhodosporidium kratochvilovae Contributes to Cold Adaption by Promoting Biosynthesis of Polyunsaturated Fatty Acids and Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:653-660. [PMID: 30558417 DOI: 10.1021/acs.jafc.8b04859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hybrid histidine kinase (HHKs) are widespread in fungi, but their roles in the regulation of fungal adaptation to environmental stresses remain largely unclear. To elucidate this, we cloned HisK2301 from Rhodosporidium kratochvilovae strain YM25235, characterized HisK2301 as a novel HHK, and further investigated the role of HisK2301 by overexpressing it in YM25235. Our results revealed that HisK2301 can promote adaptation of YM25235 to cold, osmotic, and salt stresses. During cold stress, HisK2301 significantly enhanced the biosynthesis of polyunsaturated fatty acids (PUFA) and intracellular glycerol. HisK2301 also augmented the expression levels of Δ12/Δ15 fatty acid desaturase ( RKD12) and glycerol-3-phosphate dehydrogenase1 ( GPD1), which are responsible for PUFA and glycerol biosynthesis, respectively. To conclude, our findings give the first insight into the defense and mechanisms of HisK2301 in fungi against cold stress and suggest the potential use of the novel cold-adapted HHK HisK2301 in industrial processes, such as large-scale production of PUFA.
Collapse
Affiliation(s)
- Jing He
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
- Genetic Diagnosis Center, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases , The First People's Hospital of Yunnan Province , Kunming , Yunnan 650032 , PR China
| | - Zhicheng Cui
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Xiuling Ji
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Yiyong Luo
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Yunlin Wei
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Qi Zhang
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| |
Collapse
|
18
|
Wilson AM, van der Nest MA, Wilken PM, Wingfield MJ, Wingfield BD. Pheromone expression reveals putative mechanism of unisexuality in a saprobic ascomycete fungus. PLoS One 2018; 13:e0192517. [PMID: 29505565 PMCID: PMC5837088 DOI: 10.1371/journal.pone.0192517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Homothallism (self-fertility) describes a wide variety of sexual strategies that enable a fungus to reproduce in the absence of a mating partner. Unisexual reproduction, a form of homothallism, is a process whereby a fungus can progress through sexual reproduction in the absence of mating genes previously considered essential for self-fertility. In this study, we consider the molecular mechanisms that allow for this unique sexual behaviour in the saprotrophic ascomycete; Huntiella moniliformis. These molecular mechanisms are also compared to the underlying mechanisms that control sex in Huntiella omanensis, a closely related, but self-sterile, species. The main finding was that H. omanensis displayed mating-type dependent expression of the a- and α-pheromones. This was in contrast to H. moniliformis where both pheromones were co-expressed during vegetative growth and sexual development. Furthermore, H. moniliformis also expressed the receptors of both pheromones. Consequently, this fungus is likely able to recognize and respond to the endogenously produced pheromones, allowing for self-fertility in the absence of other key mating genes. Overall, these results are concomitant with those reported for other unisexual species, but represent the first detailed study considering the unisexual behaviour of a filamentous fungus.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- * E-mail:
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
20
|
Toh SS, Chen Z, Schultz DJ, Cuomo CA, Perlin MH. Transcriptional analysis of mating and pre-infection stages of the anther smut, Microbotryum lychnidis-dioicae. MICROBIOLOGY-SGM 2017; 163:410-420. [PMID: 28100297 DOI: 10.1099/mic.0.000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbotryum lychnidis-dioicae is an obligate biotrophic parasite of the wildflower species Silene latifolia. This dikaryotic fungus, commonly known as an anther smut, requires that haploid, yeast-like sporidia of opposite mating types fuse and differentiate into dikaryotic hyphae that penetrate host tissue as part of the fungal life cycle. Mating occurs under conditions of cool temperatures and limited nutrients. Further development requires host cues or chemical mimics, including a variety of lipids, e.g. phytols. To identify global changes in transcription associated with developmental shifts, RNA-Seq was conducted at several in vitro stages of fungal propagation, i.e. haploid cells grown independently on rich and nutrient-limited media, mated cells on nutrient-limited media as well as a time course of such mated cells exposed to phytol. Comparison of haploid cells grown under rich and nutrient-limited conditions identified classes of genes probably associated with general nutrient availability, including components of the RNAi machinery. Some gene enrichment patterns comparing the nutrient-limited and mated transcriptomes suggested gene expression changes associated with the mating programme (e.g. homeodomain binding proteins, secreted proteins, proteins unique to M. lychnidis-dioicae¸ multicopper oxidases and RhoGEFs). Analysis for phytol treatment compared with mated cells alone allowed identification of genes likely to be involved in the dikaryotic switch (e.g. oligopeptide transporters). Gene categories of particular note in all three conditions included those in the major facilitator superfamily, proteins containing PFAM domains of the secretory lipase family as well as proteins predicted to be secreted, many of which have the hallmarks of fungal effectors with potential roles in pathogenicity.
Collapse
Affiliation(s)
- Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA.,Present address: DSO National Laboratories, Defence Medical and Environmental Research Institute, Singapore
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Present address: WuXi NextCODE, Cambridge, MA, USA
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| | | | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
21
|
Doughan B, Rollins JA. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol 2016; 120:1105-17. [PMID: 27567717 DOI: 10.1016/j.funbio.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/09/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a phytopathogenic fungus that relies on the completion of the sexual cycle to initiate aerial infections. The sexual cycle produces apothecia required for inoculum dispersal. In this study, insight into the regulation of apothecial multicellular development was pursued through functional characterization of mating-type genes. These genes are hypothesized to encode master regulatory proteins required for aspects of sexual development ranging from fertilization through fertile fruiting body development. Experimentally, loss-of-function mutants were created for the conserved core mating-type genes (MAT1-1-1, and MAT1-2-1), and the lineage-specific genes found only in S. sclerotiorum and closely related fungi (MAT1-1-5, and MAT1-2-4). The MAT1-1-1, MAT1-1-5, and MAT1-2-1 mutants are able to form ascogonia but are blocked in all aspects of apothecium development. These mutants also exhibit defects in secondary sexual characters including lower numbers of spermatia. The MAT1-2-4 mutants are delayed in carpogenic germination accompanied with altered disc morphogenesis and ascospore production. They too produce lower numbers of spermatia. All four MAT gene mutants showed alterations in the expression of putative pheromone precursor (Ppg-1) and pheromone receptor (PreA, PreB) genes. Our findings support the involvement of MAT genes in sexual fertility, gene regulation, meiosis, and morphogenesis in S. sclerotiorum.
Collapse
Affiliation(s)
- Benjamin Doughan
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA.
| |
Collapse
|
22
|
Werner A, Herzog B, Frey S, Pöggeler S. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora. PLoS One 2016; 11:e0157960. [PMID: 27309377 PMCID: PMC4911038 DOI: 10.1371/journal.pone.0157960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022] Open
Abstract
In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12.
Collapse
Affiliation(s)
- Antonia Werner
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Britta Herzog
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Stefan Frey
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
23
|
Yang T, Guo M, Yang H, Guo S, Dong C. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 2015; 100:743-55. [PMID: 26476643 DOI: 10.1007/s00253-015-7047-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
Light is an essential factor for pigment formation and fruit body development in Cordyceps militaris, a well-known edible and medicinal fungus. Cmwc-1, a homolog of the blue-light receptor gene white collar-1 (wc-1) in Neurospora crassa, was cloned from the C. militaris genome in our previous study. Here, Cmwc-1 gene inactivation results in thicker aerial hyphae, disordered fruit body development, a significant reduction in conidial formation, and carotenoid and cordycepin production. These characteristics were restored when the ΔCmwc-1 strains were hybridized with wild-type strains of the opposite mating type. A genome-wide expression analysis revealed that there were 1042 light-responsive genes in the wild-type strain and only 458 in the ΔCmwc-1 strain. Among five putative photoreceptors identified, Vivid, cryptochrome-1, and cyclobutane pyrimidine dimer photolyase are strongly induced by light in a Cmwc-1-dependent manner, while phytochrome and cryptochrome-2 were not induced. The transcription factors involved in the fungal light reaction were mainly of the Zn2Cys6 type. CmWC-1 regulates adenylosuccinate synthase, an important enzyme for adenosine de novo synthesis, which could explain the reduction in cordycepin production. Some G protein-coupled receptors that control fungal fruit body formation and the sexual cycle were regulated by CmWC-1, and the cAMP pathway involved in light signal transduction in N. crassa was not critical for the photoreaction in the fungus here. A transcriptional analysis indicated that steroid biosynthesis was more active in the ΔCmwc-1 strain, suggesting that CmWC-1 might switch the vegetative growth state to primordia differentiation by suppressing the expression of related genes.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Mingmin Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China.,College of Chemistry and Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Huaijun Yang
- Shanxi Research Institute for Medicine and Life Science, Taiyuan, 030006, China
| | - Suping Guo
- Shanxi Research Institute for Medicine and Life Science, Taiyuan, 030006, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
24
|
Kim HK, Jo SM, Kim GY, Kim DW, Kim YK, Yun SH. A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen Fusarium graminearum. PLoS Genet 2015; 11:e1005486. [PMID: 26334536 PMCID: PMC4559316 DOI: 10.1371/journal.pgen.1005486] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/06/2015] [Indexed: 01/12/2023] Open
Abstract
Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces sexual progeny (ascospore) as an important overwintering and dissemination strategy for completing the disease cycle. This homothallic ascomycetous species does not require a partner for sexual mating; instead, it carries two opposite mating-type (MAT) loci in a single nucleus to control sexual development. To gain a comprehensive understanding of the regulation of sexual development in F. graminearum, we used in-depth and high-throughput analyses to examine the target genes controlled transcriptionally by two-linked MAT loci (MAT1-1, MAT1-2). We hybridized a genome-wide microarray with total RNAs from F. graminearum mutants that lacked each MAT locus individually or together, and overexpressed MAT1-2-1, as well as their wild-type progenitor, at an early stage of sexual development. A comparison of the gene expression levels revealed a total of 1,245 differentially expressed genes (DEGs) among all of the mutants examined. Among these, genes involved in metabolism, cell wall organization, cellular response to stimuli, cell adhesion, fertilization, development, chromatin silencing, and signal transduction, were significantly enriched. Protein binding microarray analysis revealed the presence of putative core DNA binding sequences (ATTAAT or ATTGTT) for the HMG (high mobility group)-box motif in the MAT1-2-1 protein. Targeted deletion of 106 DEGs revealed 25 genes that were specifically required for sexual development, most of which were regulated transcriptionally by both the MAT1-1 and MAT1-2 loci. Taken together with the expression patterns of key target genes, we propose a regulatory pathway for MAT-mediated sexual development, in which both MAT loci may be activated by several environmental cues via chromatin remodeling and/or signaling pathways, and then control the expression of at least 1,245 target genes during sexual development via regulatory cascades and/or networks involving several downstream transcription factors and a putative RNA interference pathway.
Collapse
Affiliation(s)
- Hee-Kyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Seong-Mi Jo
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Gi-Yong Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Da-Woon Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yeon-Ki Kim
- Division of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Republic of Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
25
|
Frey S, Lahmann Y, Hartmann T, Seiler S, Pöggeler S. Deletion of Smgpi1 encoding a GPI-anchored protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete Sordaria macrospora. Mol Microbiol 2015; 97:676-97. [PMID: 25989468 DOI: 10.1111/mmi.13054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility.
Collapse
Affiliation(s)
- Stefan Frey
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | - Yasmine Lahmann
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | - Thomas Hartmann
- Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Stephan Seiler
- Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
26
|
Dahlmann TA, Böhm J, Becker K, Kück U. Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains. Curr Genet 2015; 61:679-83. [PMID: 25993917 DOI: 10.1007/s00294-015-0497-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
The recent discovery and functional characterization of opposite mating-type loci in the industrial penicillin producer Penicillium chrysogenum demonstrated their regulatory role in sexual as well as asexual development. Subsequent experiments further showed that a sexual life cycle can be induced in P. chrysogenum that was for long believed to reproduce exclusively by asexual propagation. Finally, crossing of wild type and production strains resulted in the generation of recombinant ascospore isolates. We predict from these recent findings that recombinant progeny for industrial applications can be obtained by sexual crossings and discuss experimental difficulties that occur when parental strains with karyotype heterogeneity are used for mating.
Collapse
Affiliation(s)
- Tim A Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Julia Böhm
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
27
|
Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora. G3-GENES GENOMES GENETICS 2015; 5:1233-45. [PMID: 25873638 PMCID: PMC4478551 DOI: 10.1534/g3.115.017681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development.
Collapse
|
28
|
Becker K, Beer C, Freitag M, Kück U. Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol 2015; 96:1002-22. [DOI: 10.1111/mmi.12987] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Kordula Becker
- Christian Doppler Laboratory for Fungal Biotechnology; Lehrstuhl für Allgemeine und Molekulare Botanik; Ruhr-Universität Bochum; Universitätsstr. 150 D-44780 Bochum Germany
| | - Christina Beer
- Christian Doppler Laboratory for Fungal Biotechnology; Lehrstuhl für Allgemeine und Molekulare Botanik; Ruhr-Universität Bochum; Universitätsstr. 150 D-44780 Bochum Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics; Oregon State University; Corvallis Oregon 97331-7305 USA
| | - Ulrich Kück
- Christian Doppler Laboratory for Fungal Biotechnology; Lehrstuhl für Allgemeine und Molekulare Botanik; Ruhr-Universität Bochum; Universitätsstr. 150 D-44780 Bochum Germany
| |
Collapse
|
29
|
Böhm J, Dahlmann TA, Gümüşer H, Kück U. A MAT1-2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol Microbiol 2015; 95:859-74. [PMID: 25521009 PMCID: PMC4357460 DOI: 10.1111/mmi.12909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 01/07/2023]
Abstract
In heterothallic ascomycetes, mating is controlled by two nonallelic idiomorphs that determine the 'sex' of the corresponding strains. We recently discovered mating-type loci and a sexual life cycle in the penicillin-producing fungus, Penicillium chrysogenum. All industrial penicillin production strains worldwide are derived from a MAT1-1 isolate. No MAT1-2 strain has been investigated in detail until now. Here, we provide the first functional analysis of a MAT1-2 locus from a wild-type strain. Similar to MAT1-1, the MAT1-2 locus has functions beyond sexual development. Unlike MAT1-1, the MAT1-2 locus affects germination and surface properties of conidiospores and controls light-dependent asexual sporulation. Mating of the MAT1-2 wild type with a MAT1-1 high penicillin producer generated sexual spores. We determined the genomic sequences of parental and progeny strains using next-generation sequencing and found evidence for genome-wide recombination. SNP calling showed that derived industrial strains had an uneven distribution of point mutations compared with the wild type. We found evidence for meiotic recombination in all chromosomes. Our results point to a strategy combining the use of mating-type genes, genetics, and next-generation sequencing to optimize conventional strain improvement methods.
Collapse
Affiliation(s)
- Julia Böhm
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Tim A Dahlmann
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Hendrik Gümüşer
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Ulrich Kück
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
30
|
Lehneck R, Elleuche S, Pöggeler S. The filamentous ascomyceteSordaria macrosporacan survive in ambient air without carbonic anhydrases. Mol Microbiol 2014; 92:931-44. [DOI: 10.1111/mmi.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Ronny Lehneck
- Institute of Microbiology and Genetics; Department of Genetics of Eukaryotic Microorganisms; Georg-August-University Göttingen; Göttingen Germany
| | - Skander Elleuche
- Institute of Technical Microbiology; Hamburg University of Technology; Hamburg Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics; Department of Genetics of Eukaryotic Microorganisms; Georg-August-University Göttingen; Göttingen Germany
| |
Collapse
|
31
|
Schindler D, Nowrousian M. The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora. Fungal Genet Biol 2014; 68:48-59. [PMID: 24792494 DOI: 10.1016/j.fgb.2014.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 01/02/2023]
Abstract
Filamentous ascomycetes have long been known as producers of a variety of secondary metabolites, many of which have toxic effects on other organisms. However, the role of these metabolites in the biology of the fungi that produce them remains in most cases enigmatic. A major group of fungal secondary metabolites are polyketides. They are chemically diverse, but have in common that their chemical scaffolds are synthesized by polyketide synthases (PKSs). In a previous study, we analyzed development-dependent expression of pks genes in the filamentous ascomycete Sordaria macrospora. Here, we show that a deletion mutant of the pks4 gene is sterile, producing only protoperithecia but no mature perithecia, whereas overexpression of pks4 leads to enlarged, malformed fruiting bodies. Thus, correct expression levels of pks4 are essential for wild type-like perithecia formation. The predicted PKS4 protein has a domain structure that is similar to homologs in other fungi, but conserved residues of a methyl transferase domain present in other fungi are mutated in PKS4. Expression of several developmental genes is misregulated in the pks4 mutant. Surprisingly, the development-associated app gene is not downregulated in the mutant, in contrast to all other previously studied mutants with a block at the protoperithecial stage. Our data show that the polyketide synthase gene pks4 is essential for sexual development and plays a role in regulating fruiting body morphology.
Collapse
Affiliation(s)
- Daniel Schindler
- Lehrstuhl für Allgemeine und Molekulare Botanik, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
32
|
Liu K, Zhang W, Lai Y, Xiang M, Wang X, Zhang X, Liu X. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics 2014; 15:114. [PMID: 24507587 PMCID: PMC3924618 DOI: 10.1186/1471-2164-15-114] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nematode-trapping fungi are a unique group of organisms that can capture nematodes using sophisticated trapping structures. The genome of Drechslerella stenobrocha, a constricting-ring-forming fungus, has been sequenced and reported, and provided new insights into the evolutionary origins of nematode predation in fungi, the trapping mechanisms, and the dual lifestyles of saprophagy and predation. RESULTS The genome of the fungus Drechslerella stenobrocha, which mechanically traps nematodes using a constricting ring, was sequenced. The genome was 29.02 Mb in size and was found rare instances of transposons and repeat induced point mutations, than that of Arthrobotrys oligospora. The functional proteins involved in nematode-infection, such as chitinases, subtilisins, and adhesive proteins, underwent a significant expansion in the A. oligospora genome, while there were fewer lectin genes that mediate fungus-nematode recognition in the D. stenobrocha genome. The carbohydrate-degrading enzyme catalogs in both species were similar to those of efficient cellulolytic fungi, suggesting a saprophytic origin of nematode-trapping fungi. In D. stenobrocha, the down-regulation of saprophytic enzyme genes and the up-regulation of infection-related genes during the capture of nematodes indicated a transition between dual life strategies of saprophagy and predation. The transcriptional profiles also indicated that trap formation was related to the protein kinase C (PKC) signal pathway and regulated by Zn(2)-C6 type transcription factors. CONCLUSIONS The genome of D. stenobrocha provides support for the hypothesis that nematode trapping fungi evolved from saprophytic fungi in a high carbon and low nitrogen environment. It reveals the transition between saprophagy and predation of these fungi and also proves new insights into the mechanisms of mechanical trapping.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st Beichen West Rd,, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
33
|
Teichert I, Nowrousian M, Pöggeler S, Kück U. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. ADVANCES IN GENETICS 2014; 87:199-244. [PMID: 25311923 DOI: 10.1016/b978-0-12-800149-3.00004-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Abteilung Genetik eukaryotischer Mikroorganismen, Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Göttingen, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
34
|
Mating type genes and cryptic sexuality as tools for genetically manipulating industrial molds. Appl Microbiol Biotechnol 2013; 97:9609-20. [DOI: 10.1007/s00253-013-5268-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 01/11/2023]
|
35
|
Voigt O, Herzog B, Jakobshagen A, Pöggeler S. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora. Fungal Genet Biol 2013; 61:50-60. [PMID: 24095659 DOI: 10.1016/j.fgb.2013.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/19/2022]
Abstract
Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1.
Collapse
Affiliation(s)
- Oliver Voigt
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | | | | | | |
Collapse
|
36
|
Chitrampalam P, Inderbitzin P, Maruthachalam K, Wu BM, Subbarao KV. The Sclerotinia sclerotiorum mating type locus (MAT) contains a 3.6-kb region that is inverted in every meiotic generation. PLoS One 2013; 8:e56895. [PMID: 23457637 PMCID: PMC3574095 DOI: 10.1371/journal.pone.0056895] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/15/2013] [Indexed: 12/29/2022] Open
Abstract
Sclerotinia sclerotiorum is a fungal plant pathogen and the causal agent of lettuce drop, an economically important disease of California lettuce. The structure of the S. sclerotiorum mating type locus MAT has previously been reported and consists of two idiomorphs that are fused end-to-end as in other homothallics. We investigated the diversity of S. sclerotiorum MAT using a total of 283 isolates from multiple hosts and locations, and identified a novel MAT allele that differed by a 3.6-kb inversion and was designated Inv+, as opposed to the previously known S. sclerotiorum MAT that lacked the inversion and was Inv-. The inversion affected three of the four MAT genes: MAT1-2-1 and MAT1-2-4 were inverted and MAT1-1-1 was truncated at the 3'-end. Expression of MAT genes differed between Inv+ and Inv- isolates. In Inv+ isolates, only one of the three MAT1-2-1 transcript variants of Inv- isolates was detected, and the alpha1 domain of Inv+ MAT1-1-1 transcripts was truncated. Both Inv- and Inv+ isolates were self-fertile, and the inversion segregated in a 1∶1 ratio regardless of whether the parent was Inv- or Inv+. This suggested the involvement of a highly regulated process in maintaining equal proportions of Inv- and Inv+, likely associated with the sexual state. The MAT inversion region, defined as the 3.6-kb MAT inversion in Inv+ isolates and the homologous region of Inv- isolates, was flanked by a 250-bp inverted repeat on either side. The 250-bp inverted repeat was a partial MAT1-1-1 that through mediation of loop formation and crossing over, may be involved in the inversion process. Inv+ isolates were widespread, and in California and Nebraska constituted half of the isolates examined. We speculate that a similar inversion region may be involved in mating type switching in the filamentous ascomycetes Chromocrea spinulosa, Sclerotinia trifoliorum and in certain Ceratocystis species.
Collapse
Affiliation(s)
- Periasamy Chitrampalam
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Karunakaran Maruthachalam
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Bo-Ming Wu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
37
|
Abstract
We report a novel sexual-cycle-specific gene-silencing system in the genetic model Aspergillus nidulans. Duplication of the mating type matA(HMG) gene in this haploid organism triggers Mat-induced silencing (MatIS) of both endogenous and transgenic matA genes, eliminates function of the encoded SRY structural ortholog, and results in formation of barren fruiting bodies. MatIS is spatiotemporally restricted to the prezygotic stage of the sexual cycle and does not interfere with vegetative growth, asexual reproduction, differentiation of early sexual tissues, or fruiting body development. MatIS is reversible upon deletion of the matA transgene. In contrast to other sex-specific silencing phenomena, MatIS silencing has nearly 100% efficiency and appears to be independent of homologous duplicated DNA segments. Remarkably, transgene-derived matA RNA might be sufficient to induce MatIS. A unique feature of MatIS is that RNA-mediated silencing is RNA interference/Argonaute-independent and is restricted to the nucleus having the duplicated gene. The silencing phenomenon is recessive and does not spread between nuclei within the common cytoplasm of a multinucleate heterokaryon. Gene silencing induced by matA gene duplication emerges as a specific feature associated with matA(HMG) regulation during sexual development.
Collapse
|
38
|
Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A 2013; 110:1476-81. [PMID: 23307807 DOI: 10.1073/pnas.1217943110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Penicillium chrysogenum is a filamentous fungus of major medical and historical importance, being the original and present-day industrial source of the antibiotic penicillin. The species has been considered asexual for more than 100 y, and despite concerted efforts, it has not been possible to induce sexual reproduction, which has prevented sexual crosses being used for strain improvement. However, using knowledge of mating-type (MAT) gene organization, we now describe conditions under which a sexual cycle can be induced leading to production of meiotic ascospores. Evidence of recombination was obtained using both molecular and phenotypic markers. The identified heterothallic sexual cycle was used for strain development purposes, generating offspring with novel combinations of traits relevant to penicillin production. Furthermore, the MAT1-1-1 mating-type gene, known primarily for a role in governing sexual identity, was also found to control transcription of a wide range of genes with biotechnological relevance including those regulating penicillin production, hyphal morphology, and conidial formation. These discoveries of a sexual cycle and MAT gene function are likely to be of broad relevance for manipulation of other asexual fungi of economic importance.
Collapse
|
39
|
Teichert I, Wolff G, Kück U, Nowrousian M. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics 2012; 13:511. [PMID: 23016559 PMCID: PMC3472292 DOI: 10.1186/1471-2164-13-511] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/26/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM) and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia) and non-reproductive mycelia of the ascomycete Sordaria macrospora. RESULTS Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1. CONCLUSIONS We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, 44780, Germany
| | - Gabriele Wolff
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, 44780, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, 44780, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, 44780, Germany
| |
Collapse
|
40
|
Nygren K, Strandberg R, Gioti A, Karlsson M, Johannesson H. Deciphering the Relationship between Mating System and the Molecular Evolution of the Pheromone and Receptor Genes in Neurospora. Mol Biol Evol 2012; 29:3827-42. [DOI: 10.1093/molbev/mss193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Sex-specific gene expression during asexual development of Neurospora crassa. Fungal Genet Biol 2012; 49:533-43. [PMID: 22626843 DOI: 10.1016/j.fgb.2012.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 12/18/2022]
Abstract
The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted.
Collapse
|
42
|
Gesing S, Schindler D, Fränzel B, Wolters D, Nowrousian M. The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2012; 84:748-65. [PMID: 22463819 DOI: 10.1111/j.1365-2958.2012.08058.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development.
Collapse
Affiliation(s)
- Stefan Gesing
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
43
|
Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 2012; 78:2819-29. [PMID: 22327593 DOI: 10.1128/aem.07034-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.
Collapse
|
44
|
Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao GP, Liu X, St Leger RJ, Wang C. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 2011; 12:R116. [PMID: 22112802 PMCID: PMC3334602 DOI: 10.1186/gb-2011-12-11-r116] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/10/2011] [Accepted: 11/23/2011] [Indexed: 01/10/2023] Open
Abstract
Background Species in the ascomycete fungal genus Cordyceps have been proposed to be the teleomorphs of Metarhizium species. The latter have been widely used as insect biocontrol agents. Cordyceps species are highly prized for use in traditional Chinese medicines, but the genes responsible for biosynthesis of bioactive components, insect pathogenicity and the control of sexuality and fruiting have not been determined. Results Here, we report the genome sequence of the type species Cordyceps militaris. Phylogenomic analysis suggests that different species in the Cordyceps/Metarhizium genera have evolved into insect pathogens independently of each other, and that their similar large secretomes and gene family expansions are due to convergent evolution. However, relative to other fungi, including Metarhizium spp., many protein families are reduced in C. militaris, which suggests a more restricted ecology. Consistent with its long track record of safe usage as a medicine, the Cordyceps genome does not contain genes for known human mycotoxins. We establish that C. militaris is sexually heterothallic but, very unusually, fruiting can occur without an opposite mating-type partner. Transcriptional profiling indicates that fruiting involves induction of the Zn2Cys6-type transcription factors and MAPK pathway; unlike other fungi, however, the PKA pathway is not activated. Conclusions The data offer a better understanding of Cordyceps biology and will facilitate the exploitation of medicinal compounds produced by the fungus.
Collapse
Affiliation(s)
- Peng Zheng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Complex mechanisms regulate developmental expression of the matA (HMG) mating type gene in homothallic Aspergillus nidulans. Genetics 2011; 189:795-808. [PMID: 21868608 DOI: 10.1534/genetics.111.131458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sexual reproduction is a fundamental developmental process that allows for genetic diversity through the control of zygote formation, recombination, and gametogenesis. The correct regulation of these events is paramount. Sexual reproduction in filamentous fungi, including mating strategy (self-fertilization/homothallism or outcrossing/heterothallism), is determined by the expression of mating type genes at mat loci. Aspergillus nidulans matA encodes a critical regulator that is a fungal ortholog of the hSRY/SOX9 HMG box proteins. In contrast to well-studied outcrossing systems, the molecular basis of homothallism and role of mating type genes during a self-fertile sexual cycle remain largely unknown. In this study the genetic model organism, A. nidulans, has been used to investigate the regulation and molecular functions of the matA mating type gene in a homothallic system. Our data demonstrate that complex regulatory mechanisms underlie functional matA expression during self-fertilization and sexual reproduction in A. nidulans. matA expression is suppressed in vegetative hyphae and is progressively derepressed during the sexual cycle. Elevated levels of matA transcript are required for differentiation of fruiting bodies, karyogamy, meiosis, and efficient formation of meiotic progeny. matA expression is driven from both initiator (Inr) and novel promoter elements that are tightly developmentally regulated by position-dependent and position-independent mechanisms. Deletion of an upstream silencing element, matA SE, results in derepressed expression from wild-type (wt) promoter elements and activation of an additional promoter. These studies provide novel insights into the molecular basis of homothallism in fungi and genetic regulation of sexual reproduction in eukaryotes.
Collapse
|
46
|
Pöggeler S, O’Gorman CM, Hoff B, Kück U. Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum. Fungal Biol 2011; 115:615-24. [DOI: 10.1016/j.funbio.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
47
|
Bidard F, Aït Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R. Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 2011; 6:e21476. [PMID: 21738678 PMCID: PMC3125171 DOI: 10.1371/journal.pone.0021476] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/29/2011] [Indexed: 12/15/2022] Open
Abstract
Background Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat− mating types are determined by dissimilar allelic sequences. The mat− sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. Methodology/Principal Findings The transcriptomic profiles of the mat+ and mat− strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1− and fpr1− mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat− strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. Conclusions/Significance This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating.
Collapse
Affiliation(s)
- Frédérique Bidard
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Jinane Aït Benkhali
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Evelyne Coppin
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Sandrine Imbeaud
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
| | - Pierre Grognet
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- UFR des Sciences du Vivant, Université Paris 7-Denis Diderot, Paris, France
| | - Hervé Delacroix
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
- Univ Paris-Sud, Orsay, France
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- * E-mail:
| |
Collapse
|
48
|
Lu SW, Yun SH, Lee T, Turgeon BG. Altering sexual reproductive mode by interspecific exchange of MAT loci. Fungal Genet Biol 2011; 48:714-24. [PMID: 21514396 DOI: 10.1016/j.fgb.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/27/2011] [Accepted: 04/08/2011] [Indexed: 12/23/2022]
Abstract
Sexual fungi can be self-sterile (heterothallic, requiring genetically distinct partners) or self-fertile (homothallic, no partner required). In most ascomycetes, a single mating type locus (MAT) controls the ability to reproduce sexually. In the genus Cochliobolus, all heterothallic species have either MAT1-1 or MAT1-2 (but never both) in different individuals whereas all homothallic species carry both MAT1-1 and MAT1-2 in the same nucleus of an individual. It has been demonstrated, previously, that a MAT gene from homothallic Cochliobolus luttrellii can confer self-mating ability on a mat-deleted strain of its heterothallic relative, Cochliobolus heterostrophus. In this reciprocal study, we expressed, separately, the heterothallic C. heterostrophus MAT1-1-1 and MAT1-2-1 genes in a mat-deleted homothallic C. luttrellii strain and asked if this converts homothallic C. luttrellii to heterothallism. We report that: (1) A C. luttrellii transgenic strain carrying C. heterostrophus MAT1-1-1 and a C. luttrellii transgenic strain carrying C. heterostrophus MAT1-2-1 can mate in a heterothallic manner and the fertility of the cross is similar to that of a wild type C. luttrellii self. Full tetrads are always found. (2) A C. luttrellii transgenic strain carrying C. heterostrophus MAT1-1-1 can mate with the parental wild type C. luttrellii MAT1-1;MAT1-2 strain, indicating the latter is able to outcross, a result which was expected but has not been demonstrated previously. (3) A C. luttrellii transgenic strain carrying C. heterostrophus MAT1-2-1 cannot mate with the parental wild type C. luttrellii MAT1-1;MAT1-2 strain, indicating outcrossing specificity. (4) Each transgenic C. luttrellii strain, carrying only a single C. heterostrophus MAT gene, is able to self, although all pseudothecia produced are smaller than those of wild type and fertility is low (about 4-15% of the number of wild type asci). These data support the argument that in Cochliobolus spp., the primary determinant of reproductive mode is MAT itself, and that a heterothallic strain can be made homothallic or a homothallic strain can be made heterothallic by exchange of MAT genes. The selfing ability of transgenic C. luttrellii strains also suggests that both MAT1-1-1 and MAT1-2-1 genes of C. heterostrophus carry equivalent transcription regulatory activities, each capable of promoting sexual development when alone, in a suitable genetic background.
Collapse
Affiliation(s)
- Shun-Wen Lu
- Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
49
|
Lord KM, Read ND. Perithecium morphogenesis in Sordaria macrospora. Fungal Genet Biol 2010; 48:388-99. [PMID: 21134480 DOI: 10.1016/j.fgb.2010.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/28/2010] [Accepted: 11/23/2010] [Indexed: 01/14/2023]
Abstract
The perithecium of the self-fertile ascomycete Sordaria macrospora provides an excellent model in which to analyse fungal multicellular development. This study provides a detailed analysis of perithecium morphogenesis in the wild type and eight developmental mutants of S. macrospora, using a range of correlative microscopical techniques. Fundamentally, perithecia and other complex multicellular structures produced by fungi arise by hyphal aggregation and adhesion, and these processes are followed by specialization and septation of hyphal compartments within the aggregates. Perithecial morphogenesis can be divided into the ascogonial, protoperithecial, and perithecial stages of development. At least 13 specialized, morphologically distinct cell-types are involved in perithecium morphogenesis, and these fall into three basic classes: hyphae, conglutinate cells and spores. Conglutinate cells arise from hyphal adhesion and certain perithecial hyphae develop from conglutinate cells. Various hypha-conglutinate cell transitions play important roles during the development of the perithecial wall and neck.
Collapse
Affiliation(s)
- Kathryn M Lord
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh EH93JH, UK
| | | |
Collapse
|
50
|
Elleuche S, Bernhards Y, Schäfers C, Varghese JM, Nolting N, Pöggeler S. The small serine-threonine protein SIP2 interacts with STE12 and is involved in ascospore germination in Sordaria macrospora. Eur J Cell Biol 2010; 89:873-87. [DOI: 10.1016/j.ejcb.2010.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|