1
|
Liu Y, Liu J, Huang Z, Fan K, Guo X, Xing L, Cao A. Phenotypic characterization and gene mapping of hybrid necrosis in Triticum durum-Haynaldia villosa amphiploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:185. [PMID: 39009774 PMCID: PMC11249415 DOI: 10.1007/s00122-024-04691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
KEY MESSAGE Phenotypical, physiological and genetic characterization was carried out on the hybrid necrosis gene from Haynaldia villosa, and the related gene Ne-V was mapped to chromosome arm 2VL. Introducing genetic variation from wild relatives into common wheat through wide crosses is a vital strategy for enriching genetic diversity and promoting wheat breeding. However, hybrid necrosis, a genetic autoimmunity syndrome, often occurs in the offspring of interspecific or intraspecific crosses, restricting both the selection of hybrid parents and the pyramiding of beneficial genes. To utilize the germplasms of Haynaldia villosa (2n = 2x = 14, VV), we conducted wide hybridization between durum wheat (2n = 4x = 28, AABB) and multiple H. villosa accessions to synthesize the amphiploids (2n = 6x = 42, AABBVV). This study revealed that 61.5% of amphiploids derived from the above crosses exhibited hybrid necrosis, with some amphiploids even dying before reaching maturity. However, the initiation time and severity of necrosis varied dramatically among the progenies, suggesting that there were multiple genetic loci or multiple alleles in the same genetic locus conferring to hybrid necrosis in H. villosa accessions. Genetic analysis was performed on the F2 and derived F2:3 populations, which were constructed between amphiploid STH59-1 with normal leaves and amphiploid STH59-2 with necrotic leaves. A semidominant hybrid necrosis-related gene, Ne-V, was mapped to an 11.8-cM genetic interval on the long arm of chromosome 2V, representing a novel genetic locus identified in Triticum-related species. In addition, the hybrid necrosis was correlated with enhanced H2O2 accumulation and cell death, and it was influenced by the temperature and light. Our findings provide a foundation for cloning the Ne-V gene and exploring its molecular mechanism.
Collapse
Affiliation(s)
- Yangqi Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Jinhong Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Zhenpu Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Kaiwen Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Xinshuo Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| |
Collapse
|
2
|
Wakabayashi T, Kato K. THB1, a putative transmembrane protein that causes hybrid breakdown in rice. BREEDING SCIENCE 2024; 74:193-203. [PMID: 39555009 PMCID: PMC11561410 DOI: 10.1270/jsbbs.23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 11/19/2024]
Abstract
Hybrid breakdown is a post-zygotic reproductive isolation that hinders genetic exchange between species or populations in both animals and plants. Two complementary recessive genes, temperature sensitive hybrid breakdown1 (thb1) and thb2, cause hybrid breakdown in rice (Oryza sativa). The present study delimited the THB1 locus to a 9.1-kb sequence, containing a single gene encoding a putative transmembrane protein with unknown functions. Haplotype analysis of THB1 in the two core collections of 119 accessions revealed that these accessions were divided into 22 haplotypes. A test cross with thb2 carrier showed that haplotype2 (H2) was assigned to thb1 and was restricted to temperate japonica. A nonsynonymous nucleotide polymorphism (SNP) specific to H2 was identified as a causal mutation in thb1. A test cross with thb1 carrier indicated that six accessions, including temperate japonica, tropical japonica, and indica, carried thb2. These results suggest that thb1 has recently evolved in temperate japonica, whereas thb2 arose in an ancient japonica and introgressed into the present three subgroups. Furthermore, we developed a derived cleaved amplified polymorphic sequence (dCAPS) marker to detect causal SNP in THB1. Our findings provide new insights into reproductive isolation and may benefit rice breeding.
Collapse
Affiliation(s)
- Tae Wakabayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
3
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
4
|
Than Kutay Soe, Kunieda M, Sunohara H, Inukai Y, Reyes VP, Nishiuchi S, Doi K. A Novel Combination of Genes Causing Temperature-Sensitive Hybrid Weakness in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:908000. [PMID: 35837460 PMCID: PMC9274174 DOI: 10.3389/fpls.2022.908000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 09/29/2023]
Abstract
Reproductive isolation is an obstacle for plant breeding when a distant cross is demanded. It can be divided into two main types based on different growth stages: prezygotic isolation and postzygotic isolation. The hybrid weakness, which is a type of postzygotic isolation, can become a problem in crop breeding. In order to overcome reproductive isolation, it is necessary to elucidate its mechanism. In this study, genetic analysis for low temperature-dependent hybrid weakness was conducted in a rice F2 population derived from Taichung 65 (T65, Japonica) and Lijiangxintuanheigu (LTH, Japonica). The weak and severe weak plants in F2 showed shorter culm length, late heading, reduced panicle number, decreased grain numbers per panicle, and impaired root development in the field. Our result also showed that hybrid weakness was affected by temperature. It was observed that 24°C enhanced hybrid weakness, whereas 34°C showed recovery from hybrid weakness. In terms of the morphology of embryos, no difference was observed. Therefore, hybrid weakness affects postembryonic development and is independent of embryogenesis. The genotypes of 126 F2 plants were determined through genotyping-by-sequencing and a linkage map consisting of 862 single nucleotide polymorphism markers was obtained. Two major quantitative trait loci (QTLs) were detected on chromosomes 1 [hybrid weakness j 1 (hwj1)] and 11 [hybrid weakness j 2 (hwj2)]. Further genotyping indicated that the hybrid weakness was due to an incompatible interaction between the T65 allele of hwj1 and the LTH allele of hwj2. A large F2 populations consisting of 5,722 plants were used for fine mapping of hwj1 and hwj2. The two loci, hwj1 and hwj2, were mapped in regions of 65-kb on chromosome 1 and 145-kb on chromosome 11, respectively. For hwj1, the 65-kb region contained 11 predicted genes, while in the hwj2 region, 22 predicted genes were identified, two of which are disease resistance-related genes. The identified genes along these regions serve as preliminary information on the molecular networks associated with hybrid weakness in rice.
Collapse
Affiliation(s)
- Than Kutay Soe
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Botany, University of Yangon, Yangon, Myanmar
| | - Mai Kunieda
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hidehiko Sunohara
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Environmental Control Center Co., Ltd., Hachioji, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
| | - Vincent Pamugas Reyes
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shunsaku Nishiuchi
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuyuki Doi
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Chen Z, Wang Y, Huang R, Zhang Z, Huang J, Yu F, Lin Y, Guo Y, Liang K, Zhou Y, Chen F. Integration of transcriptomic and proteomic analyses reveals several levels of metabolic regulation in the excess starch and early senescent leaf mutant lses1 in rice. BMC PLANT BIOLOGY 2022; 22:137. [PMID: 35321646 PMCID: PMC8941791 DOI: 10.1186/s12870-022-03510-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The normal metabolism of transitory starch in leaves plays an important role in ensuring photosynthesis, delaying senescence and maintaining high yield in crops. OsCKI1 (casein kinase I1) plays crucial regulatory roles in multiple important physiological processes, including root development, hormonal signaling and low temperature-treatment adaptive growth in rice; however, its potential role in regulating temporary starch metabolism or premature leaf senescence remains unclear. To reveal the molecular regulatory mechanism of OsCKI1 in rice leaves, physiological, transcriptomic and proteomic analyses of leaves of osckI1 allele mutant lses1 (leaf starch excess and senescence 1) and its wild-type varieties (WT) were performed. RESULTS Phenotypic identification and physiological measurements showed that the lses1 mutant exhibited starch excess in the leaves and an obvious leaf tip withering phenotype as well as high ROS and MDA contents, low chlorophyll content and protective enzyme activities compared to WT. The correlation analyses between protein and mRNA abundance are weak or limited. However, the changes of several important genes related to carbohydrate metabolism and apoptosis at the mRNA and protein levels were consistent. The protein-protein interaction (PPI) network might play accessory roles in promoting premature senescence of lses1 leaves. Comprehensive transcriptomic and proteomic analysis indicated that multiple key genes/proteins related to starch and sugar metabolism, apoptosis and ABA signaling exhibited significant differential expression. Abnormal increase in temporary starch was highly correlated with the expression of starch biosynthesis-related genes, which might be the main factor that causes premature leaf senescence and changes in multiple metabolic levels in leaves of lses1. In addition, four proteins associated with ABA accumulation and signaling, and three CKI potential target proteins related to starch biosynthesis were up-regulated in the lses1 mutant, suggesting that LSES1 may affect temporary starch accumulation and premature leaf senescence through phosphorylation crosstalk ABA signaling and starch anabolic pathways. CONCLUSION The current study established the high correlation between the changes in physiological characteristics and mRNA and protein expression profiles in lses1 leaves, and emphasized the positive effect of excessive starch on accelerating premature leaf senescence. The expression patterns of genes/proteins related to starch biosynthesis and ABA signaling were analyzed via transcriptomes and proteomes, which provided a novel direction and research basis for the subsequent exploration of the regulation mechanism of temporary starch and apoptosis via LSES1/OsCKI1 in rice.
Collapse
Affiliation(s)
- Zhiming Chen
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongsheng Wang
- Postdoctoral Station of Biology, School of Life Sciences, Hebei University, Baoding, 071000, Hebei, China
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zesen Zhang
- School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jinpeng Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Feng Yu
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yaohai Lin
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuchun Guo
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Kangjing Liang
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuanchang Zhou
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Fangyu Chen
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
6
|
Kubo T, Yoshimura A, Kurata N. Loss of OsEAF6, a Subunit of the Histone Acetyltransferase Complex, Causes Hybrid Breakdown in Intersubspecific Rice Crosses. FRONTIERS IN PLANT SCIENCE 2022; 13:866404. [PMID: 35350298 PMCID: PMC8957887 DOI: 10.3389/fpls.2022.866404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Gene duplication plays an important role in genetic diversification, adaptive evolution, and speciation. Understanding the mechanisms and effects of postzygotic isolation genes is important for further studies of speciation and crop breeding. The duplicate recessive genes hwe1 and hwe2 cause hybrid breakdown, characterized by poor vegetative growth and reproductive dysgenesis in intersubspecific crosses between Oryza sativa ssp. indica and japonica. Using a map-based cloning strategy, we found that HWE1 and HWE2 encode the Esa1-associated factor 6 (EAF6) protein, a component of histone acetyltransferase complexes. The indica hwe1 and japonica hwe2 alleles lacked functional EAF6, demonstrating that the double recessive homozygote causes hybrid breakdown. Morphological and physiological observations showed that weak plants with double recessive homozygotes had serious morphological defects with a wide range of effects on development and organs, leading to leaves with reduced chlorophyll content, flower and pistil malformation, and anomalies of gametogenesis. These findings suggest that EAF6 plays a pivotal role in the transcriptional regulation of essential genes during the vegetative and reproductive development of rice.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
7
|
Mino M, Tezuka T, Shomura S. The hybrid lethality of interspecific F 1 hybrids of Nicotiana: a clue to understanding hybrid inviability-a major obstacle to wide hybridization and introgression breeding of plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:10. [PMID: 37309322 PMCID: PMC10248639 DOI: 10.1007/s11032-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Reproductive isolation poses a major obstacle to wide hybridization and introgression breeding of plants. Hybrid inviability in the postzygotic isolation barrier inevitably reduces hybrid fitness, consequently causing hindrances in the establishment of novel genotypes from the hybrids among genetically divergent parents. The idea that the plant immune system is involved in the hybrid problem is applicable to the intra- and/or interspecific hybrids of many different taxa. The lethality characteristics and expression profile of genes associated with the hypersensitive response of the hybrids, along with the suppression of causative genes, support the deleterious epistatic interaction of parental NB-LRR protein genes, resulting in aberrant hyper-immunity reactions in the hybrid. Moreover, the cellular, physiological, and biochemical reactions observed in hybrid cells also corroborate this hypothesis. However, the difference in genetic backgrounds of the respective hybrids may contribute to variations in lethality phenotypes among the parental species combinations. The mixed state in parental components of the chaperone complex (HSP90-SGT1-RAR1) in the hybrid may also affect the hybrid inviability. This review article discusses the facts and hypothesis regarding hybrid inviability, alongside the findings of studies on the hybrid lethality of interspecific hybrids of the genus Nicotiana. A possible solution for averting the hybrid problem has also been scrutinized with the aim of improving the wide hybridization and introgression breeding program in plants.
Collapse
Affiliation(s)
- Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Takahiro Tezuka
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| |
Collapse
|
8
|
Lee CM, Suh JP, Park HS, Baek MK, Jeong OY, Yun SJ, Cho YC, Kim SM. Identification of QTL Combinations that Cause Spikelet Sterility in Rice Derived from Interspecific Crosses. RICE (NEW YORK, N.Y.) 2021; 14:99. [PMID: 34874500 PMCID: PMC8651928 DOI: 10.1186/s12284-021-00540-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The exploitation of useful genes through interspecific and intersubspecific crosses has been an important strategy for the genetic improvement of rice. Postzygotic reproductive isolation routinely occurs to hinder the growth of pollen or embryo sacs during the reproductive development of the wide crosses. RESULT In this study, we investigated the genetic relationship between the hybrid breakdown of the population and transferred resistance genes derived from wide crosses using a near-isogenic population composed of 225 lines. Five loci (qSS12, qSS8, qSS11, ePS6-1, and ePS6-2) associated with spikelet fertility (SF) were identified by QTL and epistatic analysis, and two out of five epistasis interactions were found between the three QTLs (qSS12, qSS8 and qSS11) and background marker loci (ePS6-1 and ePS6-2) on chromosome 6. The results of the QTL combinations suggested a genetic model that explains most of the interactions between spikelet fertility and the detected loci with positive or negative effects. Moreover, the major-effect QTLs, qSS12 and qSS8, which exhibited additive gene effects, were narrowed down to 82- and 200-kb regions on chromosomes 12 and 8, respectively. Of the 13 ORFs present in the target regions, Os12g0589400 and Os12g0589898 for qSS12 and OS8g0298700 for qSS8 induced significantly different expression levels of the candidate genes in rice at the young panicle stage. CONCLUSION The results will be useful for obtaining a further understanding of the mechanism causing the hybrid breakdown of a wide cross and will provide new information for developing rice cultivars with wide compatibility.
Collapse
Affiliation(s)
- Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jung-Pil Suh
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Hyun-Su Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Man-Kee Baek
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - O-Young Jeong
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Song-Joong Yun
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Young-Chan Cho
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Suk-Man Kim
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea.
- Department of Ecological and Environmental System, Kyungpook National University, Sangju, Republic of Korea.
| |
Collapse
|
9
|
De la Concepcion JC, Vega Benjumea J, Bialas A, Terauchi R, Kamoun S, Banfield MJ. Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. eLife 2021; 10:e71662. [PMID: 34783652 PMCID: PMC8631799 DOI: 10.7554/elife.71662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus Magnaporthe oryzae harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.
Collapse
Affiliation(s)
- Juan Carlos De la Concepcion
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesViennaAustria
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
| | - Javier Vega Benjumea
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
- Servicio de Bioquímica-Análisis clínicos, Hospital Universitario Puerta de HierroMadridSpain
| | - Aleksandra Bialas
- The Sainsbury Laboratory, University of East AngliaNorwichUnited Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research CenterIwateJapan
- Laboratory of Crop Evolution, Graduate School of AgricultureKyotoJapan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East AngliaNorwichUnited Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry and Metabolism, John Innes CentreNorwichUnited Kingdom
| |
Collapse
|
10
|
Morimoto T, Kitamura Y, Numaguchi K, Itai A. Characterization of transcriptomic response in ovules derived from inter-subgeneric hybridization in Prunus (Rosaceae) species. PLANT REPRODUCTION 2021; 34:255-266. [PMID: 34165636 DOI: 10.1007/s00497-021-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.
Collapse
Affiliation(s)
- Takuya Morimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 619-0244, Japan.
| | - Yuto Kitamura
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Wakayama, 645-0021, Japan
- Faculty of Agriculture, Setsunan University, Osaka, 573-0101, Japan
| | - Koji Numaguchi
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Wakayama, 645-0021, Japan
| | - Akihiro Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 619-0244, Japan
| |
Collapse
|
11
|
Li L, Weigel D. One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:213-237. [PMID: 33945695 DOI: 10.1146/annurev-phyto-020620-114826] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site-leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| |
Collapse
|
12
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:e66961. [PMID: 34288868 PMCID: PMC8294853 DOI: 10.7554/elife.66961] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
13
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:66961. [PMID: 34288868 DOI: 10.1101/2021.01.26.428286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Barragan AC, Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. THE PLANT CELL 2021; 33:814-831. [PMID: 33793812 PMCID: PMC8226294 DOI: 10.1093/plcell/koaa002] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Plants and pathogens constantly adapt to each other. As a consequence, many members of the plant immune system, and especially the intracellular nucleotide-binding site leucine-rich repeat receptors, also known as NOD-like receptors (NLRs), are highly diversified, both among family members in the same genome, and between individuals in the same species. While this diversity has long been appreciated, its true extent has remained unknown. With pan-genome and pan-NLRome studies becoming more and more comprehensive, our knowledge of NLR sequence diversity is growing rapidly, and pan-NLRomes provide powerful platforms for assigning function to NLRs. These efforts are an important step toward the goal of comprehensively predicting from sequence alone whether an NLR provides disease resistance, and if so, to which pathogens.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
15
|
Jia H, Xue S, Lei L, Fan M, Peng S, Li T, Nagarajan R, Carver B, Ma Z, Deng J, Yan L. A semi-dominant NLR allele causes whole-seedling necrosis in wheat. PLANT PHYSIOLOGY 2021; 186:483-496. [PMID: 33576803 PMCID: PMC8154059 DOI: 10.1093/plphys/kiab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 05/26/2023]
Abstract
Programmed cell death (PCD) and apoptosis have key functions in development and disease resistance in diverse organisms; however, the induction of necrosis remains poorly understood. Here, we identified a semi-dominant mutant allele that causes the necrotic death of the entire seedling (DES) of wheat (Triticum aestivum L.) in the absence of any pathogen or external stimulus. Positional cloning of the lethal allele mDES1 revealed that this premature death via necrosis was caused by a point mutation from Asp to Asn at amino acid 441 in a nucleotide-binding leucine-rich repeat protein containing nucleotide-binding domain and leucine-rich repeats. The overexpression of mDES1 triggered necrosis and PCD in transgenic plants. However, transgenic wheat harboring truncated wild-type DES1 proteins produced through gene editing that exhibited no significant developmental defects. The point mutation in mDES1 did not cause changes in this protein in the oligomeric state, but mDES1 failed to interact with replication protein A leading to abnormal mitotic cell division. DES1 is an ortholog of Sr35, which recognizes a Puccinia graminis f. sp. tritici stem rust disease effector in wheat, but mDES1 gained function as a direct inducer of plant death. These findings shed light on the intersection of necrosis, apoptosis, and autoimmunity in plants.
Collapse
Affiliation(s)
- Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Shulin Xue
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Lei Lei
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Min Fan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tian Li
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brett Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
16
|
Munguambe NE, Inoue S, Demeter Z, Yamagata Y, Yasui H, Zheng SH, Fujita D. Substitution Mapping of a Locus Responsible for Hybrid Breakdown in Populations Derived From Interspecific Introgression Line. FRONTIERS IN PLANT SCIENCE 2021; 12:633247. [PMID: 33968097 PMCID: PMC8097182 DOI: 10.3389/fpls.2021.633247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/22/2021] [Indexed: 05/27/2023]
Abstract
Hybrid breakdown, a form of postzygotic reproductive barrier, has been reported to hinder gene flow in many crosses between wild and cultivated rice. Here, the phenomenon of hybrid breakdown was observed as low-tillering (i.e., low tiller number) in some progeny of an interspecific cross produced in an attempt to introduce Oryza meridionalis Ng (W1625) chromosomal segments into Oryza sativa L. ssp. japonica "Taichung 65" (T65). Low-tillering lines were obtained in BC4-derived progeny from a cross between W1625 and "Taichung 65," but the locus for low-tillering could not be mapped in segregating populations. As a second approach to map the locus for low-tillering, we analyzed an F2 population derived from a cross between the low-tillering lines and a high-yielding indica cultivar, "Takanari." A major QTL for low-tillering, qLTN4, was detected between PCR-based markers MS10 and RM307 on the long arm of chromosome 4, with a LOD score of 15.6. The low-tillering phenotype was associated with weak growth and pale yellow phenotype; however, low-tillering plant had less reduction of grain fertility. In an F4 population (4896 plants), 563 recombinant plants were identified and the low-tillering locus was delimited to a 4.6-Mbp region between markers W1 and C5-indel3729. This region could not be further delimited because recombination is restricted in this region of qLTN4, which is near the centromere. Understanding the genetic basis of hybrid breakdown, including the low-tillering habit, will be important for improving varieties in rice breeding.
Collapse
Affiliation(s)
- Nilsa Emilia Munguambe
- Tropical Crop Improvement Laboratory, Faculty of Agriculture, Saga University, Saga, Japan
| | - Shouta Inoue
- Tropical Crop Improvement Laboratory, Faculty of Agriculture, Saga University, Saga, Japan
| | - Zita Demeter
- Tropical Crop Improvement Laboratory, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shao-Hui Zheng
- Tropical Crop Improvement Laboratory, Faculty of Agriculture, Saga University, Saga, Japan
| | - Daisuke Fujita
- Tropical Crop Improvement Laboratory, Faculty of Agriculture, Saga University, Saga, Japan
| |
Collapse
|
17
|
Katsuyama Y, Doi M, Shioya S, Hane S, Yoshioka M, Date S, Miyahara C, Ogawa T, Takada R, Okumura H, Ikusawa R, Kitajima S, Oda K, Sato K, Tanaka Y, Tezuka T, Mino M. The role of chaperone complex HSP90-SGT1-RAR1 as the associated machinery for hybrid inviability between Nicotiana gossei Domin and N. tabacum L. Gene 2021; 776:145443. [PMID: 33484759 DOI: 10.1016/j.gene.2021.145443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/01/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
Two cultured cell lines (GTH4 and GTH4S) of a Nicotiana interspecific F1 hybrid (N. gossei × N. tabacum) were comparatively analyzed to find genetic factors related to hybrid inviability. Both cell lines proliferated at 37 °C, but after shifting to 26 °C, GTH4 started to die similar to the F1 hybrid seedlings, whereas GTH4S survived. As cell death requires de novo expression of genes and proteins, we compared expressed protein profiles between the two cell lines, and found that NgSGT1, a cochaperone of the chaperone complex (HSP90-SGT1-RAR1), was expressed in GTH4 but not in GTH4S. Agrobacterium-mediated transient expression of NgSGT1, but not NtSGT1, induced cell death in leaves of N. tabacum, suggesting its possible role in hybrid inviability. Cell death in N. tabacum was also induced by transient expression of NgRAR1, but not NtRAR1. In contrast, transient expression of any parental combinations of three components revealed that NgRAR1 promoted cell death, whereas NtRAR1 suppressed it in N. tabacum. A specific inhibitor of HSP90, geldanamycin, inhibited the progression of hypersensitive response-like cell death in GTH4 and leaf tissue after agroinfiltration. The present study suggested that components of the chaperone complex are involved in the inviability of Nicotiana interspecific hybrid.
Collapse
Affiliation(s)
- Yushi Katsuyama
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Mizuho Doi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sachi Shioya
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sanae Hane
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Momoko Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shuichi Date
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Chika Miyahara
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Tomomichi Ogawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ryo Takada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hanako Okumura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Rie Ikusawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama, 7549-1 Yoshikawa, Kibi Chuou-chou, Kaga-gun, Okayama 716-1241, Japan
| | - Kenji Sato
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshikazu Tanaka
- Biotechnology Division Research & Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Ngatani, Tsuruga, Fukui 914-0135, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
18
|
Yoneya Y, Wakabayashi T, Kato K. The temperature sensitive hybrid breakdown 1 induces low temperature-dependent intrasubspecific hybrid breakdown in rice. BREEDING SCIENCE 2021; 71:268-276. [PMID: 34377075 PMCID: PMC8329891 DOI: 10.1270/jsbbs.20129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 06/13/2023]
Abstract
Hybrid breakdown (HB) is an important type of post-zygotic reproductive barrier that inhibits hybrid production during the process of cross-breeding. A novel low temperature-dependent HB was identified in a chromosomal segment substitution line (CSSL) library derived from a cross of two rice (Oryza sativa L. japonica) cultivars, Yukihikari and Kirara397. A set of weakness symptoms in a target CSSL was observed at 23°C, but was rescued at 27°C and/or 30°C. Genetic analysis of HB using an F2:3 population of a cross between a target CSSL and Kirara397 found that a recessive temperature sensitive hybrid breakdown1 (thb1) gene from Yukihikari caused HB in the genetic background of Kirara397. Molecular mapping showed that thb1 was located within a 199-kb fragment on chromosome 6. A genetic study of F2 populations of reciprocal crosses between Yukihikari and Kirara397 confirmed that this HB was induced by the interaction of two recessive genes. These results provide important clues to further dissect the mechanism of generation of a novel temperature sensitive HB in rice intrasubspecific crosses and suggest that these linked markers will useful in rice breeding.
Collapse
Affiliation(s)
- Yuuki Yoneya
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| | - Tae Wakabayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| |
Collapse
|
19
|
Liu Y, El-Kassaby YA. Transcriptome-wide analysis of introgression-resistant regions reveals genetic divergence genes under positive selection in Populus trichocarpa. Heredity (Edinb) 2021; 126:442-462. [PMID: 33214679 PMCID: PMC8027638 DOI: 10.1038/s41437-020-00388-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/09/2022] Open
Abstract
Comparing gene expression patterns and genetic polymorphisms between populations is of central importance for understanding the origin and maintenance of biodiversity. Based on population-specific gene expression levels and allele frequency differences, we sought to identify population divergence (PD) genes across the introgression-resistant genomic regions of Populus trichocarpa. Genes containing highly diverged loci [i.e., genetic divergence (GD)] or showing expression divergence (ED) between populations were widely distributed in the genome and substantially enriched in functional categories related to stress responses, disease resistance, timing of flowering, cell cycle regulation, plant growth, and development. Nine genomic regions showing evidence of strong positive selection were overlapped with GD genes, which had significant differences between Oregon (a southernmost peripheral deme) and the other demes. However, we did not find evidence that genes under positive selection show an enrichment for ED. PD genes and genes under selection pertained to the same gene classes, such as SERINE/CYSTEINE PROTEASE, ABC TRANSPORTER, GLYCOSYLTRANSFERASE and other transferases. Our analysis also revealed that GD genes were polymorphic within the species (41.9 ± 3.66 biallelic variants per gene), as previously reported in herbaceous plants. By contrast, ED genes contained less genetic variants (10.73 ± 1.14) and were likely highly expressed. In addition, we found that trans- rather than cis-acting variants considerably contribute to the evolution of >90% PD genes. Overall, this study elucidates that cohorts of PD genes agree with the general attributes of known speciation genes and GD genes will provide substrates for positive selection to operate on.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
20
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
21
|
Wan WL, Kim ST, Castel B, Charoennit N, Chae E. Genetics of autoimmunity in plants: an evolutionary genetics perspective. THE NEW PHYTOLOGIST 2021; 229:1215-1233. [PMID: 32970825 DOI: 10.1111/nph.16947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 05/14/2023]
Abstract
Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Nuri Charoennit
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
22
|
Barragan AC, Collenberg M, Wang J, Lee RRQ, Cher WY, Rabanal FA, Ashkenazy H, Weigel D, Chae E. A Truncated Singleton NLR Causes Hybrid Necrosis in Arabidopsis thaliana. Mol Biol Evol 2021; 38:557-574. [PMID: 32966577 PMCID: PMC7826191 DOI: 10.1093/molbev/msaa245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hybrid necrosis in plants arises from conflict between divergent alleles of immunity genes contributed by different parents, resulting in autoimmunity. We investigate a severe hybrid necrosis case in Arabidopsis thaliana, where the hybrid does not develop past the cotyledon stage and dies 3 weeks after sowing. Massive transcriptional changes take place in the hybrid, including the upregulation of most NLR (nucleotide-binding site leucine-rich repeat) disease-resistance genes. This is due to an incompatible interaction between the singleton TIR-NLR gene DANGEROUS MIX 10 (DM10), which was recently relocated from a larger NLR cluster, and an unlinked locus, DANGEROUS MIX 11 (DM11). There are multiple DM10 allelic variants in the global A. thaliana population, several of which have premature stop codons. One of these, which has a truncated LRR-PL (leucine-rich repeat [LRR]-post-LRR) region, corresponds to the DM10 risk allele. The DM10 locus and the adjacent genomic region in the risk allele carriers are highly differentiated from those in the nonrisk carriers in the global A. thaliana population, suggesting that this allele became geographically widespread only relatively recently. The DM11 risk allele is much rarer and found only in two accessions from southwestern Spain-a region from which the DM10 risk haplotype is absent-indicating that the ranges of DM10 and DM11 risk alleles may be nonoverlapping.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jinge Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wei Yuan Cher
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Haim Ashkenazy
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
23
|
Xia F, Ouyang Y. Recurrent breakdown and rebalance of segregation distortion in the genomes: battle for the transmission advantage. ABIOTECH 2020; 1:246-254. [PMID: 36304131 PMCID: PMC9590546 DOI: 10.1007/s42994-020-00023-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/28/2020] [Indexed: 01/25/2023]
Abstract
Mendel's laws state that each of the two alleles would segregate during gamete formation and show the same transmission ratio in the next generation. However, an unexpected biased allele transmission was first detected in Drosophila a century ago, and was subsequently observed in other animals, plants, and microorganisms. Such segregation distortion (SD) shows substantial effects in population structure and fitness of the progenies, which would ultimately lead to reproductive isolation and speciation. Here, we trace the early investigations on the violation of Mendelian genetic principle, which appears as a wide-existence phenomenon rather than a case of exception. The occurence of SD in the whole genome was observed in a number of plant species at the single- and multi-locus level. Biased transmission ratio might occur at meiosis stage due to asymmetric movement of the chromosome; transmission ratio advantage is also caused by interaction and battle between the alleles from respective genomes at the genetic and molecular level. The origin of a SD system is likely to be determined by coevolution of the killer and protector via recurrent breakdown or rebalance loop. These updated understandings also promote genetic improvement of hybrid crops.
Collapse
Affiliation(s)
- Fan Xia
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
24
|
Soyk S, Benoit M, Lippman ZB. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu Rev Genet 2020; 54:287-307. [PMID: 32870731 DOI: 10.1146/annurev-genet-050720-122916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
25
|
Kuki Y, Ohno R, Yoshida K, Takumi S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:71-79. [PMID: 32120271 DOI: 10.1016/j.plaphy.2020.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Hybrid necrosis and hybrid chlorosis are sometimes observed in interspecific hybrids between the tetraploid wheat cultivar Langdon and diploid wild wheat Aegilops tauschii. Many WRKY transcription factor genes are dramatically upregulated in necrosis and chlorosis wheat hybrids. Here, we isolated cDNA clones for four wheat WRKY transcription factor genes, TaWRKY49, TaWRKY92, TaWRKY112, and TaWRKY142, that were commonly upregulated in the hybrid necrosis and hybrid chlorosis and belonged to the same clade of the WRKY gene family. Expression patterns of the four TaWRKY genes in response to several stress conditions were similar in wheat seeding leaves. The four TaWRKY-GFP fusion proteins were targeted to the nucleus in onion epidermal cells. The TaWRKY gene expression levels were increased by high salt, dehydration, darkness, and blast fungus treatment in common wheat. Expression of either of the TaWRKY genes increased salinity and osmotic stress tolerance accompanied with overexpression of STZ/Zat10, and induced overexpression of the salicylic acid-signal pathway marker gene AtPR1 in transgenic Arabidopsis. TaWRKY142 expression also induced the jasmonic acid-pathway marker gene AtPDF1.2 and enhanced resistance against the fungal pathogen Colletotrichum higginsianum in transgenic Arabidopsis. These results suggest that the four TaWRKY genes act as integrated hubs of multiple stress signaling pathways in wheat and play important roles in autoimmune response-inducing hybrid necrosis and hybrid chlorosis.
Collapse
Affiliation(s)
- Yasunobu Kuki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Ryoko Ohno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| |
Collapse
|
26
|
Matsubara K. How Hybrid Breakdown Can Be Handled in Rice Crossbreeding? FRONTIERS IN PLANT SCIENCE 2020; 11:575412. [PMID: 33193514 PMCID: PMC7641626 DOI: 10.3389/fpls.2020.575412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 05/16/2023]
Abstract
In crosses between genetically divergent parents, traits such as weakness and sterility often segregate in later generations. This hybrid breakdown functions as a reproductive barrier and reduces selection efficiency in crossbreeding. Here, I provide an overview of hybrid breakdown in rice crosses and discuss ways to avoid and mitigate the effects of hybrid breakdown on rice crossbreeding, including genomics-assisted breeding.
Collapse
|
27
|
Sakata M, Takano-Kai N, Miyazaki Y, Kanamori H, Wu J, Matsumoto T, Doi K, Yasui H, Yoshimura A, Yamagata Y. Domain Unknown Function DUF1668-Containing Genes in Multiple Lineages Are Responsible for F 1 Pollen Sterility in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:632420. [PMID: 33574828 PMCID: PMC7870705 DOI: 10.3389/fpls.2020.632420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/29/2020] [Indexed: 05/03/2023]
Abstract
Postzygotic reproductive isolation maintains species integrity and uniformity and contributes to speciation by restricting the free gene flow between divergent species. In this study we identify causal genes of two Mendelian factors S22A and S22B on rice chromosome 2 inducing F1 pollen sterility in hybrids between Oryza sativa japonica-type cultivar Taichung 65 (T65) and a wild relative of rice species Oryza glumaepatula. The causal gene of S22B in T65 encodes a protein containing DUF1668 and gametophytically expressed in the anthers, designated S22B_j. The O. glumaepatula allele S22B-g, allelic to S22B_j, possesses three non-synonymous substitutions and a 2-bp deletion, leading to a frameshifted translation at the S22B C-terminal region. Transcription level of S22B-j and/or S22B_g did not solely determine the fertility of pollen grains by genotypes at S22B. Western blotting of S22B found that one major band with approximately 46 kDa appeared only at the mature stage and was reduced on semi-sterile heterozygotes at S22B, implying that the 46 kDa band may associated in hybrid sterility. In addition, causal genes of S22A in T65 were found to be S22A_j1 and S22A_j3 encoding DUF1668-containing protein. The allele of a wild rice species Oryza meridionalis Ng at S22B, designated S22B_m, is a loss-of-function allele probably due to large deletion of the gene lacking DUF1668 domain and evolved from the different lineage of O. glumaepatula. Phylogenetic analysis of DUF1668 suggested that many gene duplications occurred before the divergence of current crops in Poaceae, and loss-of-function mutations of DUF1668-containing genes represent the candidate causal genetic events contributing to hybrid incompatibilities. The duplicated DUF1668-domain gene may provide genetic potential to induce hybrid incompatibility by consequent mutations after divergence.
Collapse
Affiliation(s)
- Mitsukazu Sakata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Noriko Takano-Kai
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuta Miyazaki
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi Matsumoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Laboratory of Plant Molecular Breeding, Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kazuyuki Doi
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- *Correspondence: Yoshiyuki Yamagata,
| |
Collapse
|
28
|
HWA1- and HWA2-Mediated Hybrid Weakness in Rice Involves Cell Death, Reactive Oxygen Species Accumulation, and Disease Resistance-Related Gene Upregulation. PLANTS 2019; 8:plants8110450. [PMID: 31731501 PMCID: PMC6918435 DOI: 10.3390/plants8110450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
Hybrid weakness is a type of reproductive isolation in which F1 hybrids of normal parents exhibit weaker growth characteristics than their parents. F1 hybrid of the Oryza sativa Indian cultivars ‘P.T.B.7′ and ‘A.D.T.14′ exhibits hybrid weakness that is associated with the HWA1 and HWA2 loci. Accordingly, the aim of the present study was to analyze the hybrid weakness phenotype of the ‘P.T.B.7′ × ‘A.D.T.14′ hybrids. The height and tiller number of the F1 hybrid were lower than those of either parent, and F1 hybrid also exhibited leaf yellowing that was not observed in either parent. In addition, the present study demonstrates that SPAD values, an index correlated with chlorophyll content, are effective for evaluating the progression of hybrid weakness that is associated with the HWA1 and HWA2 loci because it accurately reflects degree of leaf yellowing. Both cell death and H2O2, a reactive oxygen species, were detected in the yellowing leaves of the F1 hybrid. Furthermore, disease resistance-related genes were upregulated in the yellowing leaves of the F1 hybrids, whereas photosynthesis-related genes tended to be downregulated. These results suggest that the hybrid weakness associated with the HWA1 and HWA2 loci involves hypersensitive response-like mechanisms.
Collapse
|
29
|
Saito AN, Matsuo H, Kuwata K, Ono A, Kinoshita T, Yamaguchi J, Nakamichi N. Structure-function study of a novel inhibitor of the casein kinase 1 family in Arabidopsis thaliana. PLANT DIRECT 2019; 3:e00172. [PMID: 31549020 PMCID: PMC6747015 DOI: 10.1002/pld3.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 05/16/2023]
Abstract
Casein kinase 1 (CK1) is an evolutionarily conserved protein kinase family among eukaryotes. Studies in non-plants have shown CK1-dependent divergent biological processes, but the collective knowledge regarding the biological roles of plant CK1 lags far behind other members of the Eukarya. One reason for this is that plants have many more genes encoding CK1 than do animals. To accelerate our understanding of the plant CK1 family, a strong CK1 inhibitor that efficiently inhibits multiple members of the CK1 protein family in vivo (i.e., in planta) is required. Here, we report a novel, specific, and effective CK1 inhibitor in Arabidopsis. Using circadian period-lengthening activity as an estimation of the CK1 inhibitor effect in vivo, we performed a structure-activity relationship study of analogues of the CK1 inhibitor PHA767491 (1,5,6,7-tetrahydro-2-(4-pyridinyl)-4H-pyrrolo[3,2-c]pyridin-4-one hydrochloride). A propargyl group at the pyrrole nitrogen atom (AMI-212) or a bromine atom at the pyrrole C3 position (AMI-23) had stronger CK1 inhibitory activity than PHA767491. A hybrid molecule of AMI-212 and AMI-23 (AMI-331) was about 100-fold more inhibitory than the parent molecule PHA767491. Affinity proteomics using an AMI-331 probe showed that the targets of AMI-331 inhibition are mostly CK1 kinases. As such, AMI-331 is a potent and selective CK1 inhibitor that shows promise in the research of CK1 in plants.
Collapse
Affiliation(s)
- Ami N. Saito
- Department of Applied ChemistryWaseda UniversityShinjuku, TokyoJapan
| | - Hiromi Matsuo
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
| | - Azusa Ono
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| | - Toshinori Kinoshita
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| | | | - Norihito Nakamichi
- Institute of Transformative Bio‐molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| |
Collapse
|
30
|
van Wersch S, Li X. Stronger When Together: Clustering of Plant NLR Disease resistance Genes. TRENDS IN PLANT SCIENCE 2019; 24:688-699. [PMID: 31266697 DOI: 10.1016/j.tplants.2019.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 05/14/2023]
Abstract
Gene clustering is rare in eukaryotes. However, nucleotide-binding leucine-rich repeat (NLR)-encoding disease resistance (R) genes show consistent clustering in plant genomes. These arrangements are likely to provide coregulatory benefits, as suggested by growing evidence that the gene products of both paired and larger clusters of NLRs act together in triggering immunity. Head-to-head gene pairs where one of the encoded NLRs includes an integrated decoy domain appear to behave differently than clusters evolved from closely related typical NLRs. These patterns may help to explain the broad resistance that most plants have despite their finite number of R genes. By taking into consideration the relationship between genomic arrangement and function, we can improve our understanding of and ability to predict plant immune detection.
Collapse
Affiliation(s)
- Solveig van Wersch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
31
|
Ueno N, Kashiwagi M, Kanekatsu M, Marubashi W, Yamada T. Accumulation of protein aggregates induces autolytic programmed cell death in hybrid tobacco cells expressing hybrid lethality. Sci Rep 2019; 9:10223. [PMID: 31308420 PMCID: PMC6629611 DOI: 10.1038/s41598-019-46619-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/02/2019] [Indexed: 12/03/2022] Open
Abstract
Hybrid cells of Nicotiana suaveolens x N. tabacum grow normally at 36 °C, but immediately express lethality due to probable autoimmune response when transferred from 36 to 28 °C. Our recent study showed that the temperature-sensitive lethality of these hybrid cells occurs through autolytic programmed cell death (PCD). However, what happens in hybrid cells following the induction of autoimmune response to autolytic PCD is unclear. We hypothesized that accumulation of protein aggregates in hybrid cells induces autolytic PCD and examined detergent-insoluble protein (protein aggregates) isolated from hybrid cells expressing lethality. The amount of insoluble proteins increased in hybrid cells. Sodium 4-phenylbutyrate, a chemical chaperone, inhibited both the accumulation of insoluble proteins and irreversible progression of cell death. In contrast, E-64, a cysteine protease inhibitor, accelerated both the accumulation of insoluble proteins and cell death. Moreover, proteome analysis revealed that proteasome-component proteins were accumulated specifically in cells treated with E-64, and proteasome activity of hybrid cells decreased after induction of lethality. These findings demonstrate that accumulation of protein aggregates, including proteasome subunits, eventually cause autolytic PCD in hybrid cells. This suggests a novel process inducing plant PCD by loss of protein homeostasis and provides clues to future approaches for elucidating the whole process.
Collapse
Affiliation(s)
- Naoya Ueno
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Megumi Kashiwagi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wataru Marubashi
- Faculty of Agricultural Science, Meiji University, Kanagawa, Japan
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
32
|
Barragan CA, Wu R, Kim ST, Xi W, Habring A, Hagmann J, Van de Weyer AL, Zaidem M, Ho WWH, Wang G, Bezrukov I, Weigel D, Chae E. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008313. [PMID: 31344025 PMCID: PMC6684095 DOI: 10.1371/journal.pgen.1008313] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
In many plant species, conflicts between divergent elements of the immune system, especially nucleotide-binding oligomerization domain-like receptors (NLR), can lead to hybrid necrosis. Here, we report deleterious allele-specific interactions between an NLR and a non-NLR gene cluster, resulting in not one, but multiple hybrid necrosis cases in Arabidopsis thaliana. The NLR cluster is RESISTANCE TO PERONOSPORA PARASITICA 7 (RPP7), which can confer strain-specific resistance to oomycetes. The non-NLR cluster is RESISTANCE TO POWDERY MILDEW 8 (RPW8) / HOMOLOG OF RPW8 (HR), which can confer broad-spectrum resistance to both fungi and oomycetes. RPW8/HR proteins contain at the N-terminus a potential transmembrane domain, followed by a specific coiled-coil (CC) domain that is similar to a domain found in pore-forming toxins MLKL and HET-S from mammals and fungi. C-terminal to the CC domain is a variable number of 21- or 14-amino acid repeats, reminiscent of regulatory 21-amino acid repeats in fungal HET-S. The number of repeats in different RPW8/HR proteins along with the sequence of a short C-terminal tail predicts their ability to activate immunity in combination with specific RPP7 partners. Whether a larger or smaller number of repeats is more dangerous depends on the specific RPW8/HR autoimmune risk variant.
Collapse
Affiliation(s)
- Cristina A. Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rui Wu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Wanyan Xi
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - William Wing Ho Ho
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
33
|
Genome-wide dissection of segregation distortion using multiple inter-subspecific crosses in rice. SCIENCE CHINA-LIFE SCIENCES 2019; 62:507-516. [DOI: 10.1007/s11427-018-9452-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/28/2018] [Indexed: 11/27/2022]
|
34
|
Nadir S, Khan S, Zhu Q, Henry D, Wei L, Lee DS, Chen L. An overview on reproductive isolation in Oryza sativa complex. AOB PLANTS 2018; 10:ply060. [PMID: 30538811 PMCID: PMC6280023 DOI: 10.1093/aobpla/ply060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/21/2018] [Indexed: 05/27/2023]
Abstract
Reproductive isolation is generally regarded as the essence of the speciation process. Studying closely related species is convenient for understanding the genetic basis of reproductive isolation. Therefore, the present review is restricted to the species and subspecies of the Oryza sativa complex, which includes the two domestic rice cultivars and six wild species. Although closely related, these rice species are separated from each other by a range reproductive barriers. This review presents a comprehensive understanding of the forces that shaped the formation of reproductive barriers among and between the species of the O. sativa complex. We suggest the possibility that domestication and artificial breeding in these rice species can lead to the early stages of speciation. Understanding the evolutionary and molecular mechanisms underlying reproductive isolation in rice will increase our knowledge in speciation and would also offer practical significance for the implementation of crop improvement strategies.
Collapse
Affiliation(s)
- Sadia Nadir
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
- Department of Chemistry, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
- Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sehroon Khan
- Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qian Zhu
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Doku Henry
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
- Biotechnology Lab Complex, CSIR-Crops Research Institute, Ghana
| | - Li Wei
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Dong Sun Lee
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - LiJuan Chen
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
35
|
Ouyang Y, Zhang Q. The molecular and evolutionary basis of reproductive isolation in plants. J Genet Genomics 2018; 45:613-620. [PMID: 30459118 DOI: 10.1016/j.jgg.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/19/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China has made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.
Collapse
Affiliation(s)
- Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
36
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
37
|
The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Sci Rep 2017; 7:16004. [PMID: 29167543 PMCID: PMC5700127 DOI: 10.1038/s41598-017-15919-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
The ability to cause reproductive isolation often varies among individuals within a plant species. We addressed whether such polymorphism influenced speciation of the allopolyploid common wheat (Triticum aestivum L., AABBDD genome) by evaluating the expression of pre-pollination (outcrossing potential) and post-pollination (crossability) barriers in Aegilops tauschii Coss. (the D genome progenitor). In total, 201 Ae. tauschii accessions representing the entire natural habitat range of the species were used for anther length measurement and artificial crosses with a Triticum turgidum L. (the AB genome progenitor) tester. Intraspecific comparisons showed that both barriers were more strongly expressed in the TauL1 lineage than in the TauL2 lineage. The ability of Ae. tauschii to cause reproductive isolation in the hybridisation with T. turgidum might have markedly influenced common wheat’s speciation by inducing lineage-associated patterns of gene flow. The TauL2 accessions with high potential for natural hybridisation with T. turgidum clustered in the southern coastal Caspian region. This provided phenotypic support for the derivation of the D genome of common wheat from southern Caspian populations. The present study underscored the importance of approaches that incorporate the genealogical and geographic structure of the parental species’ reproductive isolation in understanding the mechanism of plant allopolyploid speciation.
Collapse
|
38
|
Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice. G3-GENES GENOMES GENETICS 2017; 7:2565-2575. [PMID: 28592558 PMCID: PMC5555463 DOI: 10.1534/g3.117.043943] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1) on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras) and the DGS2 allele from O. sativa (DGS2-T65s) were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP) III subunit C4 (RPC4). RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.
Collapse
|
39
|
Tran DTN, Chung EH, Habring-Müller A, Demar M, Schwab R, Dangl JL, Weigel D, Chae E. Activation of a Plant NLR Complex through Heteromeric Association with an Autoimmune Risk Variant of Another NLR. Curr Biol 2017; 27:1148-1160. [PMID: 28416116 PMCID: PMC5405217 DOI: 10.1016/j.cub.2017.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 12/18/2022]
Abstract
When independently evolved immune receptor variants meet in hybrid plants, they can activate immune signaling in the absence of non-self recognition. Such autoimmune risk alleles have recurrently evolved at the DANGEROUS MIX2 (DM2) nucleotide-binding domain and leucine-rich repeat (NLR)-encoding locus in A. thaliana. One of these activates signaling in the presence of a particular variant encoded at another NLR locus, DM1. We show that the risk variants of DM1 and DM2d NLRs signal through the same pathway that is activated when plant NLRs recognize non-self elicitors. This requires the P loops of each protein and Toll/interleukin-1 receptor (TIR)-domain-mediated heteromeric association of DM1 and DM2d. DM1 and DM2d each resides in a multimeric complex in the absence of signaling, with the DM1 complex shifting to higher molecular weight when heteromerizing DM2 variants are present. The activation of the DM1 complex appears to be sensitive to the conformation of the heteromerizing DM2 variant. Autoimmunity triggered by interaction of this NLR pair thus suggests that activity of heteromeric NLR signaling complexes depends on the sum of activation potentials of partner NLRs. Two unlinked plant NLRs physically interact to trigger autoimmunity The N-terminal TIR domains mediate heteromeric NLR association NLR multimerization is not sufficient for signaling
Collapse
Affiliation(s)
- Diep T N Tran
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anette Habring-Müller
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, Carolina Center for Genome Sciences, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
40
|
Hua X, Bromham L. Darwinism for the Genomic Age: Connecting Mutation to Diversification. Front Genet 2017; 8:12. [PMID: 28224003 PMCID: PMC5293951 DOI: 10.3389/fgene.2017.00012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 12/30/2022] Open
Abstract
A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification.
Collapse
Affiliation(s)
- Xia Hua
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Lindell Bromham
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT, Australia
| |
Collapse
|
41
|
Baek YS, Royer SM, Broz AK, Covey PA, López-Casado G, Nuñez R, Kear PJ, Bonierbale M, Orillo M, van der Knaap E, Stack SM, McClure B, Chetelat RT, Bedinger PA. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). AMERICAN JOURNAL OF BOTANY 2016; 103:1964-1978. [PMID: 27864262 DOI: 10.3732/ajb.1600356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Suzanne M Royer
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Paul A Covey
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Gloria López-Casado
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Reynaldo Nuñez
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
| | - Philip J Kear
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Merideth Bonierbale
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Matilde Orillo
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen M Stack
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Roger T Chetelat
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| |
Collapse
|
42
|
Sakaguchi K, Nishijima R, Iehisa JCM, Takumi S. Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genetica 2016; 144:523-533. [PMID: 27502693 DOI: 10.1007/s10709-016-9920-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
Abstract
Hybrid necrosis has been observed in many interspecific hybrids from crosses between tetraploid wheat and the wheat D-genome donor Aegilops tauschii. Type II necrosis is a kind of hybrid incompatibility that is specifically characterized by low-temperature induction and growth suppression. Two complementary genes, Net1 on the AB genome and Net2 on the D genome, putatively control type II necrosis in ABD triploids and synthetic hexaploid wheat. Toward map-based cloning of Net2, a fine map around the Net2 region on 2DS was constructed in this study. Using the draft genome sequence of Ae. tauschii and the physical map of the barley genome, the Net2 locus was mapped within a 0.6 cM interval between two closely linked markers. Although local chromosomal rearrangements were observed in the Net2-corresponding region between the barley/Brachypodium and Ae. tauschii genomes, the two closely linked markers were significantly associated with type II necrosis in Ae. tauschii. These results suggest that these markers will aid efficient selection of Net2 non-carrier individuals from the Ae. tauschii population and intraspecific progeny, and could help with introgression of agriculturally important genes from Ae. tauschii to common wheat.
Collapse
Affiliation(s)
- Kouhei Sakaguchi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Julio Cesar Masaru Iehisa
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
43
|
Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR, Wang Y, James GV, Griebel T, Alcázar R, Tsuda K, Schneeberger K, Parker JE. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genet 2016; 12:e1005990. [PMID: 27082651 PMCID: PMC4833295 DOI: 10.1371/journal.pgen.1005990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways. Plants tune their cellular and developmental programs to different environmental stimuli. Central players in the plant biotic stress response network are intracellular NLR receptors which intercept specific disease-inducing molecules (effectors) produced by pathogenic microbes. Variation in NLR gene repertoires between plant genetic lines is driven by pathogen selection pressure. One evolutionary question is how new, functional NLRs are assembled within a plant genome without mis-activating defense pathways, which can have strong negative effects on growth and fitness. This study focuses on a large, polymorphic sub-class of NLR receptors called TNLs present in dicotyledenous plant lineages. TNL receptors confer immunity to a broad range of pathogens. They also frequently underlie autoimmunity caused by their mis-regulation or deleterious allelic interactions with other genes in crosses between different genetic lines (hybrid incompatibility, HI). TNL pathogen-triggered and autoimmune responses require the conserved nucleocytoplasmic protein EDS1 to transcriptionally reprogram cells for defense. We discover in Arabidopsis thaliana that high levels of nuclear-enriched EDS1 induce transcriptional activation of defenses and growth inhibition without a pathogen effector stimulus. In a mutational screen, we identify one rapidly evolving TNL gene, DM2hLer, as a driver of nuclear EDS1 autoimmunity. DM2hLer also contributes to two separate cases of EDS1-dependent autoimmunity. Genetic cooperation between DM2hLer and EDS1 suggests a functional relationship in the transcriptional feed-forward regulation of defense pathways.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
- * E-mail: (JS); (JEP)
| | - Nora Peine
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana V. Garcia
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christine Wagner
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Sayan R. Choudhury
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Griebel
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ruben Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail: (JS); (JEP)
| |
Collapse
|
44
|
Dai B, Guo H, Huang C, Zhang X, Lin Z. Genomic heterozygosity and hybrid breakdown in cotton (Gossypium): different traits, different effects. BMC Genet 2016; 17:58. [PMID: 27072350 PMCID: PMC4830075 DOI: 10.1186/s12863-016-0366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
Background Hybrid breakdown has been well documented in various species. Relationships between genomic heterozygosity and traits-fitness have been extensively explored especially in the natural populations. But correlations between genomic heterozygosity and vegetative and reproductive traits in cotton interspecific populations have not been studied. In the current study, two reciprocal F2 populations were developed using Gossypium hirsutum cv. Emian 22 and G. barbadense acc. 3–79 as parents to study hybrid breakdown in cotton. A total of 125 simple sequence repeat (SSR) markers were used to genotype the two F2 interspecific populations. Results To guarantee mutual independence among the genotyped markers, the 125 SSR markers were checked by the linkage disequilibrium analysis. To our knowledge, this is a novel approach to evaluate the individual genomic heterozygosity. After marker checking, 83 common loci were used to assess the extent of genomic heterozygosity. Hybrid breakdown was found extensively in the two interspecific F2 populations particularly on the reproductive traits because of the infertility and the bare seeds. And then, the relationships between the genomic heterozygosity and the vegetative reproductive traits were investigated. The only relationships between hybrid breakdown and heterozygosity were observed in the (Emian22 × 3–79) F2 population for seed index (SI) and boll number per plant (BN). The maternal cytoplasmic environment may have a significant effect on genomic heterozygosity and on correlations between heterozygosity and reproductive traits. Conclusions A novel approach was used to evaluate genomic heterozygosity in cotton; and hybrid breakdown was observed in reproductive traits in cotton. These findings may offer new insight into hybrid breakdown in allotetraploid cotton interspecific hybrids, and may be useful for the development of interspecific hybrids for cotton genetic improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0366-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baosheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanle Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
45
|
Kubo T, Takashi T, Ashikari M, Yoshimura A, Kurata N. Two Tightly Linked Genes at the hsa1 Locus Cause Both F1 and F2 Hybrid Sterility in Rice. MOLECULAR PLANT 2016; 9:221-232. [PMID: 26455463 DOI: 10.1016/j.molp.2015.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 05/09/2023]
Abstract
Molecular mechanisms of hybrid breakdown associated with sterility (F2 sterility) are poorly understood as compared with those of F1 hybrid sterility. Previously, we characterized three unlinked epistatic loci, hybrid sterility-a1 (hsa1), hsa2, and hsa3, responsible for the F2 sterility in a cross between Oryza sativa ssp. indica and japonica. In this study, we identified that the hsa1 locus contains two interacting genes, HSA1a and HSA1b, within a 30-kb region. HSA1a-j (japonica allele) encodes a highly conserved plant-specific domain of unknown function protein (DUF1618), whereas the indica allele (HSA1a-i(s)) has two deletion mutations that cause disruption of domain structure. The second gene, HSA1b-i(s), encodes an uncharacterized protein with some similarity to a nucleotide-binding protein. Homozygous introgression of indica HSA1a-i(s)-HSA1b-i(s) alleles into japonica showed female gamete abortion at an early mitotic stage. The fact that the recombinant haplotype HSA1a-j-HSA1b-i(s) caused semi-sterility in the heterozygous state with the HSA1a-i(s)-HSA1b-i(s) haplotype suggests that variation in the hsa1 locus is a possible cause of the wide-spectrum sterility barriers seen in F1 hybrids and successive generations in rice. We propose a simple genetic model to explain how a single causal mechanism can drive both F1 and F2 hybrid sterility.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI (the Graduate University for Advanced Science), Mishima, Shizuoka 411-8540, Japan.
| | | | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI (the Graduate University for Advanced Science), Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
46
|
Chapman MA, Hiscock SJ, Filatov DA. The genomic bases of morphological divergence and reproductive isolation driven by ecological speciation in Senecio (Asteraceae). J Evol Biol 2015; 29:98-113. [PMID: 26414668 DOI: 10.1111/jeb.12765] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/18/2015] [Accepted: 09/18/2015] [Indexed: 12/18/2022]
Abstract
Ecological speciation, driven by adaptation to contrasting environments, provides an attractive opportunity to study the formation of distinct species, and the role of selection and genomic divergence in this process. Here, we focus on a particularly clear-cut case of ecological speciation to reveal the genomic bases of reproductive isolation and morphological differences between closely related Senecio species, whose recent divergence within the last ~200,000 years was likely driven by the uplift of Mt. Etna (Sicily). These species form a hybrid zone, yet remain morphologically and ecologically distinct, despite active gene exchange. Here, we report a high-density genetic map of the Senecio genome and map hybrid breakdown to one large and several small quantitative trait loci (QTL). Loci under diversifying selection cluster in three 5 cM regions which are characterized by a significant increase in relative (F(ST)), but not absolute (d(XY)), interspecific differentiation. They also correspond to some of the regions of greatest marker density, possibly corresponding to 'cold-spots' of recombination, such as centromeres or chromosomal inversions. Morphological QTL for leaf and floral traits overlap these clusters. We also detected three genomic regions with significant transmission ratio distortion (TRD), possibly indicating accumulation of intrinsic genetic incompatibilities between these recently diverged species. One of the TRD regions overlapped with a cluster of high species differentiation, and another overlaps the large QTL for hybrid breakdown, indicating that divergence of these species may have occurred due to a complex interplay of ecological divergence and accumulation of intrinsic genetic incompatibilities.
Collapse
Affiliation(s)
- M A Chapman
- Department of Plant Sciences, University of Oxford, Oxford, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - S J Hiscock
- University of Oxford Botanic Garden, Rose Lane, Oxford, UK
| | - D A Filatov
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. Nat Commun 2015; 6:7960. [PMID: 26268845 PMCID: PMC4539569 DOI: 10.1038/ncomms8960] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
In the Bateson–Dobzhansky–Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. A hybrid incompatibility between Capsella plant species is due to an interaction between two immune regulators. Here, the authors show that highly divergent haplotypes result from balancing selection in the ancestral lineage and their sorting into derived lineages facilitated the evolution of the incompatibility.
Collapse
|
48
|
Takamatsu K, Iehisa JCM, Nishijima R, Takumi S. Comparison of gene expression profiles and responses to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives. PLANT MOLECULAR BIOLOGY 2015; 88:487-502. [PMID: 26081164 DOI: 10.1007/s11103-015-0338-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Hybrid necrosis is a well-known reproductive isolation mechanism in plant species, and an autoimmune response is generally considered to trigger hybrid necrosis through epistatic interaction between disease resistance-related genes in hybrids. In common wheat, the complementary Ne1 and Ne2 genes control hybrid necrosis, defined as type I necrosis. Two other types of hybrid necrosis (type II and type III) have been observed in interspecific hybrids between tetraploid wheat and Aegilops tauschii. Another type of hybrid necrosis, defined here as type IV necrosis, has been reported in F1 hybrids between Triticum urartu and some accessions of Triticum monococcum ssp. aegilopoides. In types I, III and IV, cell death occurs gradually starting in older tissues, whereas type II necrosis symptoms occur only under low temperature. To compare comprehensive gene expression patterns of hybrids showing growth abnormalities, transcriptome analysis of type I and type IV necrosis was performed using a wheat 38k oligo-DNA microarray. Defense-related genes including many WRKY transcription factor genes were dramatically up-regulated in plants showing type I and type IV necrosis, similarly to other known hybrid abnormalities, suggesting an association with an autoimmune response. Reactive oxygen species generation and necrotic cell death were effectively inhibited by ZnCl2 treatment in types I, III and IV necrosis, suggesting a significant association of Ca(2+) influx in upstream signaling of necrotic cell death in wheat hybrid necrosis.
Collapse
Affiliation(s)
- Kiyofumi Takamatsu
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
49
|
Duitama J, Silva A, Sanabria Y, Cruz DF, Quintero C, Ballen C, Lorieux M, Scheffler B, Farmer A, Torres E, Oard J, Tohme J. Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection. PLoS One 2015; 10:e0124617. [PMID: 25923345 PMCID: PMC4414565 DOI: 10.1371/journal.pone.0124617] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 01/08/2023] Open
Abstract
Current advances in sequencing technologies and bioinformatics revealed the genomic background of rice, a staple food for the poor people, and provided the basis to develop large genomic variation databases for thousands of cultivars. Proper analysis of this massive resource is expected to give novel insights into the structure, function, and evolution of the rice genome, and to aid the development of rice varieties through marker assisted selection or genomic selection. In this work we present sequencing and bioinformatics analyses of 104 rice varieties belonging to the major subspecies of Oryza sativa. We identified repetitive elements and recurrent copy number variation covering about 200 Mbp of the rice genome. Genotyping of over 18 million polymorphic locations within O. sativa allowed us to reconstruct the individual haplotype patterns shaping the genomic background of elite varieties used by farmers throughout the Americas. Based on a reconstruction of the alleles for the gene GBSSI, we could identify novel genetic markers for selection of varieties with high amylose content. We expect that both the analysis methods and the genomic information described here would be of great use for the rice research community and for other groups carrying on similar sequencing efforts in other crops.
Collapse
Affiliation(s)
- Jorge Duitama
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
- * E-mail:
| | - Alexander Silva
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Yamid Sanabria
- Rice Research Station, Louisiana State University Agricultural Center, Rayne, Louisiana, United States of America
| | - Daniel Felipe Cruz
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Constanza Quintero
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Carolina Ballen
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Mathias Lorieux
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement, Montpellier, France
| | - Brian Scheffler
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Jamie Whitten Delta States Research Center, Stoneville, Mississippi, United States of America
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Edgar Torres
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - James Oard
- Rice Research Station, Louisiana State University Agricultural Center, Rayne, Louisiana, United States of America
| | - Joe Tohme
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| |
Collapse
|
50
|
Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS One 2015; 10:e0121583. [PMID: 25806790 PMCID: PMC4373817 DOI: 10.1371/journal.pone.0121583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.
Collapse
|