1
|
Zhou Y, Mihail ES, Luo Z, Sood S, Islam MS, Wang J. Exploring Morphological, Transcriptomic, and Metabolomic Differences Between Two Sister Lines with Contrasting Resistance to Orange Rust Disease in Sugarcane. Int J Mol Sci 2025; 26:3490. [PMID: 40331937 PMCID: PMC12027349 DOI: 10.3390/ijms26083490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Sugarcane (Saccharum spp.) hybrid, one of the most important crops in Florida, has been affected by orange rust (OR) disease caused by Puccinia kuehnii since 2007, resulting in significant yield loss. Developing resistant cultivars to this disease has become an important goal in sugarcane breeding programs. However, the specific genes and molecular mechanisms underlying the resistance to OR disease in sugarcane are still not clear. In this study, we selected two sugarcane sister lines with different genotypes-showing contrasting resistance responses to the disease-from a major quantitative trait loci (QTL) region controlling OR disease resistance. Morphological and anatomical observations revealed that the resistant line (540) had significantly smaller stomatal size and lower stomatal density than the susceptible line (664). Transcriptomic analyses showed that resistant line 540 had increased cell surface modification activity, suggesting possible increased surface receptors. Differentially expressed gene and coexpression analyses also revealed key genes involved in the biosynthesis of anti-fungal molecules, such as hordatines, arabidopyrones, and alkaloids. They also showed a strong increase in long non-coding RNA expression, playing a role in transcriptional regulation. Transcriptomic-metabolomic joint analysis suggested that the biosynthesis of phenylpropanoid derivatives with purported antioxidant and anti-fungal capabilities increased in line 540, especially those deriving from ferulate. Genes, pathways, and some single-nucleotide polymorphisms identified in this study will provide fundamental information and resources to advance the knowledge of sugarcane molecular genetic mechanisms in relation to OR disease, supporting breeding programs in developing cultivars with improved resistance to OR.
Collapse
Affiliation(s)
- Yupeng Zhou
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Edvin Sebastian Mihail
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Ziliang Luo
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Sushma Sood
- Sugarcane Production Research Unit, USDA ARS SEA, 12990 US Hwy 441 N, Canal Point, FL 33438, USA;
| | - Md Sariful Islam
- Sugarcane Production Research Unit, USDA ARS SEA, 12990 US Hwy 441 N, Canal Point, FL 33438, USA;
| | - Jianping Wang
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| |
Collapse
|
2
|
Zhang J, Qi Y, Hua X, Wang Y, Wang B, Qi Y, Huang Y, Yu Z, Gao R, Zhang Y, Wang T, Wang Y, Mei J, Zhang Q, Wang G, Pan H, Li Z, Li S, Liu J, Qi N, Feng X, Wu M, Chen S, Du C, Li Y, Xu Y, Fang Y, Ma P, Li Q, Sun Y, Feng X, Yao W, Zhang M, Chen B, Liu X, Ming R, Wang J, Deng Z, Tang H. The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum. Nat Genet 2025; 57:242-253. [PMID: 39753769 DOI: 10.1038/s41588-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Modern sugarcane, a highly allo-autopolyploid organism, has a very complex genome. In the present study, the karyotype and genome architecture of modern sugarcane were investigated, resulting in a genome assembly of 97 chromosomes (8.84 Gb). The allopolyploid genome was divided into subgenomes from Saccharum officinarum (Soh) and S. spontaneum (Ssh), with Soh dominance in the Saccharum hybrid (S. hybrid). Genome shock affected transcriptome dynamics during allopolyploidization. Analysis of an inbreeding population with 192 individuals revealed the underlying genetic basis of transgressive segregation. Population genomics of 310 Saccharum accessions clarified the breeding history of modern sugarcane. Using the haplotype-resolved S. hybrid genome as a reference, genome-wide association studies identified a potential candidate gene for sugar content from S. spontaneum. These findings illuminate the complex genome evolution of allopolyploids, offering opportunities for genomic enhancements and innovative breeding strategies for sugarcane.
Collapse
Affiliation(s)
- Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China.
| | - Yiying Qi
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuting Hua
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yongjun Wang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yumin Huang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zehuai Yu
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ruiting Gao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yixing Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyou Wang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yuhao Wang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Mei
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China
| | - Haoran Pan
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Shuangyu Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia Liu
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nameng Qi
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxi Feng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingxing Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Chen
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuicui Du
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihan Li
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yi Xu
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yaxue Fang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Panpan Ma
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingyun Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yuanchang Sun
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Xinlong Liu
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianping Wang
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Zuhu Deng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibao Tang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Martins MLT, Sforça DA, Dos Santos LP, Pimenta RJG, Mancini MC, Aono AH, Cardoso-Silva CB, Vautrin S, Bellec A, Dos Santos RV, Bérgès H, da Silva CC, de Souza AP. Identifying candidate genes for sugar accumulation in sugarcane: an integrative approach. BMC Genomics 2024; 25:1201. [PMID: 39695384 DOI: 10.1186/s12864-024-11089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation. One successful strategy for identifying candidate genes linked to agronomic traits, particularly those associated with sugar accumulation, leverages synteny and potential collinearity with related species. RESULTS In this study, we explored synteny between sorghum and sugarcane. Genes from a sorghum Brix QTL were used to screen bacterial artificial chromosome (BAC) libraries from two Brazilian sugarcane varieties (IACSP93-3046 and SP80-3280). The entire region was successfully recovered, confirming synteny and collinearity between the species. Manual annotation identified 51 genes in the hybrid varieties that were subsequently confirmed to be present in Saccharum spontaneum. This study employed a multifaceted approach to identify candidate genes for sugar accumulation, including retrieving the genomic region of interest, performing a gene-by-gene analysis, analyzing RNA-seq data for internodes from Saccharum officinarum and S. spontaneum accessions, constructing a coexpression network to examine the expression patterns of genes within the studied region and their neighbors, and finally identifying differentially expressed genes (DEGs). CONCLUSIONS This comprehensive approach led to the discovery of three candidate genes potentially involved in sugar accumulation: an ethylene-responsive transcription factor (ERF), an ABA 8'-hydroxylase, and a prolyl oligopeptidase (POP). These findings could be valuable for identifying additional candidate genes for other important agricultural traits and directly targeting candidate genes for further work in molecular breeding.
Collapse
Affiliation(s)
| | - Danilo Augusto Sforça
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luís Paulo Dos Santos
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Alexandre Hild Aono
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cláudio Benício Cardoso-Silva
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
- National Laboratory of Biorenewables-LNBR/CNPEM, Campinas, SP, Brazil
| | - Sonia Vautrin
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | - Arnaud Bellec
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | | | - Helene Bérgès
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | - Carla Cristina da Silva
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Agronomy Department, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Anete Pereira de Souza
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo, CEP, 13083-875, Brazil.
| |
Collapse
|
4
|
Saavedra-Díaz C, Trujillo-Montenegro JH, Jaimes HA, Londoño A, Villareal FAS, López LO, Valens CAV, López-Gerena J, Riascos JJ, Quevedo YM, Aguilar FS. Genetic association analysis in sugarcane (Saccharum spp.) for sucrose accumulation in humid environments in Colombia. BMC PLANT BIOLOGY 2024; 24:570. [PMID: 38886648 PMCID: PMC11184777 DOI: 10.1186/s12870-024-05233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Sucrose accumulation in sugarcane is affected by several environmental and genetic factors, with plant moisture being of critical importance for its role in the synthesis and transport of sugars within the cane stalks, affecting the sucrose concentration. In general, rainfall and high soil humidity during the ripening stage promote plant growth, increasing the fresh weight and decreasing the sucrose yield in the humid region of Colombia. Therefore, this study aimed to identify markers associated with sucrose accumulation or production in the humid environment of Colombia through a genome-wide association study (GWAS). RESULTS Sucrose concentration measurements were taken in 220 genotypes from the Cenicaña's diverse panel at 10 (early maturity) and 13 (normal maturity) months after planting. For early maturity data was collected during plant cane and first ratoon, while at normal maturity it was during plant cane, first, and second ratoon. A total of 137,890 SNPs were selected after sequencing the 220 genotypes through GBS, RADSeq, and whole-genome sequencing. After GWAS analysis, a total of 77 markers were significantly associated with sucrose concentration at both ages, but only 39 were close to candidate genes previously reported for sucrose accumulation and/or production. Among the candidate genes, 18 were highlighted because they were involved in sucrose hydrolysis (SUS6, CIN3, CINV1, CINV2), sugar transport (i.e., MST1, MST2, PLT5, SUT4, ERD6 like), phosphorylation processes (TPS genes), glycolysis (PFP-ALPHA, HXK3, PHI1), and transcription factors (ERF12, ERF112). Similarly, 64 genes were associated with glycosyltransferases, glycosidases, and hormones. CONCLUSIONS These results provide new insights into the molecular mechanisms involved in sucrose accumulation in sugarcane and contribute with important genomic resources for future research in the humid environments of Colombia. Similarly, the markers identified will be validated for their potential application within Cenicaña's breeding program to assist the development of breeding populations.
Collapse
Affiliation(s)
- Carolina Saavedra-Díaz
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
- Pontificia Universidad Javeriana, Cali, Colombia
| | | | - Hugo Arley Jaimes
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | - Alejandra Londoño
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | - Luis Orlando López
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | - Jershon López-Gerena
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | - John J Riascos
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | - Fernando S Aguilar
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia.
- Colombian Sugarcane Research Center (Cenicaña), km 26 Vía Cali-Florida, Valle del Cauca, Colombia.
| |
Collapse
|
5
|
Wu X, Cui Z, Li X, Yu Z, Lin P, Xue L, Khan A, Ou C, Deng Z, Zhang M, Yao W, Yu F. Identification and characterization of PAL genes involved in the regulation of stem development in Saccharum spontaneum L. BMC Genom Data 2024; 25:38. [PMID: 38689211 PMCID: PMC11061975 DOI: 10.1186/s12863-024-01219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Saccharum spontaneum L. is a closely related species of sugarcane and has become an important genetic component of modern sugarcane cultivars. Stem development is one of the important factors for affecting the yield, while the molecular mechanism of stem development remains poorly understanding in S. spontaneum. Phenylalanine ammonia-lyase (PAL) is a vital component of both primary and secondary metabolism, contributing significantly to plant growth, development and stress defense. However, the current knowledge about PAL genes in S. spontaneum is still limited. Thus, identification and characterization of the PAL genes by transcriptome analysis will provide a theoretical basis for further investigation of the function of PAL gene in sugarcane. RESULTS In this study, 42 of PAL genes were identified, including 26 SsPAL genes from S. spontaneum, 8 ShPAL genes from sugarcane cultivar R570, and 8 SbPAL genes from sorghum. Phylogenetic analysis showed that SsPAL genes were divided into three groups, potentially influenced by long-term natural selection. Notably, 20 SsPAL genes were existed on chromosomes 4 and 5, indicating that they are highly conserved in S. spontaneum. This conservation is likely a result of the prevalence of whole-genome replications within this gene family. The upstream sequence of PAL genes were found to contain conserved cis-acting elements such as G-box and SP1, GT1-motif and CAT-box, which collectively regulate the growth and development of S. spontaneum. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that SsPAL genes of stem had a significantly upregulated than that of leaves, suggesting that they may promote the stem growth and development, particularly in the + 6 stem (The sixth cane stalk from the top to down) during the growth stage. CONCLUSIONS The results of this study revealed the molecular characteristics of SsPAL genes and indicated that they may play a vital role in stem growth and development of S. spontaneum. Altogether, our findings will promote the understanding of the molecular mechanism of S. spontaneum stem development, and also contribute to the sugarcane genetic improving.
Collapse
Affiliation(s)
- Xiaoqing Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Zetian Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Xinyi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Zehuai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Pingping Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Li Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Abdullah Khan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Cailan Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Zuhu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China.
| | - Fan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Healey AL, Garsmeur O, Lovell JT, Shengquiang S, Sreedasyam A, Jenkins J, Plott CB, Piperidis N, Pompidor N, Llaca V, Metcalfe CJ, Doležel J, Cápal P, Carlson JW, Hoarau JY, Hervouet C, Zini C, Dievart A, Lipzen A, Williams M, Boston LB, Webber J, Keymanesh K, Tejomurthula S, Rajasekar S, Suchecki R, Furtado A, May G, Parakkal P, Simmons BA, Barry K, Henry RJ, Grimwood J, Aitken KS, Schmutz J, D'Hont A. The complex polyploid genome architecture of sugarcane. Nature 2024; 628:804-810. [PMID: 38538783 PMCID: PMC11041754 DOI: 10.1038/s41586-024-07231-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Sugarcane, the world's most harvested crop by tonnage, has shaped global history, trade and geopolitics, and is currently responsible for 80% of sugar production worldwide1. While traditional sugarcane breeding methods have effectively generated cultivars adapted to new environments and pathogens, sugar yield improvements have recently plateaued2. The cessation of yield gains may be due to limited genetic diversity within breeding populations, long breeding cycles and the complexity of its genome, the latter preventing breeders from taking advantage of the recent explosion of whole-genome sequencing that has benefited many other crops. Thus, modern sugarcane hybrids are the last remaining major crop without a reference-quality genome. Here we take a major step towards advancing sugarcane biotechnology by generating a polyploid reference genome for R570, a typical modern cultivar derived from interspecific hybridization between the domesticated species (Saccharum officinarum) and the wild species (Saccharum spontaneum). In contrast to the existing single haplotype ('monoploid') representation of R570, our 8.7 billion base assembly contains a complete representation of unique DNA sequences across the approximately 12 chromosome copies in this polyploid genome. Using this highly contiguous genome assembly, we filled a previously unsized gap within an R570 physical genetic map to describe the likely causal genes underlying the single-copy Bru1 brown rust resistance locus. This polyploid genome assembly with fine-grain descriptions of genome architecture and molecular targets for biotechnology will help accelerate molecular and transgenic breeding and adaptation of sugarcane to future environmental conditions.
Collapse
Affiliation(s)
- A L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - O Garsmeur
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - J T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Shengquiang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - J Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - C B Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - N Piperidis
- Sugar Research Australia, Te Kowai, Queensland, Australia
| | - N Pompidor
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - V Llaca
- Corteva Agriscience, Johnston, IA, USA
| | - C J Metcalfe
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Queensland, Australia
| | - J Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - P Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - J W Carlson
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J Y Hoarau
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- ERCANE, Sainte-Clotilde, La Réunion, France
| | - C Hervouet
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - C Zini
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - A Dievart
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - A Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - M Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - L B Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - J Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - K Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Tejomurthula
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Rajasekar
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - R Suchecki
- CSIRO Agriculture and Food, Urrbrae, South Australia, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - G May
- Corteva Agriscience, Johnston, IA, USA
| | | | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - K Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, Queensland, Australia
| | - J Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - K S Aitken
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Queensland, Australia
| | - J Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - A D'Hont
- CIRAD, UMR AGAP Institut, Montpellier, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
Dijoux J, Rio S, Hervouet C, Garsmeur O, Barau L, Dumont T, Rott P, D'Hont A, Hoarau JY. Unveiling the predominance of Saccharum spontaneum alleles for resistance to orange rust in sugarcane using genome-wide association. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:81. [PMID: 38478168 DOI: 10.1007/s00122-024-04583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024]
Abstract
KEY MESSAGE Six QTLs of resistance to sugarcane orange rust were identified in modern interspecific hybrids by GWAS. For five of them, the resistance alleles originated from S. spontaneum. Altogether, they efficiently predict disease resistance. Sugarcane orange rust (SOR) is a threatening emerging disease in many sugarcane industries worldwide. Improving the genetic resistance of commercial cultivars remains the most promising solution to control this disease. In this study, an association panel of 568 modern interspecific sugarcane hybrids (Saccharum officinarum x S. spontaneum) from Réunion's breeding program was evaluated for its resistance to SOR under natural conditions of infection. Two genome-wide association studies (GWAS) were conducted between disease reactions and 183,842 single nucleotide polymorphism (SNP) markers obtained by targeted genotyping-by-sequencing. Five resistance quantitative trait loci (QTLs), named Oru1, Oru2, Oru3, Oru4 and Oru5, were identified using a single-locus GWAS (SL-GWAS). These five QTLs all originated from the species S. spontaneum. A multi-locus GWAS (ML-GWAS) uncovered an additional but less significant resistance QTL named Oru6, which originated from S. officinarum. All six QTLs had a moderate to major phenotypic effect on disease resistance. Prediction accuracy estimated with linear regression models based on each of the five QTLs identified by SL-GWAS was between 0.16-0.41. Altogether, these five QTLs provided a relatively high prediction accuracy of 0.60. In comparison, accuracies obtained with six genome-wide prediction models (i.e., GBLUP, Bayes-A, Bayes-B, Bayes-C, Bayesian Lasso and RKHS) reached only 0.65. The good prediction accuracy of disease resistance provided by the QTLs and the predominant S. spontaneum origin of their resistance alleles pave the way for effective marker-assisted breeding strategies.
Collapse
Affiliation(s)
- Jordan Dijoux
- eRcane, 29 rue d'Emmerez de Charmoy, 97490, Sainte-Clotilde, La Réunion, France
- CIRAD, UMR PHIM, F-34398, Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Simon Rio
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Olivier Garsmeur
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Laurent Barau
- eRcane, 29 rue d'Emmerez de Charmoy, 97490, Sainte-Clotilde, La Réunion, France
| | - Thomas Dumont
- eRcane, 29 rue d'Emmerez de Charmoy, 97490, Sainte-Clotilde, La Réunion, France
| | - Philippe Rott
- CIRAD, UMR PHIM, F-34398, Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-Yves Hoarau
- eRcane, 29 rue d'Emmerez de Charmoy, 97490, Sainte-Clotilde, La Réunion, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
- CIRAD, UMR AGAP Institut, F-97494, Sainte-Clotilde, La Réunion, France.
| |
Collapse
|
8
|
Lu G, Liu P, Wu Q, Zhang S, Zhao P, Zhang Y, Que Y. Sugarcane breeding: a fantastic past and promising future driven by technology and methods. FRONTIERS IN PLANT SCIENCE 2024; 15:1375934. [PMID: 38525140 PMCID: PMC10957636 DOI: 10.3389/fpls.2024.1375934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Sugarcane is the most important sugar and energy crop in the world. During sugarcane breeding, technology is the requirement and methods are the means. As we know, seed is the cornerstone of the development of the sugarcane industry. Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses. Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic biology, combined with information technology such as remote sensing and deep learning. In view of this, we focus on sugarcane breeding from the perspective of technology and methods, reviewing the main history, pointing out the current status and challenges, and providing a reasonable outlook on the prospects of smart breeding.
Collapse
Affiliation(s)
- Guilong Lu
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Purui Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qibin Wu
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuzhen Zhang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
| | - Peifang Zhao
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
| | - Yuebin Zhang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
| | - Youxiong Que
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Yunan Academy of Agricultural Sciences, Sanya/Kaiyuan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Laksana C, Sophiphun O, Chanprame S. Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111987. [PMID: 38220093 DOI: 10.1016/j.plantsci.2024.111987] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Genetic engineering of plant cell walls is limited for reducing lignocellulose recalcitrance, so mild and/or green-like pretreatment is still required for sequential enzymatic saccharification. Here, we report a method to reduce lignin content in sugarcane stalks using the CRISPR/Cas 9 technique. Three target sequences of SoLIM were designed and fused to pRGEB32. The cassette constructs were introduced into sugarcane calli cv. KK3 through Agrobacterium-mediated transformation. We produced one base substitution and one insertion line for the 1st target site; two insertions, one deletion, and one base substitution for the 2nd target site; and one base substitution and insertion for the 3rd target site. qRT-PCR analysis of SoLIM, SoPAL, SoC4H, and SoCAD showeded that downregulation of SoLIM by single nucleotide insertions or deletions reduced the expression of SoPAL, SoC4H, and SoCAD. Consequently, the edited lines contained 9.74 to 51.46% less lignin content compared to that in the wild-type plants. The syringyl/guaiacyl (S/G) ratio of the edited lines ranged between 0.23 and 0.49, while the wild-type was 0.22. The histochemical evaluation and scanning electron microscopy of the cell walls supported this observation. A low lignin content sugarcane will provide a better feedstock for second-generation bioethanol production.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
10
|
Mohanan MV, Thelakat Sasikumar SP, Jayanarayanan AN, Selvarajan D, Ramanathan V, Shivalingamurthy SG, Raju G, Govind H, Chinnaswamy A. Transgenic sugarcane overexpressing Glyoxalase III improved germination and biomass production at formative stage under salinity and water-deficit stress conditions. 3 Biotech 2024; 14:52. [PMID: 38274846 PMCID: PMC10805895 DOI: 10.1007/s13205-023-03856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
The glyoxalase system, involving Glyoxalase I (GlyI) and Glyoxalase II (Gly II), plays a vital role in abiotic stress tolerance in plants. A novel enzyme Glyoxalase III (Gly III) was found recently from bacteria, yeast, and plant species. This enzyme provides a new way to detoxify Methylglyoxal (MG), a cytotoxic α-oxoaldehyde, which, in excess, can cause complete cell destruction by forming Reactive Oxygen Species (ROS) and Advanced Glycation End products (AGEs) or DNA/RNA mutation. In this background, the current study examined sugarcane transgenic events that exhibit an increase in expression of EaGly III, to assess their performance in terms of germination and biomass production during formative stage under stress conditions. Southern blot analysis outcomes confirmed the integration of transgene in the transgenic plants. The results from quantitative RT-PCR analyses confirmed high expression levels of EaGly III in transgenic events compared to wild type (WT) under salinity (100 and 200 mM NaCl) and drought (withholding watering) conditions. Transgenic events exhibited enhanced biomass productivity ranged between 0.141 Kg/pot and 0.395 Kg/pot under 200 mM salinity and 0.262 Kg/pot and 0.666 Kg/pot under drought stress. Further, transgenic events observed significantly higher germination rates under salinity and drought conditions compared to that of WT. Subcellular localization prediction by EaGlyIII-GFP fusion expression in sugarcane callus showed that it is distributed across the cytoplasm, thus indicating its widespread activity within the cell. These results strongly suggest that enhancing EaGly III activity is a useful strategy to improve the salinity and drought-tolerance in sugarcane as well as other crops.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | | | - Gomathi Raju
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| |
Collapse
|
11
|
Park S, Zhang D, Ali GS. Assessing the genetic integrity of sugarcane germplasm in the USDA-ARS National Plant Germplasm System collection using single-dose SNP markers. FRONTIERS IN PLANT SCIENCE 2024; 14:1337736. [PMID: 38239228 PMCID: PMC10794611 DOI: 10.3389/fpls.2023.1337736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
The World Collection of Sugarcane and Related Grasses, maintained at the USDA-ARS in Miami, FL, is one of the largest sugarcane germplasm repositories in the world. However, the genetic integrity of the Saccharum spp. germplasm in this collection has not been fully analyzed. In this study, we employed a single-dose SNP panel to genotype 901 sugarcane accessions, representing six Saccharum species and various hybrids. Our analysis uncovered a high rate of clone mislabeling in the collection. Specifically, we identified 86 groups of duplicates, characterized by identical SNP genotypes, which encompassed 211 accessions (23% of the total clones), while 135 groups, constituting 471 clones (52% of the total), exhibited near-identical genotypes. In addition, twenty-seven homonymous groups were detected, which shared the same clone name but differed in SNP genotypes. Hierarchical analysis of population structure partitioned the Saccharum germplasm into five clusters, corresponding to S. barberi, S. sinense, S. officinarum, S. spontaneum and S. robustum/S. edule. An assignment test, based on the five Saccharum species, enabled correcting 141 instances of mislabeled species memberships and inaccuracies. Moreover, we clarified the species membership and parentage of 298 clones that had ambiguous passport records (e.g., 'Saccharum spp', 'unknown', and 'hybrid'). Population structure and genetic diversity in these five species were further supported by Principal Coordinate Analysis and neighbor-joining clustering analysis. Analysis of Molecular Variance revealed that within-species genetic variations accounted for 85% of the total molecular variance, with the remaining 15% attributed to among-species genetic variations. The single-dose SNP markers developed in this study offer a robust tool for characterizing sugarcane germplasm worldwide. These findings have important implications for sugarcane genebank management, germplasm exchange, and crop genetic improvement.
Collapse
Affiliation(s)
- Sunchung Park
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States
| | - Gul Shad Ali
- Subtropical Horticulture Research Station, United States Department of Agriculture, Agriculture Research Service, Miami, FL, United States
| |
Collapse
|
12
|
Chai J, Xue L, Lei J, Yao W, Zhang M, Deng Z, Yu F. All nonhomologous chromosomes and rearrangements in Saccharum officinarum × Saccharum spontaneum allopolyploids identified by oligo-based painting. FRONTIERS IN PLANT SCIENCE 2023; 14:1176914. [PMID: 37868320 PMCID: PMC10588481 DOI: 10.3389/fpls.2023.1176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Modern sugarcane cultivars (Saccharum spp., 2n = 100~120) are complex polyploids primarily derived from interspecific hybridization between S. officinarum and S. spontaneum. Nobilization is the theory of utilizing wild germplasm in sugarcane breeding, and is the foundation for utilizing S. spontaneum for stress resistance. However, the exact chromosomal transmission remains elusive due to a lack of chromosome-specific markers. Here, we applied chromosome-specific oligonucleotide (oligo)-based probes for identifying chromosomes 1-10 of the F1 hybrids between S. officinarum and S. spontaneum. Then, S. spontaneum-specific repetitive DNA probes were used to distinguish S. spontaneum in these hybrids. This oligo- fluorescence in situ hybridization (FISH) system proved to be an efficient tool for revealing individual chromosomal inheritance during nobilization. We discovered the complete doubling of S. officinarum-derived chromosomes in most F1 hybrids. Notably, we also found defective S. officinarum-derived chromosome doubling in the F1 hybrid Yacheng75-4191, which exhibited 1.5n transmission for all nonhomologous chromosomes. Altogether, these results highlight the presence of variable chromosome transmission in nobilization between S. officinarum and S. spontaneum, including 1.5n + n and 2n + n. These findings provide robust chromosome markers for in-depth studies into the molecular mechanism underlying chromosome doubling during the nobilization, as well as tracing chromosomal inheritance for sugarcane breeding.
Collapse
Affiliation(s)
- Jin Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Jiawei Lei
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zuhu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Surya Krishna S, Viswanathan R, Valarmathi R, Lakshmi K, Appunu C. CRISPR/Cas-Mediated Genome Editing Approach for Improving Virus Resistance in Sugarcane. SUGAR TECH 2023; 25:735-750. [DOI: 10.1007/s12355-023-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 01/11/2025]
|
14
|
Pašakinskienė I. Festuca pratensis-like Subgenome Reassembly from a "Chromosomal Cocktail" in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses. PLANTS (BASEL, SWITZERLAND) 2023; 12:984. [PMID: 36903845 PMCID: PMC10005718 DOI: 10.3390/plants12050984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Festuca and Lolium grass species are used for Festulolium hybrid variety production where they display trait complementarities. However, at the genome level, they show antagonisms and a broad scale of rearrangements. A rare case of an unstable hybrid, a donor plant manifesting pronounced variability of its clonal parts, was discovered in the F2 group of 682 plants of Lolium multiflorum × Festuca arundinacea (2n = 6x = 42). Five phenotypically distinct clonal plants were determined to be diploids, having only 14 chromosomes out of the 42 in the donor. GISH defined the diploids as having the basic genome from F. pratensis (2n = 2x = 14), one of the progenitors of F. arundinacea (2n = 6x = 42), with minor components from L. multiflorum and another subgenome, F. glaucescens. The 45S rDNA position on two chromosomes also corresponded to the variant of F. pratensis in the F. arundinacea parent. In the highly unbalanced donor genome, F. pratensis was the least represented, but the most involved in numerous recombinant chromosomes. Specifically, FISH highlighted 45S rDNA-containing clusters involved in the formation of unusual chromosomal associations in the donor plant, suggesting their active role in karyotype realignment. The results of this study show that F. pratensis chromosomes have a particular fundamental drive for restructuring, which prompts the disassembly/reassembly processes. The finding of F. pratensis "escaping" and rebuilding itself from the chaotic "chromosomal cocktail" of the donor plant points to a rare chromoanagenesis event and extends the view of plant genome plasticity.
Collapse
Affiliation(s)
- Izolda Pašakinskienė
- Life Sciences Centre, Vilnius University, Saulėtekio 7, 10221 Vilnius, Lithuania;
- Botanical Garden of Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| |
Collapse
|
15
|
Global Responses of Autopolyploid Sugarcane Badila ( Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling. Int J Mol Sci 2023; 24:ijms24043856. [PMID: 36835268 PMCID: PMC9966050 DOI: 10.3390/ijms24043856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Sugarcane (Saccharum spp. hybrid) is frequently affected by seasonal drought, which causes substantial declines in quality and yield. To understand the drought resistance mechanisms of S. officinarum, the main species of modern sugarcane, at a molecular level, we carried out a comparative analysis of transcriptome and metabolome profiling of the sugarcane variety Badila under drought stress (DS). Compared with control group (CG) plants, plants exposed to DS had 13,744 (6663 up-regulated and 7081 down-regulated) differentially expressed genes (DEGs). GO and KEGG analysis showed that the DEGs were enriched in photosynthesis-related pathways and most DEGs had down-regulated expression. Moreover, the chlorophyll content, photosynthesis (Photo), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) were sharply decreased under DS. These results indicate that DS has a significant negative influence on photosynthesis in sugarcane. Metabolome analysis identified 166 (37 down-regulated and 129 up-regulated) significantly regulated metabolites (SRMs). Over 50% of SRMs were alkaloids, amino acids and their derivatives, and lipids. The five most significantly enriched KEGG pathways among SRMs were Aminoacyl-tRNA biosynthesis, 2-Oxocarboxylic acid metabolism, Biosynthesis of amino acids, Phenylalanine metabolism, and Arginine and proline metabolism (p < 0.05). Comparing CG with DS for transcriptome and metabolome profiling (T_CG/DS and M_CG/DS, respectively), we found three of the same KEGG-enriched pathways, namely Biosynthesis of amino acids, Phenylalanine metabolism and Arginine and proline metabolism. The potential importance of Phenylalanine metabolism and Arginine and proline metabolism was further analyzed for response to DS in sugarcane. Seven SRMs (five up-regulated and two down-regulated) and 60 DEGs (17 up-regulated and 43 down-regulated) were enriched in Phenylalanine metabolism under DS, of which novel.31261, Sspon.04G0008060-1A, Sspon.04G0008060-2B and Sspon.04G0008060-3C were significantly correlated with 7 SRMs. In Arginine and proline metabolism, eight SRMs (seven up-regulated and one down-regulated) and 63 DEGs (32 up-regulated and 31 down-regulated) were enriched, of which Sspon.01G0026110-1A (OAT) and Sspon.03G0002750-3D (P5CS) were strongly associated with proline (r > 0.99). These findings present the dynamic changes and possible molecular mechanisms of Phenylalanine metabolism as well as Arginine and proline metabolism under DS and provide a foundation for future research and sugarcane improvement.
Collapse
|
16
|
Cheng W, Wang Z, Xu F, Lu G, Su Y, Wu Q, Wang T, Que Y, Xu L. Screening of Candidate Genes Associated with Brown Stripe Resistance in Sugarcane via BSR-seq Analysis. Int J Mol Sci 2022; 23:15500. [PMID: 36555141 PMCID: PMC9778799 DOI: 10.3390/ijms232415500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Sugarcane brown stripe (SBS), caused by the fungal pathogen Helminthosporium stenospilum, is one of the most serious threats to sugarcane production. However, its outbreaks and epidemics require suitable climatic conditions, resulting in the inefficient improvement of the SBS resistance by phenotype selection. The sugarcane F1 population of SBS-resistant YT93-159 × SBS-susceptible ROC22 was used for constructing the bulks. Bulked segregant RNA-seq (BSR-seq) was then performed on the parents YT93-159 (T01) and ROC22 (T02), and the opposite bulks of 30 SBS-susceptible individuals mixed bulk (T03) and 30 SBS-resistant individuals mixed bulk (T04) collected from 287 F1 individuals. A total of 170.00 Gb of clean data containing 297,921 SNPs and 70,426 genes were obtained. Differentially expressed genes (DEGs) analysis suggested that 7787 and 5911 DEGs were identified in the parents (T01 vs. T02) and two mixed bulks (T03 vs. T04), respectively. In addition, 25,363 high-quality and credible SNPs were obtained using the genome analysis toolkit GATK for SNP calling. Subsequently, six candidate regions with a total length of 8.72 Mb, which were located in the chromosomes 4B and 7C of sugarcane wild species Saccharum spontaneum, were identified, and 279 genes associated with SBS-resistance were annotated by ED algorithm and ΔSNP-index. Furthermore, the expression profiles of candidate genes were verified by quantitative real-time PCR (qRT-PCR) analysis, and the results showed that eight genes (LRR-RLK, DHAR1, WRKY7, RLK1, BLH4, AK3, CRK34, and NDA2) and seven genes (WRKY31, CIPK2, CKA1, CDPK6, PFK4, CBL2, and PR2) of the 20 tested genes were significantly up-regulated in YT93-159 and ROC22, respectively. Finally, a potential molecular mechanism of sugarcane response to H. stenospilum infection is illustrate that the activations of ROS signaling, MAPK cascade signaling, Ca2+ signaling, ABA signaling, and the ASA-GSH cycle jointly promote the SBS resistance in sugarcane. This study provides abundant gene resources for the SBS resistance breeding in sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youxiong Que
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Wang D, Qin L, Wu M, Zou W, Zang S, Zhao Z, Lin P, Guo J, Wang H, Que Y. Identification and characterization of WAK gene family in Saccharum and the negative roles of ScWAK1 under the pathogen stress. Int J Biol Macromol 2022; 224:1-19. [PMID: 36481328 DOI: 10.1016/j.ijbiomac.2022.11.300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Wall-associated kinase (WAK) is widely involved in signal transduction, reproductive growth, responses to pathogen infection and metal ion stress in plants. In this study, 19, 12, and 37 SsWAK genes were identified in Saccharum spontaneum, Saccharum hybrid and Sorghum bicolor, respectively. Phylogenetic tree showed that they could be divided into three groups. These WAK genes contained multiple cis-acting elements related to stress, growth and hormone response. RNA-seq analysis demonstrated that SsWAK genes were constitutively expressed in different sugarcane tissues and involved in response to smut pathogen (Sporisorium scitamineum) stress. Additionally, ScWAK1 (GenBank Accession No. OP479864), was then isolated from sugarcane cultivar ROC22. It was highly expressed in leaves and roots and its expression could be induced under SA and MeJA stress. Besides, ScWAK1 was significantly downregulated in both smut-resistant and susceptible sugarcane cultivars in response to S. scitamineum infection. ScWAK1 was a membrane protein without self-activating activity. Furthermore, transient expression of ScWAK1 in Nicotiana benthamiana enhanced the susceptibility of tobacco to the inoculation of Ralstonia solanacearum and Fusarium solani var. coeruleum, suggesting its negative role in disease resistance. The present study reveals the origin, distribution and evolution of WAK gene family and provides potential gene resources for sugarcane molecular breeding.
Collapse
Affiliation(s)
- Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liqian Qin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mingxing Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
18
|
Shearman JR, Pootakham W, Sonthirod C, Naktang C, Yoocha T, Sangsrakru D, Jomchai N, Tongsima S, Piriyapongsa J, Ngamphiw C, Wanasen N, Ukoskit K, Punpee P, Klomsa-ard P, Sriroth K, Zhang J, Zhang X, Ming R, Tragoonrung S, Tangphatsornruang S. A draft chromosome-scale genome assembly of a commercial sugarcane. Sci Rep 2022; 12:20474. [PMID: 36443360 PMCID: PMC9705387 DOI: 10.1038/s41598-022-24823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Sugarcane accounts for a large portion of the worlds sugar production. Modern commercial cultivars are complex hybrids of S. officinarum, S. spontaneum, and several other Saccharum species, resulting in an auto-allopolyploid with 8-12 copies of each chromosome. The current genome assembly gold standard is to generate a long read assembly followed by chromatin conformation capture sequencing to scaffold. We used the PacBio RSII and chromatin conformation capture sequencing to sequence and assemble the genome of a South East Asian commercial sugarcane cultivar, known as Khon Kaen 3. The Khon Kaen 3 genome assembled into 104,477 contigs totalling 7 Gb, which scaffolded into 56 pseudochromosomes containing 5.2 Gb of sequence. Genome annotation produced 242,406 genes from 30,927 orthogroups. Aligning the Khon Kaen 3 genome sequence to S. officinarum and S. spontaneum revealed a high level of apparent recombination, indicating a chimeric assembly. This assembly error is explained by high nucleotide identity between S. officinarum and S. spontaneum, where 91.8% of S. spontaneum aligns to S. officinarum at 94% identity. Thus, the subgenomes of commercial sugarcane are so similar that using short reads to correct long PacBio reads produced chimeric long reads. Future attempts to sequence sugarcane must take this information into account.
Collapse
Affiliation(s)
- Jeremy R. Shearman
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wirulda Pootakham
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chutima Sonthirod
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thippawan Yoocha
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nukoon Jomchai
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sissades Tongsima
- grid.425537.20000 0001 2191 4408National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- grid.425537.20000 0001 2191 4408National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- grid.425537.20000 0001 2191 4408National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nanchaya Wanasen
- grid.425537.20000 0001 2191 4408National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kittipat Ukoskit
- grid.412434.40000 0004 1937 1127Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani Thailand
| | - Prapat Punpee
- grid.425537.20000 0001 2191 4408National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand ,Crop Production, Mitr Phol Innovation and Research Center, Pathum Thani, Thailand
| | - Peeraya Klomsa-ard
- Crop Production, Mitr Phol Innovation and Research Center, Pathum Thani, Thailand
| | - Klanarong Sriroth
- Crop Production, Mitr Phol Innovation and Research Center, Pathum Thani, Thailand
| | - Jisen Zhang
- grid.256111.00000 0004 1760 2876Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xingtan Zhang
- grid.256111.00000 0004 1760 2876Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Ray Ming
- grid.256111.00000 0004 1760 2876Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Somvong Tragoonrung
- grid.425537.20000 0001 2191 4408National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
19
|
Chai Z, Fang J, Huang C, Huang R, Tan X, Chen B, Yao W, Zhang M. A novel transcription factor, ScAIL1, modulates plant defense responses by targeting DELLA and regulating gibberellin and jasmonic acid signaling in sugarcane. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6727-6743. [PMID: 35986920 DOI: 10.1093/jxb/erac339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
DELLA proteins are important repressors of gibberellin signaling, regulating plant development and defense responses through crosstalk with various phytohormones. Sugarcane ScGAI encodes a DELLA protein that regulates culm development. However, it is unclear which transcription factors mediate the transcription of ScGAI. Here, we identified two different ScGAI promoter sequences that cooperatively regulate ScGAI transcription. We also identified a nuclear-localized AP2 family transcription factor, ScAIL1, which inhibits the transcription of ScGAI by directly binding to two ScGAI promoters. ScAIL1 was expressed in all sugarcane tissues tested and was induced by gibberellin and various stressors, including NaCl, polyethylene glycol, and pathogenic fungi and bacteria. Overexpression of ScAIL1 in rice significantly improved resistance to bacterial blight and rice blast, while reducing growth and development. In addition, several genes associated with stress responses were significantly up-regulated in transgenic rice overexpressing ScAIL1. Endogenous phytohormone content and expression analysis further revealed that ScAIL1-overexpressing lines improved resistance to bacterial blight and rice blast instead of promoting growth, and that this response was associated with increased jasmonic acid synthesis and gibberellin inactivation. These results provide molecular evidence that the role of ScAIL1 in the plant defense response is related to jasmonic acid and gibberellin signaling.
Collapse
Affiliation(s)
- Zhe Chai
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
- College of Agricultural, Guangxi University, Nanning 530005, China
| | - Jinlan Fang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
- College of Agricultural, Guangxi University, Nanning 530005, China
| | - Cuilin Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Run Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Xuan Tan
- College of Agricultural, Guangxi University, Nanning 530005, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| |
Collapse
|
20
|
Akagi T, Jung K, Masuda K, Shimizu KK. Polyploidy before and after domestication of crop species. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102255. [PMID: 35870416 DOI: 10.1016/j.pbi.2022.102255] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in the genomics of polyploid species answer some of the long-standing questions about the role of polyploidy in crop species. Here, we summarize the current literature to reexamine scenarios in which polyploidy played a role both before and after domestication. The prevalence of polyploidy can help to explain environmental robustness in agroecosystems. This review also clarifies the molecular basis of some agriculturally advantageous traits of polyploid crops, including yield increments in polyploid cotton via subfunctionalization, modification of a separated sexuality to selfing in polyploid persimmon via neofunctionalization, and transition to a selfing system via nonfunctionalization combined with epistatic interaction between duplicated S-loci. The rapid progress in genomics and genetics is discussed along with how this will facilitate functional studies of understudied polyploid crop species.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Katharina Jung
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
21
|
High-efficiency organogenesis and evaluation of the regenerated plants by flow cytometry of a broad range of Saccharum spp. hybrids. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Soares NR, Correa CTR, da Silva JC, da Silva Negreiros JR, Techio VH, Torres GA. Comparative cytogenetics of three economically important Piper L. species from the Brazilian Amazon. PROTOPLASMA 2022; 259:1099-1108. [PMID: 34762169 DOI: 10.1007/s00709-021-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The species Piper hispidinervum, Piper aduncum, and Piper affinis hispidinervum have essential oils with high levels of safrole, dillapiole, and sarisan, respectively. Safrole is important for pharmaceutical and chemical industries, while dillapiole and sarisan are promising compounds to control insects and fungi. These species are very similar morphologically and their taxonomy is controversial. Divergent hypotheses consider P. aduncum and P. hispidinervum either as a single species or as distinct taxa, while P. affinis hispidinervum is inferred to be a natural hybrid or a chemotype of P. hispidinervum. Delimiting the taxonomic boundaries would be helpful for germplasm conservation and breeding programs. This study aimed to undertake a detailed analysis of P. aduncum, P. hispidinervum, and P. affinis hispidinervum karyotype and rDNA sites. Genomic in situ hybridization (GISH) was used to establish genomic homology among species and to test the natural hybridization hypothesis for origin of P. affinis hispidinervum. Karyotype traits were similar for all three species: 2n = 26 small chromosomes, predominantly metacentric. All three species exhibited CMA+ bands on the secondary constriction of chromosome pair 4. A size-heteromorphic 35S rDNA site was co-localized with the CMA+ band. A 5S rDNA site was located in the proximal region of chromosome pair 7. The patterns of genomic hybridization revealed that the repetitive DNA fraction of the species is highly similar in terms of proportion of genome, sequence type, and distribution. Our findings did not allow us to differentiate the three species and point to the importance of deeper genomic studies to elucidate the taxonomic controversy.
Collapse
Affiliation(s)
- Nina Reis Soares
- Departamento de Biologia, Instituto de Ciências Naturais, Universidade Federal de Lavas, Lavras, Minas Gerais, Brazil
| | - Caio Túlio Rodrigues Correa
- Departamento de Biologia, Instituto de Ciências Naturais, Universidade Federal de Lavas, Lavras, Minas Gerais, Brazil
| | - Jhonata Costa da Silva
- Departamento de Biologia, Instituto de Ciências Naturais, Universidade Federal de Lavas, Lavras, Minas Gerais, Brazil
| | | | - Vânia Helena Techio
- Departamento de Biologia, Instituto de Ciências Naturais, Universidade Federal de Lavas, Lavras, Minas Gerais, Brazil
| | - Giovana Augusta Torres
- Departamento de Biologia, Instituto de Ciências Naturais, Universidade Federal de Lavas, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Correr FH, Furtado A, Franco Garcia AA, Henry RJ, Rodrigues Alves Margarido G. Allele expression biases in mixed-ploid sugarcane accessions. Sci Rep 2022; 12:8778. [PMID: 35610293 PMCID: PMC9130122 DOI: 10.1038/s41598-022-12725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Allele-specific expression (ASE) represents differences in the magnitude of expression between alleles of the same gene. This is not straightforward for polyploids, especially autopolyploids, as knowledge about the dose of each allele is required for accurate estimation of ASE. This is the case for the genomically complex Saccharum species, characterized by high levels of ploidy and aneuploidy. We used a Beta-Binomial model to test for allelic imbalance in Saccharum, with adaptations for mixed-ploid organisms. The hierarchical Beta-Binomial model was used to test if allele expression followed the expectation based on genomic allele dosage. The highest frequencies of ASE occurred in sugarcane hybrids, suggesting a possible influence of interspecific hybridization in these genotypes. For all accessions, genes showing ASE (ASEGs) were less frequent than those with balanced allelic expression. These genes were related to a broad range of processes, mostly associated with general metabolism, organelles, responses to stress and responses to stimuli. In addition, the frequency of ASEGs in high-level functional terms was similar among the genotypes, with a few genes associated with more specific biological processes. We hypothesize that ASE in Saccharum is largely a genotype-specific phenomenon, as a large number of ASEGs were exclusive to individual accessions.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13418-900, Brazil.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Antonio Augusto Franco Garcia
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13418-900, Brazil
| | - Robert James Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Gabriel Rodrigues Alves Margarido
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13418-900, Brazil. .,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
24
|
de Oliveira LP, Navarro BV, de Jesus Pereira JP, Lopes AR, Martins MCM, Riaño-Pachón DM, Buckeridge MS. Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane. Sci Rep 2022; 12:7516. [PMID: 35525890 PMCID: PMC9079074 DOI: 10.1038/s41598-022-11508-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Trehalose-6-phosphate (T6P) is an intermediate of trehalose biosynthesis that plays an essential role in plant metabolism and development. Here, we comprehensively analyzed sequences from enzymes of trehalose metabolism in sugarcane, one of the main crops used for bioenergy production. We identified protein domains, phylogeny, and in silico expression levels for all classes of enzymes. However, post-translational modifications and residues involved in catalysis and substrate binding were analyzed only in trehalose-6-phosphate synthase (TPS) sequences. We retrieved 71 putative full-length TPS, 93 trehalose-6-phosphate phosphatase (TPP), and 3 trehalase (TRE) of sugarcane, showing all their conserved domains, respectively. Putative TPS (Classes I and II) and TPP sugarcane sequences were categorized into well-known groups reported in the literature. We measured the expression levels of the sequences from one sugarcane leaf transcriptomic dataset. Furthermore, TPS Class I has specific N-glycosylation sites inserted in conserved motifs and carries catalytic and binding residues in its TPS domain. Some of these residues are mutated in TPS Class II members, which implies loss of enzyme activity. Our approach retrieved many homo(eo)logous sequences for genes involved in trehalose metabolism, paving the way to discover the role of T6P signaling in sugarcane.
Collapse
Affiliation(s)
- Lauana Pereira de Oliveira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | - Bruno Viana Navarro
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | - João Pedro de Jesus Pereira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | | | - Marina C M Martins
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia Computacional, Centro de Energia Nuclear na Agricultura, Evolutiva e de Sistemas, Universidade de São Paulo, São Paulo, Brazil. .,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil.
| | - Marcos Silveira Buckeridge
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil. .,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil.
| |
Collapse
|
25
|
Metcalfe CJ, Li J, Zheng B, Stiller J, Healey A, Piperidis N, Aitken KS. Isolation and sequencing of a single copy of an introgressed chromosome from a complex genome for gene and SNP identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1279-1292. [PMID: 35275251 DOI: 10.1007/s00122-022-04030-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
This manuscript describes the identification, isolation and sequencing of a single chromosome containing high value resistance genes from a complex polyploid where sequencing the whole genome is too costly. The large complex genomes of many crops constrain the use of new technologies for genome-assisted selection and genetic improvement. One method to simplify a genome is to break it into individual chromosomes by flow cytometry; however, in many crop species most chromosomes cannot be isolated individually. Flow sorting of a single copy of a chromosome has been developed in wheat, and here we demonstrate its use to identify markers of interest in an Erianthus/Sacchurum hybrid. Erianthus/Saccharum hybrids are of interest because Erianthus is known to be highly resistant to soil borne diseases which cause extensive sugarcane yield losses in Australia. Sugarcane (Saccharum) cultivars are autopolyploids with a highly complex genome and over 100 chromosomes. Flow cytometry for sugarcane, as in most crops, does not resolve individual chromosomes to a karyotype peak for sorting. To isolate a single chromosome, we used genomic in situ hybridization (GISH) to identify the flow karyotype region containing the Erianthus chromosomes, flow sorted single chromosomes from this region, PCR screened for the Erianthus chromosomes and sequenced them. One Erianthus chromosome amplified and sequenced well, and from this data we could identify 57 resistant type genes and SNPs in nearly half of these genes. We developed KASP SNP assays and demonstrated that the identified SNP markers segregated as expected in a small introgression population. The pipeline we developed here to flow sort and sequence single chromosomes could be used in any crop with a large complex genome to rapidly discover and develop markers to important loci.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jingchuan Li
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Adam Healey
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | | | - Karen S Aitken
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
26
|
Margarido GRA, Correr FH, Furtado A, Botha FC, Henry RJ. Limited allele-specific gene expression in highly polyploid sugarcane. Genome Res 2022; 32:297-308. [PMID: 34949669 PMCID: PMC8805727 DOI: 10.1101/gr.275904.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/19/2021] [Indexed: 12/04/2022]
Abstract
Polyploidy is widespread in plants, allowing the different copies of genes to be expressed differently in a tissue-specific or developmentally specific way. This allele-specific expression (ASE) has been widely reported, but the proportion and nature of genes showing this characteristic have not been well defined. We now report an analysis of the frequency and patterns of ASE at the whole-genome level in the highly polyploid sugarcane genome. Very high depth whole-genome sequencing and RNA sequencing revealed strong correlations between allelic proportions in the genome and in expressed sequences. This level of sequencing allowed discrimination of each of the possible allele doses in this 12-ploid genome. Most genes were expressed in direct proportion to the frequency of the allele in the genome with examples of polymorphisms being found with every possible discrete level of dose from 1:11 for single-copy alleles to 12:0 for monomorphic sites. The rarer cases of ASE were more frequent in the expression of defense-response genes, as well as in some processes related to the biosynthesis of cell walls. ASE was more common in genes with variants that resulted in significant disruption of function. The low level of ASE may reflect the recent origin of polyploid hybrid sugarcane. Much of the ASE present can be attributed to strong selection for resistance to diseases in both nature and domestication.
Collapse
Affiliation(s)
- Gabriel Rodrigues Alves Margarido
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba 13418-900, Brazil
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Fernando Henrique Correr
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba 13418-900, Brazil
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Frederik C Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Robert James Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
27
|
A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Chromosome Res 2022; 30:29-41. [PMID: 34988746 DOI: 10.1007/s10577-021-09680-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023]
Abstract
Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.
Collapse
|
28
|
Parameswari B, Nithya K, Kumar S, Holkar SK, Chabbra ML, Kumar P, Viswanathan R. Genome wide association studies in sugarcane host pathogen system for disease resistance: an update on the current status of research. INDIAN PHYTOPATHOLOGY 2021; 74:865-874. [DOI: 10.1007/s42360-021-00323-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
|
29
|
Yadav S, Ross EM, Aitken KS, Hickey LT, Powell O, Wei X, Voss-Fels KP, Hayes BJ. A linkage disequilibrium-based approach to position unmapped SNPs in crop species. BMC Genomics 2021; 22:773. [PMID: 34715779 PMCID: PMC8555328 DOI: 10.1186/s12864-021-08116-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-density SNP arrays are now available for a wide range of crop species. Despite the development of many tools for generating genetic maps, the genome position of many SNPs from these arrays is unknown. Here we propose a linkage disequilibrium (LD)-based algorithm to allocate unassigned SNPs to chromosome regions from sparse genetic maps. This algorithm was tested on sugarcane, wheat, and barley data sets. We calculated the algorithm's efficiency by masking SNPs with known locations, then assigning their position to the map with the algorithm, and finally comparing the assigned and true positions. RESULTS In the 20-fold cross-validation, the mean proportion of masked mapped SNPs that were placed by the algorithm to a chromosome was 89.53, 94.25, and 97.23% for sugarcane, wheat, and barley, respectively. Of the markers that were placed in the genome, 98.73, 96.45 and 98.53% of the SNPs were positioned on the correct chromosome. The mean correlations between known and new estimated SNP positions were 0.97, 0.98, and 0.97 for sugarcane, wheat, and barley. The LD-based algorithm was used to assign 5920 out of 21,251 unpositioned markers to the current Q208 sugarcane genetic map, representing the highest density genetic map for this species to date. CONCLUSIONS Our LD-based approach can be used to accurately assign unpositioned SNPs to existing genetic maps, improving genome-wide association studies and genomic prediction in crop species with fragmented and incomplete genome assemblies. This approach will facilitate genomic-assisted breeding for many orphan crops that lack genetic and genomic resources.
Collapse
Affiliation(s)
- Seema Yadav
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia.
| | - Elizabeth M Ross
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Karen S Aitken
- Agriculture and Food, CSIRO, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Owen Powell
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Xianming Wei
- Sugar Research Australia, Mackay, QLD, 4741, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia.
| |
Collapse
|
30
|
Sugarcane Ratooning Ability: Research Status, Shortcomings, and Prospects. BIOLOGY 2021; 10:biology10101052. [PMID: 34681151 PMCID: PMC8533141 DOI: 10.3390/biology10101052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
Sugarcane is an important sugar crop and it can be subjected to ratooning for several years. The advantages of ratooning include quality improvement, efficiency enhancement, and reduced costs and energy use. The genotype, environment, cultivation management, and harvesting technology affect the productivity and longevity of ratoon cane, with the genetic basis being the most critical factor. However, the majority of research has been focused on only limited genotypes, and a few studies have evaluated up to 100 sugarcane germplasm resources. They mainly focus on the comparison among different genotypes or among plant cane, different selection strategies for the first and second ratoon crops, together with screening indicators for the selection of stronger ratooning ability. In this paper, previous studies are reviewed in order to analyze the importance of sugarcane ratooning, the indicative traits used to evaluate ratooning ability, the major factors influencing the productivity and longevity of ratooning, the genetic basis of variation in ratooning ability, and the underlying mechanisms. Furthermore, the shortcomings of the existing research on sugarcane ratooning are highlighted. We then discuss the focus of future ratoon sugarcane research and the technical methods that will shorten the selection cycle and increase the genetic gain of ratooning ability, particularly the development of linked markers. This review is expected to provide a reference for understanding the mechanisms underlying the formation of ratooning ability and for breeding sugarcane varieties with a strong ratooning ability.
Collapse
|
31
|
Feng X, Wang Y, Zhang N, Gao S, Wu J, Liu R, Huang Y, Zhang J, Qi Y. Comparative phylogenetic analysis of CBL reveals the gene family evolution and functional divergence in Saccharum spontaneum. BMC PLANT BIOLOGY 2021; 21:395. [PMID: 34425748 PMCID: PMC8383383 DOI: 10.1186/s12870-021-03175-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/11/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The identification and functional analysis of genes that improve tolerance to low potassium stress in S. spontaneum is crucial for breeding sugarcane cultivars with efficient potassium utilization. Calcineurin B-like (CBL) protein is a calcium sensor that interacts with specific CBL-interacting protein kinases (CIPKs) upon plants' exposure to various abiotic stresses. RESULTS In this study, nine CBL genes were identified from S. spontaneum. Phylogenetic analysis of 113 CBLs from 13 representative plants showed gene expansion and strong purifying selection in the CBL family. Analysis of CBL expression patterns revealed that SsCBL01 was the most commonly expressed gene in various tissues at different developmental stages. Expression analysis of SsCBLs under low K+ stress indicated that potassium deficiency moderately altered the transcription of SsCBLs. Subcellular localization showed that SsCBL01 is a plasma membrane protein and heterologous expression in yeast suggested that, while SsCBL01 alone could not absorb K+, it positively regulated K+ absorption mediated by the potassium transporter SsHAK1. CONCLUSIONS This study provided insights into the evolution of the CBL gene family and preliminarily demonstrated that the plasma membrane protein SsCBL01 was involved in the response to low K+ stress in S. spontaneum.
Collapse
Affiliation(s)
- Xiaomin Feng
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Room 1909, Biological Engineering Building, Jianghai Avenue, Haizhu District, Guangzhou, 510316 Guangdong Province China
| | - Yongjun Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Room 1909, Biological Engineering Building, Jianghai Avenue, Haizhu District, Guangzhou, 510316 Guangdong Province China
| | - Shuai Gao
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Room 1909, Biological Engineering Building, Jianghai Avenue, Haizhu District, Guangzhou, 510316 Guangdong Province China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Room 1909, Biological Engineering Building, Jianghai Avenue, Haizhu District, Guangzhou, 510316 Guangdong Province China
| | - Rui Liu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Room 1909, Biological Engineering Building, Jianghai Avenue, Haizhu District, Guangzhou, 510316 Guangdong Province China
| | - Yonghong Huang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Room 1909, Biological Engineering Building, Jianghai Avenue, Haizhu District, Guangzhou, 510316 Guangdong Province China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yongwen Qi
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Room 1909, Biological Engineering Building, Jianghai Avenue, Haizhu District, Guangzhou, 510316 Guangdong Province China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007 China
| |
Collapse
|
32
|
Yadav S, Wei X, Joyce P, Atkin F, Deomano E, Sun Y, Nguyen LT, Ross EM, Cavallaro T, Aitken KS, Hayes BJ, Voss-Fels KP. Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2235-2252. [PMID: 33903985 PMCID: PMC8263546 DOI: 10.1007/s00122-021-03822-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/21/2021] [Indexed: 05/29/2023]
Abstract
Non-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance. In the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.
Collapse
Affiliation(s)
- Seema Yadav
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, Carmody Rd., St. Lucia, Brisbane, QLD, 3064067, Australia
| | - Xianming Wei
- Sugar Research Australia, Mackay, QLD, 4741, Australia
| | - Priya Joyce
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD, 4068, Australia
| | - Felicity Atkin
- Sugar Research Australia, Meringa, Gordonvale, QLD, 4865, Australia
| | - Emily Deomano
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD, 4068, Australia
| | - Yue Sun
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD, 4068, Australia
| | - Loan T Nguyen
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, Carmody Rd., St. Lucia, Brisbane, QLD, 3064067, Australia
| | - Elizabeth M Ross
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, Carmody Rd., St. Lucia, Brisbane, QLD, 3064067, Australia
| | - Tony Cavallaro
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, Carmody Rd., St. Lucia, Brisbane, QLD, 3064067, Australia
| | - Karen S Aitken
- Agriculture and Food, CSIRO, QBP, St. Lucia, QLD, 4067, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, Carmody Rd., St. Lucia, Brisbane, QLD, 3064067, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, Carmody Rd., St. Lucia, Brisbane, QLD, 3064067, Australia.
| |
Collapse
|
33
|
Pompidor N, Charron C, Hervouet C, Bocs S, Droc G, Rivallan R, Manez A, Mitros T, Swaminathan K, Glaszmann JC, Garsmeur O, D’Hont A. Three founding ancestral genomes involved in the origin of sugarcane. ANNALS OF BOTANY 2021; 127:827-840. [PMID: 33637991 PMCID: PMC8103802 DOI: 10.1093/aob/mcab008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Modern sugarcane cultivars (Saccharum spp.) are high polyploids, aneuploids (2n = ~12x = ~120) derived from interspecific hybridizations between the domesticated sweet species Saccharum officinarum and the wild species S. spontaneum. METHODS To analyse the architecture and origin of such a complex genome, we analysed the sequences of all 12 hom(oe)ologous haplotypes (BAC clones) from two distinct genomic regions of a typical modern cultivar, as well as the corresponding sequence in Miscanthus sinense and Sorghum bicolor, and monitored their distribution among representatives of the Saccharum genus. KEY RESULTS The diversity observed among haplotypes suggested the existence of three founding genomes (A, B, C) in modern cultivars, which diverged between 0.8 and 1.3 Mya. Two genomes (A, B) were contributed by S. officinarum; these were also found in its wild presumed ancestor S. robustum, and one genome (C) was contributed by S. spontaneum. These results suggest that S. officinarum and S. robustum are derived from interspecific hybridization between two unknown ancestors (A and B genomes). The A genome contributed most haplotypes (nine or ten) while the B and C genomes contributed one or two haplotypes in the regions analysed of this typical modern cultivar. Interspecific hybridizations likely involved accessions or gametes with distinct ploidy levels and/or were followed by a series of backcrosses with the A genome. The three founding genomes were found in all S. barberi, S. sinense and modern cultivars analysed. None of the analysed accessions contained only the A genome or the B genome, suggesting that representatives of these founding genomes remain to be discovered. CONCLUSIONS This evolutionary model, which combines interspecificity and high polyploidy, can explain the variable chromosome pairing affinity observed in Saccharum. It represents a major revision of the understanding of Saccharum diversity.
Collapse
Affiliation(s)
- Nicolas Pompidor
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Carine Charron
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gaëtan Droc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aurore Manez
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Jean-Christophe Glaszmann
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Olivier Garsmeur
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Angélique D’Hont
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- For correspondence. E-mail
| |
Collapse
|
34
|
Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:768609. [PMID: 34858464 PMCID: PMC8632530 DOI: 10.3389/fpls.2021.768609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world's biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990's, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.
Collapse
Affiliation(s)
- Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Ramón Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - María Francisca Perera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Josefina Racedo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- Centro Cientifico Tecnológico (CCT) CONICET NOA Sur, San Miguel de Tucumán, Argentina
| | - Aldo Sergio Noguera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- *Correspondence: Bjorn Welin,
| |
Collapse
|
35
|
Sobhakumari VP, Mohanraj K, Nair NV, Mahadevaswamy HK, Ram B. Cytogenetic and Molecular Approaches to Detect Alien Chromosome Introgression and Its Impact in Three Successive Generations of Erianthus procerus × Saccharum. CYTOLOGIA 2020. [DOI: 10.1508/cytologia.85.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | - Bakshi Ram
- Crop Improvement Division, ICAR-Sugarcane Breeding Institute
| |
Collapse
|
36
|
Abstract
Genomic in situ hybridization (GISH) is an invaluable cytogenetic technique which enables the visualization of whole genomes in hybrids and polyploidy taxa. Total genomic DNA from one or two different species/genomes is used as a probe, labeled with a fluorochrome, and directly detected on mitotic chromosomes from root tip meristems. In sugarcane and sugarcane hybrids, we were able to characterize interspecific hybrids of two closely related species as well as intergeneric hybrids of two closely related genera.
Collapse
|
37
|
Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech 2020; 10:440. [PMID: 33014683 PMCID: PMC7501393 DOI: 10.1007/s13205-020-02416-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
Sugarcane (Saccharum spp.) crop is vulnerable to many abiotic stresses such as drought, salinity, waterlogging, cold and high temperature due to climate change. Over the past few decades new breeding and genomic approaches have been used to enhance the genotypic performance under abiotic stress conditions. In sugarcane, introgression of genes from wild species and allied genera for abiotic stress tolerance traits plays a significant role in the development of several stress-tolerant varieties. Moreover, the genomics and transcriptomics approaches have helped to elucidate the key genes/TFs and pathways involved in abiotic stress tolerance in sugarcane. Several novel miRNAs families /proteins or regulatory elements that are responsible for drought, salinity, and cold tolerance have been identified through high-throughput sequencing. The existing sugarcane monoploid genome sequence information opens new gateways and opportunities for researchers to improve the desired traits through efficient genome editing tools, such as the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system. TALEN mediated mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane significantly reduces the lignin content in the cell wall which is amenable for biofuel production from lignocellulosic biomass. In this review, we focus on current breeding with genomic approaches and their substantial role in enhancing cane production under the abiotic stress conditions, which is expected to provide new insights to plant breeders and biotechnologists to modify their strategy in developing stress-tolerant sugarcane varieties, which can highlight the future demand of cane, bio-energy, and viability of sugar industries.
Collapse
|
38
|
Piperidis N, D'Hont A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2039-2051. [PMID: 32537783 DOI: 10.1111/tpj.14881] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/04/2023]
Abstract
Sugarcane (Saccharum spp.) is probably the crop with the most complex genome. Modern cultivars (2n = 100-120) are highly polyploids and aneuploids derived from interspecific hybridization between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40-128). Chromosome-specific oligonucleotide probes were used in combination with genomic in situ hybridization to analyze the genome architecture of modern cultivars and representatives of their parental species. The results validated a basic chromosome number of x = 10 for S. officinarum. In S. spontaneum, rearrangements occurred from a basic chromosome of x = 10, probably in the Northern part of India, in two steps leading to x = 9 and then x = 8. Each step involved three chromosomes that were rearranged into two. Further polyploidization led to the wide geographical extension of clones with x = 8. We showed that the S. spontaneum contribution to modern cultivars originated from cytotypes with x = 8 and varied in proportion between cultivars (13-20%). Modern cultivars had mainly 12 copies for each of the first four basic chromosomes, and a more variable number for those basic chromosomes whose structure differs between the two parental species. One-four of these copies corresponded to entire S. spontaneum chromosomes or interspecific recombinant chromosomes. In addition, a few inter-chromosome translocations were revealed. The new information and cytogenetic tools described in this study substantially improve our understanding of the extreme level of complexity of modern sugarcane cultivar genomes.
Collapse
Affiliation(s)
- Nathalie Piperidis
- SRA, Sugar Research Australia, 26135 Peak Downs Highway, Te Kowai, Qld, 4741, Australia
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, F-34398, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34060, France
| |
Collapse
|
39
|
Correr FH, Hosaka GK, Gómez SGP, Cia MC, Vitorello CBM, Camargo LEA, Massola NS, Carneiro MS, Margarido GRA. Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an ineffective defense system leading to susceptibility. PLANT CELL REPORTS 2020; 39:873-889. [PMID: 32314046 DOI: 10.1007/s00299-020-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 05/02/2023]
Abstract
Successful orange rust development on sugarcane can potentially be explained as suppression of the plant immune system by the pathogen or delayed plant signaling to trigger defense responses. Puccinia kuehnii is an obligate biotrophic fungus that infects sugarcane leaves causing a disease called orange rust. It spread out to other countries resulting in reduction of crop yield since its first outbreak. One of the knowledge gaps of that pathosystem is to understand the molecular mechanisms altered in susceptible plants by this biotic stress. Here, we investigated the changes in temporal expression of transcripts in pathways associated with the immune system. To achieve this purpose, we used RNA-Seq to analyze infected leaf samples collected at five time points after inoculation. Differential expression analyses of adjacent time points revealed substantial changes at 12, 48 h after inoculation and 12 days after inoculation, coinciding with the events of spore germination, haustoria post-penetration and post-sporulation, respectively. During the first 24 h, a lack of transcripts involved with resistance mechanisms was revealed by underrepresentation of hypersensitive and defense response related genes. However, two days after inoculation, upregulation of genes involved with immune response regulation provided evidence of some potential defense response. Events related to biotic stress responses were predominantly downregulated in the initial time points, but expression was later restored to basal levels. Genes involved in carbohydrate metabolism showed evidence of repression followed by upregulation, possibly to ensure the pathogen nutritional requirements were met. Our results support the hypothesis that P. kuehnii initially suppressed sugarcane genes involved in plant defense systems. Late overexpression of specific regulatory pathways also suggests the possibility of an inefficient recognition system by a susceptible sugarcane genotype.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Guilherme Kenichi Hosaka
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Sergio Gregorio Pérez Gómez
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Mariana Cicarelli Cia
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Claudia Barros Monteiro Vitorello
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Nelson Sidnei Massola
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Universidade Federal de São Carlos, Centro de Ciências Agrárias, Araras, São Paulo, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
40
|
Peter SC, Murugan N, Mohanan MV, Sasikumar SPT, Selvarajan D, Jayanarayanan AN, Shivalingamurthy SG, Chennappa M, Ramanathan V, Govindakurup H, Ram B, Chinnaswamy A. Isolation, characterization and expression analysis of stress responsive plant nuclear transcriptional factor subunit ( NF-YB2) from commercial Saccharum hybrid and wild relative Erianthus arundinaceus. 3 Biotech 2020; 10:304. [PMID: 32566442 DOI: 10.1007/s13205-020-02295-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022] Open
Abstract
Plant nuclear factor (NF-Y) is a transcription activating factor, consisting of three subunits, and plays a key regulatory role in many stress-responsive mechanisms including drought and salinity stresses. NF-Ys function both as complex and individual subunits. Considering the importance of sugarcane as a commercial crop with high socio-economic importance and the crop being affected mostly by water deficit stress and salinity stress causing significant yield loss, nuclear transcriptional factor NF-YB2 was focused in this study. Plant nuclear factor subunit B2 from Erianthus arundinaceus (EaNF-YB2), a wild relative of sugarcane which is known for its drought and salinity stress tolerance, and commercial Saccharum hybrid Co 86032 (ShNF-YB2) was isolated and characterized. Both EaNF-YB2 and ShNF-YB2 genes are 543 bp long that encodes for a polypeptide of 180 amino acid residues. Comparison of EaNF-YB2 and ShNF-YB2 gene sequences revealed nucleotide substitutions at nine positions corresponding to three synonymous and six nonsynonymous amino acid substitutions that resulted in variations in physiochemical properties. However, multiple sequence alignment (MSA) of NF-YB2 proteins showed conservation of functionally important amino acid residues. In silico analysis revealed NF-YB2 to be a hydrophilic and intracellular protein, and EaNF-YB2 is thermally more stable than that of ShNF-YB2. Phylogenetic analysis suggested the lower rate of evolution of NF-YB2. Subcellular localization in sugarcane callus revealed NF-YB2 localization at nucleus that further evidenced it to be a transcription activation factor. Comparative RT-qPCR experiments showed a significantly higher level of NF-YB2 expression in E. arundinaceus when compared to that in the commercial Saccharum hybrid Co 86032 under drought and salinity stresses. Hence, EaNF-YB2 could be an ideal candidate gene, and its overexpression in sugarcane through genetic engineering approach might enhance tolerance to drought and salinity stresses.
Collapse
Affiliation(s)
- Swathik Clarancia Peter
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Naveenarani Murugan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Mahadevaiah Chennappa
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Hemaprabha Govindakurup
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| |
Collapse
|
41
|
Singh RB, Mahenderakar MD, Jugran AK, Singh RK, Srivastava RK. Assessing genetic diversity and population structure of sugarcane cultivars, progenitor species and genera using microsatellite (SSR) markers. Gene 2020; 753:144800. [PMID: 32454179 DOI: 10.1016/j.gene.2020.144800] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 01/15/2023]
Abstract
Sugarcane is one among the most important commercial crops used to produce sugar, ethanol, and other byproducts, which significantly contributes in the GDP of India and many other countries around the world. Genetic diversity is a platform for any breeding program of a plant species. Estimation of the genetic variability and population structure play a vital role for conservation planning and management of plant genetic resources. Genetic variability serves as a source of noble alleles responsible for key agronomic and quality traits, which ultimately form basis for identification and selection of promising parents for breeding programs. In the present study genetic diversity and population structure of 139 accessions of the genus Saccharum, allied genera of family Poaceae and cultivars were assessed using informative microsatellite (SSR) markers. A sum of 427 alleles was produced using 61 polymorphic primers and number of alleles generated was ranged from 2 to 13 with an average of 7 alleles per locus. PIC values were ranged from 0.35 to 0.90, with a mean value of 0.66 for all the markers evaluated. Cluster analysis based on UPGMA method revealed three major clusters which were further subdivided into nine subclusters. Population structure analysis also established three subpopulations of used accession set, however there were no correlation of sub-groupings with that of place of origin. AMOVA analysis also confirmed that 83% and 17% of total variations were attributed to the within- and between-populations, correspondingly, demonstrating greater exchange of gene pool across places of origin. The principal component analysis (PCA) demonstrated the distribution of accessions in the scatter-plot was substantially dispersed, revealing rich genetic diversity among accessions of different species. The findings from this study will be useful in breeding programs for introgression of noble alleles into modern cultivars by exploiting natural genetic variation existing in sugarcane genetic resources.
Collapse
Affiliation(s)
- Ram Baran Singh
- International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Patancheru-503 324, Hyderabad, Telangana State, India; Uttar Pradesh Council of Sugarcane Research (UPCSR), Shahjahanpur-242 001, Uttar Pradesh, India.
| | - Mahesh D Mahenderakar
- International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Patancheru-503 324, Hyderabad, Telangana State, India
| | - Arun K Jugran
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora 243 643, Uttarakhand, India
| | - Ram Kushal Singh
- Uttar Pradesh Council of Sugarcane Research (UPCSR), Shahjahanpur-242 001, Uttar Pradesh, India
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-arid Tropics (ICRISAT), Patancheru-503 324, Hyderabad, Telangana State, India
| |
Collapse
|
42
|
Yang S, Zeng K, Luo L, Qian W, Wang Z, Doležel J, Zhang M, Gao X, Deng Z. A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp. Sci Rep 2020; 10:5016. [PMID: 32193460 PMCID: PMC7081271 DOI: 10.1038/s41598-020-62086-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
Collapse
Affiliation(s)
- Shan Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zeng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Qian
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqiang Wang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Olomouc, CZ-78371, Czech Republic
| | - Muqing Zhang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Xiangxiong Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
43
|
Meng Z, Han J, Lin Y, Zhao Y, Lin Q, Ma X, Wang J, Zhang M, Zhang L, Yang Q, Wang K. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:187-199. [PMID: 31587087 DOI: 10.1007/s00122-019-03450-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 05/04/2023]
Abstract
A novel tetraploid S. spontaneum with basic chromosome x = 10 was discovered, providing us insights in the origin and evolution in Saccharum species. Sugarcane (Saccharum spp., Poaceae) is a leading crop for sugar production providing 80% of the world's sugar. However, the genetic and genomic complexities of this crop such as its high polyploidy level and highly variable chromosome numbers have significantly hindered the studies in deciphering the genomic structure and evolution of sugarcane. Here, we developed the first set of oligonucleotide (oligo)-based probes based on the S. spontaneum genome (x = 8), which can be used to simultaneously distinguish each of the 64 chromosomes of octaploid S. spontaneum SES208 (2n = 8x = 64) through fluorescence in situ hybridization (FISH). By comparative FISH assay, we confirmed the chromosomal rearrangements of S. spontaneum (x = 8) and S. officinarum (2n = 8x = 80), the main contributors of modern sugarcane cultivars. In addition, we examined a S. spontaneum accession, Np-X, with 2n = 40 chromosomes, and we found that it was a tetraploid with the unusual basic chromosome number of x = 10. Assays at the cytological and DNA levels demonstrated its close relationship with S. spontaneum with basic chromosome number x = 8 (the most common accessions in S. spontaneum), confirming its S. spontaneum identity. Population genetic structure and phylogenetic relationship analyses between Np-X and 64 S. spontaneum accessions revealed that Np-X belongs to the ancient Pan-Malaysia group, indicating a close relationship to S. spontaneum with basic chromosome number of x = 8. This finding of a tetraploid S. spontaneum with basic chromosome number of x = 10 suggested a parallel evolution path of genomes and polyploid series in S. spontaneum with different basic chromosome numbers.
Collapse
Affiliation(s)
- Zhuang Meng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinlei Han
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yujing Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingfang Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaokai Ma
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianping Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Agronomy, University of Florida, Gainesville, FL, 32611, USA
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
| | - Liangsheng Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qinghui Yang
- Sugarcane Research Institution, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
44
|
Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Sci Rep 2019; 9:19362. [PMID: 31852940 PMCID: PMC6920420 DOI: 10.1038/s41598-019-55652-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Sugarcane (Saccharum spp.) is a globally important crop for sugar and bioenergy production. Its highly polyploid, complex genome has hindered progress in understanding its molecular structure. Flow cytometric sorting and analysis has been used in other important crops with large genomes to dissect the genome into component chromosomes. Here we present for the first time a method to prepare suspensions of intact sugarcane chromosomes for flow cytometric analysis and sorting. Flow karyotypes were generated for two S. officinarum and three hybrid cultivars. Five main peaks were identified and each genotype had a distinct flow karyotype profile. The flow karyotypes of S. officinarum were sharper and with more discrete peaks than the hybrids, this difference is probably due to the double genome structure of the hybrids. Simple Sequence Repeat (SSR) markers were used to determine that at least one allelic copy of each of the 10 basic chromosomes could be found in each peak for every genotype, except R570, suggesting that the peaks may represent ancestral Saccharum sub genomes. The ability to flow sort Saccharum chromosomes will allow us to isolate and analyse chromosomes of interest and further examine the structure and evolution of the sugarcane genome.
Collapse
|
45
|
Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Chromosoma 2019; 129:45-55. [PMID: 31848693 DOI: 10.1007/s00412-019-00729-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Modern sugarcane cultivars are highly polyploid and derived from the hybridization of Saccharum officinarum and S. spontaneum, thus leading to singularly complex genomes. The complex genome has hindered the study of genomic structures. Here, we adopted a computational strategy to isolate highly repetitive and abundant sequences in either S. officinarum or S. spontaneum and isolated four S. spontaneum-enriched retrotransposons. Fluorescence in situ hybridization (FISH) assays with these repetitive DNA sequences generated whole-genome painting signals for S. spontaneum but not for S. officinarum. We demonstrated that these repetitive sequence-based probes distinguish the parental S. spontaneum genome in hybrids derived from crosses between it and S. officinarum. A cytological analysis of 14 modern sugarcane cultivars revealed that the percentages of chromosomes with introgressive S. spontaneum fragments ranged from 11.9 to 40.9% and substantially exceeded those determined for previously investigated cultivars (5-13%). The comparatively higher percentages of introgressive S. spontaneum fragments detected in the aforementioned cultivars indicate frequent recombination between parental genomes. Here, we present the application of our strategy to isolate species-specific cytological markers. This information may help to elucidate complex plant genomic structures and trace their evolutionary histories.
Collapse
|
46
|
Wang JG, Zhao TT, Wang WZ, Feng CL, Feng XY, Xiong GR, Shen LB, Zhang SZ, Wang WQ, Zhang ZX. Culm transcriptome sequencing of Badila (Saccharum officinarum L.) and analysis of major genes involved in sucrose accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:455-465. [PMID: 31655344 DOI: 10.1016/j.plaphy.2019.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane is an important sugar and energy crop worldwide. It utilises highly efficient C4 photosynthesis and accumulates sucrose in its culms. The sucrose content in sugarcane culms is a quantitative trait controlled by multiple genes. The regulatory mechanism underlying the maximum sucrose level in sugarcane culms remains unclear. We used transcriptome sequences to identify the potential regulatory genes involved in sucrose accumulation in Saccarum officinarum L. cv. Badila. The sucrose accumulating internodes at the elongation and mature growth stage and the immature internodes with low sucrose content at the mature stage were used for RNA sequencing. The obtained differentially expressed genes (DEGs) related to sucrose accumulation were analysed. Results showed that the transcripts encoding invertase (beta-fructofuranosidase, EC: 3.2.1.26) which catalyses sucrose hydrolysis and 6-phosphofructokinase (PFK, EC: 2.7.1.11), a key glycolysis regulatory enzyme, were downregulated in the high sucrose accumulation internodes. The transcripts encoding key enzymes for ABA, gibberellin and ethylene synthesis were also downregulated during sucrose accumulation. Furthermore, regulated protein kinase, transcription factor and sugar transporter genes were also obtained. This research can clarify the molecular regulation network of sucrose accumulation in sugarcane.
Collapse
Affiliation(s)
- Jun-Gang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Wen-Zhi Wang
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Cui-Lian Feng
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Xiao-Yan Feng
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Guo-Ru Xiong
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Lin-Bo Shen
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| | - Wen-Quan Wang
- Institute of Tropical Bioscience and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| | - Zu-Xing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
47
|
You Q, Yang X, Peng Z, Islam MS, Sood S, Luo Z, Comstock J, Xu L, Wang J. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2829-2845. [PMID: 31321474 DOI: 10.1007/s00122-019-03391-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/05/2019] [Indexed: 05/13/2023]
Abstract
An Axiom Sugarcane100K SNP array has been designed and successfully utilized to construct the sugarcane genetic map and to identify the QTLs associated with SCYLV resistance. To accelerate genetic studies in sugarcane, an Axiom Sugarcane100K single-nucleotide polymorphism (SNP) array was designed and customized in this study. Target enrichment sequencing 300 sugarcane accessions selected from the world collection of sugarcane and related grass species yielded more than four million SNPs, from which a total of 31,449 single-dose (SD) SNPs and 68,648 low-dosage (33,277 SD and 35,371 double dose) SNPs from two datasets, respectively, were selected and tiled on Affymetrix Axiom SNP array. Most of selected SNPs (91.77%) were located within genic regions (12,935 genes), with an average of 7.1 SNPs/gene according to sorghum gene models. This array was used to genotype 469 sugarcane clones, including one F1 population derived from the cross between Green German and IND81-146, one selfing population derived from CP80-1827, and 11 diverse sugarcane accessions as controls. Results of genotyping revealed a high polymorphic SNP rate (77.04%) among the 469 samples. Three linkage maps were constructed by using SD SNP markers, including a genetic map for Green German with 3482 SD SNP markers spanning 3336 cM, a map for IND81-146 with 1513 SD SNP markers spanning 2615 cM, and a map for CP80-1827 with 536 SD SNP markers spanning 3651 cM. Quantitative trait loci (QTL) analysis identified 18 QTLs controlling Sugarcane yellow leaf virus resistance segregating in the two mapping populations, harboring 27 disease-resistant genes. This study demonstrated the successful development and utilization of a SNP array as an efficient genetic tool for high-throughput genotyping in highly polyploid sugarcane.
Collapse
Affiliation(s)
- Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | | | - Sushma Sood
- USDA-ARS, Sugarcane Field Station, Canal Point, FL, 33438, USA
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Jack Comstock
- USDA-ARS, Sugarcane Field Station, Canal Point, FL, 33438, USA
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA.
- Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
- Center for Genomics and Biotechnology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
48
|
Sforça DA, Vautrin S, Cardoso-Silva CB, Mancini MC, Romero-da Cruz MV, Pereira GDS, Conte M, Bellec A, Dahmer N, Fourment J, Rodde N, Van Sluys MA, Vicentini R, Garcia AAF, Forni-Martins ER, Carneiro MS, Hoffmann HP, Pinto LR, Landell MGDA, Vincentz M, Berges H, de Souza AP. Gene Duplication in the Sugarcane Genome: A Case Study of Allele Interactions and Evolutionary Patterns in Two Genic Regions. FRONTIERS IN PLANT SCIENCE 2019; 10:553. [PMID: 31134109 PMCID: PMC6514446 DOI: 10.3389/fpls.2019.00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 05/25/2023]
Abstract
Sugarcane (Saccharum spp.) is highly polyploid and aneuploid. Modern cultivars are derived from hybridization between S. officinarum and S. spontaneum. This combination results in a genome exhibiting variable ploidy among different loci, a huge genome size (~10 Gb) and a high content of repetitive regions. An approach using genomic, transcriptomic, and genetic mapping can improve our knowledge of the behavior of genetics in sugarcane. The hypothetical HP600 and Centromere Protein C (CENP-C) genes from sugarcane were used to elucidate the allelic expression and genomic and genetic behaviors of this complex polyploid. The physically linked side-by-side genes HP600 and CENP-C were found in two different homeologous chromosome groups with ploidies of eight and ten. The first region (Region01) was a Sorghum bicolor ortholog region with all haplotypes of HP600 and CENP-C expressed, but HP600 exhibited an unbalanced haplotype expression. The second region (Region02) was a scrambled sugarcane sequence formed from different noncollinear genes containing partial duplications of HP600 and CENP-C (paralogs). This duplication resulted in a non-expressed HP600 pseudogene and a recombined fusion version of CENP-C and the orthologous gene Sobic.003G299500 with at least two chimeric gene haplotypes expressed. It was also determined that it occurred before Saccharum genus formation and after the separation of sorghum and sugarcane. A linkage map was constructed using markers from nonduplicated Region01 and for the duplication (Region01 and Region02). We compare the physical and linkage maps, demonstrating the possibility of mapping markers located in duplicated regions with markers in nonduplicated region. Our results contribute directly to the improvement of linkage mapping in complex polyploids and improve the integration of physical and genetic data for sugarcane breeding programs. Thus, we describe the complexity involved in sugarcane genetics and genomics and allelic dynamics, which can be useful for understanding complex polyploid genomes.
Collapse
Affiliation(s)
| | - Sonia Vautrin
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | | | | | | | | - Mônica Conte
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arnaud Bellec
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | - Nair Dahmer
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Joelle Fourment
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | - Nathalie Rodde
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | | | | | | | | | | - Hermann Paulo Hoffmann
- Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCAR), Araras, Brazil
| | | | | | - Michel Vincentz
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Helene Berges
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | |
Collapse
|
49
|
Abstract
We used primers designed on conserved gene regions of several species to isolate the most expressed genes of the lignin pathway in four Saccharum species. S. officinarum and S. barberi have more sucrose in the culms than S. spontaneum and S. robustum, but less polysaccharides and lignin in the cell wall. S. spontaneum, and S. robustum had the lowest S/G ratio and a lower rate of saccharification in mature internodes. Surprisingly, except for CAD, 4CL, and CCoAOMT for which we found three, two, and two genes, respectively, only one gene was found for the other enzymes and their sequences were highly similar among the species. S. spontaneum had the highest expression for most genes. CCR and CCoAOMT B presented the highest expression; 4CL and F5H showed increased expression in mature tissues; C3H and CCR had higher expression in S. spontaneum, and one of the CADs isolated (CAD B) had higher expression in S. officinarum. The similarity among the most expressed genes isolated from these species was unexpected and indicated that lignin biosynthesis is conserved in Saccharum including commercial varieties Thus the lignin biosynthesis control in sugarcane may be only fully understood with the knowledge of the promotor region of each gene.
Collapse
|
50
|
Research and partnership in studies of sugarcane using molecular markers: a scientometric approach. Scientometrics 2019. [DOI: 10.1007/s11192-019-03047-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|