1
|
Bhadauria V, Han T, Li G, Ma W, Zhang M, Yang J, Zhao W, Peng YL. A gln-tRNA-based CRISPR/Cas9 knockout system enables the functional characterization of genes in the genetically recalcitrant brassica anthracnose fungus Colletotrichum higginsianum. Int J Biol Macromol 2024; 254:127953. [PMID: 37951433 DOI: 10.1016/j.ijbiomac.2023.127953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Colletotrichum higginsianum causes anthracnose disease in brassicas. The availability of the C. higginsianum genome has paved the way for the genome-wide exploration of genes associated with virulence/pathogenicity. However, delimiting the biological functions of these genes remains an arduous task due to the recalcitrance of C. higginsianum to genetic manipulations. Here, we report a CRISPR/Cas9-based system that can knock out the genes in C. higginsianum with a staggering 100% homologous recombination frequency (HRF). The system comprises two vectors: pCas9-Ch_tRp-sgRNA, in which a C. higginsianum glutaminyl-tRNA drives the expression of sgRNA, and pCE-Zero-HPT carrying a donor DNA cassette containing the marker gene HPT flanked by homology arms. Upon co-transformation of the C. higginsianum protoplasts, pCas9-Ch_tRp-sgRNA causes a DNA double-strand break in the targeted gene, followed by homology-directed replacement of the gene with HPT by pCE-Zero-HPT, thereby generating loss-of-function mutants. Using the system, we generated the knockout mutants of two effector candidates (ChBas3 and OBR06881) with a 100% HRF. Interestingly, the ΔChBas3 and ΔOBR06881 mutants did not seem to affect the C. higginsianum infection of Arabidopsis thaliana. Altogether, the CRISPR/Cas9 system developed in the study enables the targeted deletion of genes, including effectors, in C. higginsianum, thus determining their biological functions.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Tongling Han
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guangjun Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wendi Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Manyu Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Yonehara K, Kumakura N, Motoyama T, Ishihama N, Dallery J, O'Connell R, Shirasu K. Efficient multiple gene knockout in Colletotrichum higginsianum via CRISPR/Cas9 ribonucleoprotein and URA3-based marker recycling. MOLECULAR PLANT PATHOLOGY 2023; 24:1451-1464. [PMID: 37522511 PMCID: PMC10576178 DOI: 10.1111/mpp.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.
Collapse
Affiliation(s)
- Katsuma Yonehara
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | | | | | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
3
|
Yamada K, Yamamoto T, Uwasa K, Osakabe K, Takano Y. The establishment of multiple knockout mutants of Colletotrichum orbiculare by CRISPR-Cas9 and Cre-loxP systems. Fungal Genet Biol 2023; 165:103777. [PMID: 36669556 DOI: 10.1016/j.fgb.2023.103777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Colletotrichum orbiculare is employed as a model fungus to analyze molecular aspects of plant-fungus interactions. Although gene disruption via homologous recombination (HR) was established for C. orbiculare, this approach is laborious due to its low efficiency. Here we developed methods to generate multiple knockout mutants of C. orbiculare efficiently. We first found that CRISPR-Cas9 system massively promoted gene-targeting efficiency. By transiently introducing a CRISPR-Cas9 vector, more than 90% of obtained transformants were knockout mutants. Furthermore, we optimized a self-excision Cre-loxP marker recycling system for C. orbiculare because a limited availability of desired selective markers hampers sequential gene disruption. In this system, the integrated selective marker is removable from the genome via Cre recombinase driven by a xylose-inducible promoter, enabling the reuse of the same selective marker for the next transformation. Using our CRISPR-Cas9 and Cre-loxP systems, we attempted to identify functional sugar transporters involved in fungal virulence. Multiple disruptions of putative quinate transporter genes restricted fungal growth on media containing quinate as a sole carbon source, confirming their functionality as quinate transporters. However, our analyses showed that quinate acquisition was dispensable for infection to host plants. In addition, we successfully built mutations of 17 cellobiose transporter genes in a strain. From the data of knockout mutants that we established in this study, we inferred that repetitive rounds of gene disruption using CRISPR-Cas9 and Cre-loxP systems do not cause adverse effects on fungal virulence and growth. Therefore, these systems will be powerful tools to perform a systematic loss-of-function approach for C. orbiculare.
Collapse
Affiliation(s)
- Kohji Yamada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan; JST, PRESTO, Kawaguchi, Japan.
| | - Toya Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Kanon Uwasa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | |
Collapse
|
4
|
Nabi A, Banoo A, Rasool RS, Dar MS, Mubashir SS, Masoodi KZ, Shah MD, Khan AA, Khan I, Padder BA. Optimizing the Agrobacterium tumifaciens mediated transformation conditions in Colletotrichum lindemuthianum: A step forward to unravel the functions of pathogenicity arsenals. Lett Appl Microbiol 2021; 75:293-307. [PMID: 34398478 DOI: 10.1111/lam.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes bean anthracnose and it is rated among the top 10 important diseases infecting beans. Currently our knowledge on molecular mechanisms underlying C. lindemuthianum pathogenesis is limited. About five pathogenicity genes have been identified in C. lindemuthianum using Restricted Enzyme Mediated Integration (REMI) and the transformation using Agroinfection has not been optimized. In this study, a series of experiments were conducted to optimize the key parameters affecting the Agrobacterium tumefaciens- mediated transformation (ATMT) for C. lindemuthianum. The transformation efficiency increased with increase in spore concentration and co-cultivation time. However, the optimum conditions that yielded significant number of transformants were 106 ml-1 spore concentration, co-cultivation time of 72 h, incubation at 25ºC and using a cellulose membrane filter for the co-cultivation. The optimized protocol resulted in establishment of large mutant library (2400). A few mutants were melanin deficient and a few were unable to produce conidia. To determine the altered pathogenicity, two new approaches such as detached leaf and twig techniques proved reliable and require fewer resources to screen the large mutant libraries in a short time. Among the 1200 transformants tested for virulence, 90% transformants were pathogenically similar to wild type (race 2047), 96 and 24 were reduced and impaired, respectively. The altered avirulent transformants can prove vital for understanding the missing link between growth and developmental stages of pathogen with virulence. This platform will help to develop strategies to determine the potential pathogenicity genes and to decipher molecular mechanisms of host-pathogen interactions in more detail.
Collapse
Affiliation(s)
- Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Rovidha S Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - M S Dar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Syed Shoaib Mubashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Khalid Z Masoodi
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - M D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Akhtar A Khan
- Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Imran Khan
- Division of Agricultural Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| |
Collapse
|
5
|
Kumakura N, Ueno A, Shirasu K. Establishment of a selection marker recycling system for sequential transformation of the plant-pathogenic fungus Colletotrichum orbiculare. MOLECULAR PLANT PATHOLOGY 2019; 20:447-459. [PMID: 30390402 PMCID: PMC6637883 DOI: 10.1111/mpp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genome sequencing of pathogenic fungi has revealed the presence of various effectors that aid pathogen invasion by the manipulation of plant immunity. Effectors are often individually dispensable because of duplication and functional redundancy as a result of the arms race between host plants and pathogens. To study effectors that have functional redundancy, multiple gene disruption is often required. However, the number of selection markers that can be used for gene targeting is limited. Here, we established a marker recycling system that allows the use of the same selection marker in successive transformations in the model fungal pathogen Colletotrichum orbiculare, a causal agent of anthracnose disease in plants belonging to the Cucurbitaceae. We identified two C. orbiculare homologues of yeast URA3/pyrG, designated as URA3A and URA3B, which can be used as selection markers on medium with no uridine. The gene can then be removed from the genome via homologous recombination when the fungus is grown in the presence of 5-fluoroorotic acid (5-FOA), a chemical that is converted into a toxin by URA3 activity. The ura3a/b double mutants showed auxotrophy for uridine and insensitivity to 5-FOA. Using the ura3a/b mutants, transformation with the URA3B marker and its removal were successfully applied to disrupt the virulence-related gene, PKS1. The pks1 mutants showed a reduction in virulence, demonstrating that the method can be used to study virulence-related genes in C. orbiculare. The establishment of a URA3-based marker recycling system in plant-pathogenic fungi enables the genetic analysis of multiple genes that have redundant functions, including effector genes.
Collapse
Affiliation(s)
- Naoyoshi Kumakura
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Akiko Ueno
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
- Graduate School of ScienceThe University of Tokyo7‐3‐1, Hongo, Bunkyo‐kuTokyo113‐8654Japan
| |
Collapse
|
6
|
Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L. Colletotrichum higginsianum as a Model for Understanding Host⁻Pathogen Interactions: A Review. Int J Mol Sci 2018; 19:E2142. [PMID: 30041456 PMCID: PMC6073530 DOI: 10.3390/ijms19072142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum⁻Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal⁻plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal⁻plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.
Collapse
Affiliation(s)
- Yaqin Yan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qinfeng Yuan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Schmidpeter J, Dahl M, Hofmann J, Koch C. ChMob2 binds to ChCbk1 and promotes virulence and conidiation of the fungal pathogen Colletotrichum higginsianum. BMC Microbiol 2017; 17:22. [PMID: 28103800 PMCID: PMC5248491 DOI: 10.1186/s12866-017-0932-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023] Open
Abstract
Background Mob family proteins are conserved between animals, plants and fungi and are essential for the activation of NDR kinases that control crucial cellular processes like cytokinesis, proliferation and morphology. Results We identified a hypomorphic allele of ChMOB2 in a random insertional mutant (vir-88) of the hemibiotrophic ascomycete fungus Colletotrichum higginsianum. The mutant is impaired in conidiation, host penetration and virulence on Arabidopsis thaliana. ChMob2 binds to and co-localizes with the NDR/LATS kinase homolog ChCbk1. Mutants in the two potential ChCbk1 downstream targets ChSSD1 and ChACE2 show defects in pathogenicity. The genome of C. higginsianum encodes two more Mob proteins. While we could not detect any effect on pathogenicity in ΔChmob3 mutants, ChMob1 is involved in conidiation, septae formation and virulence. Conclusion This study shows that ChMob2 binds to the conserved NDR/LATS Kinase ChCbk1 and plays an important role in pathogenicity of Colletotrichum higginsianum on Arabidopsis thaliana. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Schmidpeter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Marlis Dahl
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Jörg Hofmann
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Christian Koch
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| |
Collapse
|
8
|
Wei W, Xiong Y, Zhu W, Wang N, Yang G, Peng F. Colletotrichum higginsianum Mitogen-Activated Protein Kinase ChMK1: Role in Growth, Cell Wall Integrity, Colony Melanization, and Pathogenicity. Front Microbiol 2016; 7:1212. [PMID: 27536296 PMCID: PMC4971432 DOI: 10.3389/fmicb.2016.01212] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023] Open
Abstract
Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. To facilitate the efficient control of anthracnose disease, it will be important to understand the mechanism by which the cruciferous crops and C. higginsianum interact. A key step in understanding this interaction is characterizing the mitogen-activated protein kinases (MAPK) signaling pathway of C. higginsianum. MAPK plays important roles in diverse physiological processes of multiple pathogens. In this study, a Fus3/Kss1-related MAPK gene, ChMK1, from C. higginsianum was analyzed. The results showed that the Fus3/Kss1-related MAPK ChMK1 plays a significant role in cell wall integrity. Targeted deletion of ChMK1 resulted in a hypersensitivity to cell wall inhibitors, reduced conidiation and albinistic colonies. Further, the deletion mutant was also unable to form melanized appressorium, a specialized infection structure that is necessary for successful infection. Therefore, the deletion mutant loses pathogenicity on A. thaliana leaves, demonstrating that ChMK1 plays an essential role in the early infection step. In addition, the ChMK1 deletion mutant showed an attenuated growth rate that is different from that of its homolog in Colletotrichum lagenarium, indicating the diverse roles that Fus3/Kss1-related MAPKs plays in phytopathogenic fungi. Furthermore, the expression level of three melanin synthesis associated genes were clearly decreased in the albinistic ChMK1 mutant compared to that of the wild type strain, suggesting that ChMK1 is also required for colony melanization in C. higginsianum.
Collapse
Affiliation(s)
- Wei Wei
- Institute for Interdisciplinary Research, Jianghan University Wuhan, China
| | - Ying Xiong
- Hefei Inzyme Information Technology Co., Ltd. Wuhan, China
| | - Wenjun Zhu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| | - Nancong Wang
- Institute for Interdisciplinary Research, Jianghan University Wuhan, China
| | - Guogen Yang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Fang Peng
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| |
Collapse
|
9
|
Qi X, Su X, Guo H, Qi J, Cheng H. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae. World J Microbiol Biotechnol 2015; 31:1889-97. [PMID: 26475327 DOI: 10.1007/s11274-015-1907-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022]
Abstract
To overcome the challenges met with gene deletion in the plant pathogen Verticillium dahliae, a mutant strain with impaired non-homologous end joining DNA repair was generated to improve targeted gene replacement frequencies. A V. dahliae 991 ΔVdku70 null mutant strain was generated using Agrobacterium tumefaciens-mediated transformation. Despite having impaired non-homologous end joining DNA repair function, the ΔVdku70 strain exhibited normal growth, reproduction capability, and pathogenicity when compared with the wild-type strain. When the ΔVdku70 strain was used to delete 2-oxoglutarate dehydrogenase E2, ferric reductase transmembrane component 3 precursor, and ferric reductase transmembrane component 6 genes, gene replacement frequencies ranged between 22.8 and 34.7% compared with 0.3 and 0.5 % in the wild-type strain. The ΔVdku70 strain will be a valuable tool to generate deletion strains when studying factors that underlie virulence and pathogenesis in this filamentous fungus.
Collapse
|
10
|
Tsakraklides V, Brevnova E, Stephanopoulos G, Shaw AJ. Improved Gene Targeting through Cell Cycle Synchronization. PLoS One 2015; 10:e0133434. [PMID: 26192309 PMCID: PMC4507847 DOI: 10.1371/journal.pone.0133434] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 01/27/2023] Open
Abstract
Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.
Collapse
Affiliation(s)
| | - Elena Brevnova
- Total New Energies, Emeryville, California, United States of America
| | - Gregory Stephanopoulos
- Novogy Inc., Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - A. Joe Shaw
- Novogy Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
11
|
Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch C. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration. PLoS One 2015; 10:e0125960. [PMID: 25992547 PMCID: PMC4437780 DOI: 10.1371/journal.pone.0125960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.
Collapse
Affiliation(s)
- Martin Korn
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Johannes Schmidpeter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Marlis Dahl
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Susanne Müller
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Lars M. Voll
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Christian Koch
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
- * E-mail:
| |
Collapse
|
12
|
Suzuki K, Inoue H. Recombination and Gene Targeting in Neurospora. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Damm U, O'Connell R, Groenewald J, Crous P. The Colletotrichum destructivum species complex - hemibiotrophic pathogens of forage and field crops. Stud Mycol 2014; 79:49-84. [PMID: 25492986 PMCID: PMC4255528 DOI: 10.1016/j.simyco.2014.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Colletotrichum destructivum is an important plant pathogen, mainly of forage and grain legumes including clover, alfalfa, cowpea and lentil, but has also been reported as an anthracnose pathogen of many other plants worldwide. Several Colletotrichum isolates, previously reported as closely related to C. destructivum, are known to establish hemibiotrophic infections in different hosts. The inconsistent application of names to those isolates based on outdated species concepts has caused much taxonomic confusion, particularly in the plant pathology literature. A multilocus DNA sequence analysis (ITS, GAPDH, CHS-1, HIS3, ACT, TUB2) of 83 isolates of C. destructivum and related species revealed 16 clades that are recognised as separate species in the C. destructivum complex, which includes C. destructivum, C. fuscum, C. higginsianum, C. lini and C. tabacum. Each of these species is lecto-, epi- or neotypified in this study. Additionally, eight species, namely C. americae-borealis, C. antirrhinicola, C. bryoniicola, C. lentis, C. ocimi, C. pisicola, C. utrechtense and C. vignae are newly described.
Collapse
Affiliation(s)
- U. Damm
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - R.J. O'Connell
- UMR1290 BIOGER-CPP, INRA-AgroParisTech, 78850 Thiverval-Grignon, France
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
14
|
Bidirectional-genetics platform, a dual-purpose mutagenesis strategy for filamentous fungi. EUKARYOTIC CELL 2013; 12:1547-53. [PMID: 24058171 DOI: 10.1128/ec.00234-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapidly increasing fungal genome sequences call for efficient ways of generating mutants to translate quickly gene sequences into their functions. A reverse genetic strategy via targeted gene replacement (TGR) has been inefficient for many filamentous fungi due to dominant production of undesirable ectopic transformants. Although large-scale random insertional mutagenesis via transformation (i.e., forward genetics) facilitates high-throughput uncovering of novel genes of interest, generating a huge number of transformants, which is necessary to ensure the likelihood of mutagenizing most genes, is time-consuming. We propose a new strategy, entitled the Bidirectional-Genetics (BiG) platform, which combines both forward and reverse genetic strategies by recycling ectopic transformants derived from TGR as a source for random insertional mutants. The BiG platform was evaluated using the rice blast fungus Magnaporthe oryzae as a model. Over 10% of >1,000 M. oryzae ectopic transformants, generated during disruption of specific genes, displayed abnormality in vegetative growth, pigmentation, and/or asexual reproduction. In this pool of putative mutants, we isolated insertional mutants with mutations in three genes involved in histidine biosynthesis (MoHIS5), vegetative growth (MoVPS74), or conidiophore formation (MoFRQ) (where "Mo" indicates "M. oryzae"), supporting the utility of this platform for systematic gene function studies.
Collapse
|
15
|
de Boer P, Bronkhof J, Dukiќ K, Kerkman R, Touw H, van den Berg M, Offringa R. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches. Fungal Genet Biol 2013; 61:9-14. [PMID: 23994321 DOI: 10.1016/j.fgb.2013.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/28/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.
Collapse
Affiliation(s)
- Paulo de Boer
- Add2X Biosciences B.V., Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Characterization of a fungal thioesterase having Claisen cyclase and deacetylase activities in melanin biosynthesis. ACTA ACUST UNITED AC 2013; 19:1525-34. [PMID: 23261597 DOI: 10.1016/j.chembiol.2012.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022]
Abstract
Melanins are a broad class of darkly pigmented macromolecules formed by oxidative polymerization of phenolic monomers. In fungi, melanins are known virulence factors that contribute to pathogenicity. Their biosynthesis generally involves polymerization of 1,8-dihydroxynaphthalene via a 1,3,6,8-tetrahydroxynaphthalene (THN) precursor assembled by multidomain, nonreducing polyketide synthases. Convergent routes to THN have evolved in fungi. Parallel heptaketide and hexaketide pathways exist that utilize conventional C-terminal thioesterase/Claisen cyclase domains and separate side-chain deacylases. Here, in vitro characterization of Pks1 from Colletotrichum lagenarium establishes a true THN synthase with a bifunctional thioesterase (TE) catalyzing both cyclization and deacetylation of an enzyme-bound hexaketide substrate. Chimeric TE domains were generated by swapping lid regions of active sites between classes of melanin TEs to gain insight into this unprecedented catalysis of carbon-carbon bond making and breaking by an α/β-hydrolase fold enzyme.
Collapse
|
17
|
Nakai Y, Nakahira Y, Sumida H, Takebayashi K, Nagasawa Y, Yamasaki K, Akiyama M, Ohme-Takagi M, Fujiwara S, Shiina T, Mitsuda N, Fukusaki E, Kubo Y, Sato MH. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:761-75. [PMID: 23167462 DOI: 10.1111/tpj.12069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 05/18/2023]
Abstract
Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.
Collapse
Affiliation(s)
- Yusuke Nakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. THE NEW PHYTOLOGIST 2012; 196:1048-1059. [PMID: 23050791 PMCID: PMC3532656 DOI: 10.1111/j.1469-8137.2012.04350.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/23/2012] [Indexed: 05/13/2023]
Abstract
Evidence for the involvement of the nonhomologous end joining (NHEJ) pathway in Agrobacterium-mediated transferred DNA (T-DNA) integration into the genome of the model plant Arabidopsis remains inconclusive. Having established a rapid and highly efficient Agrobacterium-mediated transformation system in rice (Oryza sativa) using scutellum-derived calli, we examined here the involvement of the NHEJ pathway in Agrobacterium-mediated stable transformation in rice. Rice calli from OsKu70, OsKu80 and OsLig4 knockdown (KD) plants were infected with Agrobacterium harboring a sensitive emerald luciferase (LUC) reporter construct to evaluate stable expression and a green fluorescent protein (GFP) construct to monitor transient expression of T-DNA. Transient expression was not suppressed, but stable expression was reduced significantly, in KD plants. Furthermore, KD-Ku70 and KD-Lig4 calli exhibited an increase in the frequency of homologous recombination (HR) compared with control calli. In addition, suppression of OsKu70, OsKu80 and OsLig4 induced the expression of HR-related genes on treatment with DNA-damaging agents. Our findings suggest strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice, and that there is a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in rice.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Satoko Nonaka
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yong-Ik Kwon
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University641-12 Maioka-cho, Yokohama 244-0813, Japan
| | - Keishi Osakabe
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Institute for Environmental Science and Technology, Saitama UniversityShimo-Okubo 255, Sakura-ku, Saitama-shi, 338-8570 Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University641-12 Maioka-cho, Yokohama 244-0813, Japan
| |
Collapse
|
19
|
O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun MH, Lee YH, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, Ver Loren van Themaat E, Ma LJ, Vaillancourt LJ. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 2012; 44:1060-5. [PMID: 22885923 DOI: 10.1038/ng.2372] [Citation(s) in RCA: 618] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/05/2012] [Indexed: 11/09/2022]
Abstract
Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
Collapse
Affiliation(s)
- Richard J O'Connell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Frandsen RJN. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2011; 87:247-62. [DOI: 10.1016/j.mimet.2011.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 01/31/2023]
|
21
|
Appressorium Function in Colletotrichum orbiculare and Prospect for Genome Based Analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-22916-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|