1
|
Ding JL, Li L, Wei K, Zhang H, Keyhani NO, Feng MG, Ying SH. Alcohol dehydrogenase 1 acts as a scaffold protein in mitophagy essential for fungal pathogen adaptation to hypoxic niches within hosts. Int J Biol Macromol 2025; 295:139651. [PMID: 39793830 DOI: 10.1016/j.ijbiomac.2025.139651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Fungi have evolved diverse physiological adaptations to hypoxic environments. However, the mechanisms mediating such adaptations remain obscure for many filamentous pathogenic fungi. Here, we show that autophagy mediated mitophagy occurs in the insect pathogenic fungus Beauveria bassiana under hypoxic conditions induced by host cellular immune responses. Mitophagy was essential for fungal evasion from insect hemocyte encapsulation, allowing for fungal proliferation and colonization in the host hemocoel. Our data showed that B. bassiana autophagy-related protein 11 (Atg11) interacts with Atg8 as a scaffold mediating mitophagy. The mitochondrial protein Atg43 was demonstrated to act as a receptor for the selective mitophagy, directly interacting with Atg8 for the autophagosomal targeting. Alcohol dehydrogenase BbAdh1, as a novel scaffold protein, participates in mitophagy through interacting with Atg8 and Atg11 under hypoxic stress. BbAdh1 was critical for fungal intracellular redox homeostasis and energy metabolism under hypoxic conditions. These data provide a pathway for mitochondrial degradation via metabolism linked autophagosome- to-vacuole targeting during hypoxic stress. This mitophagy results in depletion of oxidative mitochondrial dependent functions as a cellular adaptation to the low oxygen levels.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wei K, Ding JL, Feng MG, Ying SH. Comparative Transcriptomics of the Entomopathogenic Fungus Beauveria bassiana Grown on Aerial Surface and in Liquid Environment. Curr Microbiol 2024; 81:249. [PMID: 38951199 DOI: 10.1007/s00284-024-03783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Beauveria bassiana, the causative agent of arthropod, proliferates in the host hemolymph (liquid environment) and shits to saprotrophic growth on the host cadaver (aerial surface). In this study, we used transcriptomic analysis to compare the gene expression modes between these two growth phases. Of 10,366 total predicted genes in B. bassiana, 10,026 and 9985 genes were expressed in aerial (AM) and submerged (SM) mycelia, respectively, with 9853 genes overlapped. Comparative analysis between two transcriptomes indicated that there were 1041 up-regulated genes in AM library when compared with SM library, and 1995 genes were down-regulated, in particular, there were 7085 genes without significant change in expression between two transcriptomes. Furthermore, of 25 amidase genes (AMD), BbAMD5 has high expression level in both transcriptomes, and its protein product was associated with cell wall in aerial and submerged mycelia. Disruption of BbAMD5 significantly reduced mycelial hydrophobicity, hydrophobin translocation, and conidiation on aerial plate. Functional analysis also indicated that BbAmd5 was involved in B. bassiana blastospore formation in broth, but dispensable for fungal virulence. This study revealed the high similarity in global expression mode between mycelia grown under two cultivation conditions.
Collapse
Affiliation(s)
- Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Silva AM, Pedrini N, Pupin B, Roberts DW, Rangel DEN. Asphyxiation of Metarhizium robertsii during mycelial growth produces conidia with increased stress tolerance via increased expression of stress-related genes. Fungal Biol 2023; 127:1209-1217. [PMID: 37495310 DOI: 10.1016/j.funbio.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Little is known about the impact of hypoxia and anoxia during mycelial growth on tolerance to different stress conditions of developing fungal conidia. Conidia of the insect-pathogenic fungus Metarhizium robertsii were produced on potato dextrose agar (PDA) medium under normoxia (control = normal oxygen concentrations), continuous hypoxia, and transient anoxia, as well as minimal medium under normoxia. The tolerance of the conidia produced under these different conditions was evaluated in relation to wet heat (heat stress), menadione (oxidative stress), potassium chloride (osmotic stress), UV radiation, and 4-nitroquinoline-1-oxide (=4-NQO genotoxic stress). Growth under hypoxic condition induced higher conidial tolerance of M. robertsii to menadione, KCl, and UV radiation. Transient anoxic condition induced higher conidial tolerance to KCl and UV radiation. Nutritional stress (i.e., minimal medium) induced higher conidial tolerance to heat, menadione, KCl, and UV radiation. However, neither of these treatments induced higher tolerance to 4-NQO. The gene hsp30 and hsp101 encoding a heat shock protein was upregulated under anoxic condition. In conclusion, growth under hypoxia and anoxia produced conidia with higher stress tolerances than conidia produced in normoxic condition. The nutritive stress generated by minimal medium, however, induced much higher stress tolerances. This condition also caused the highest level of gene expression in the hsp30 and hsp101 genes. Thus, the conidia produced under nutritive stress, hypoxia, and anoxia had greater adaptation to stress.
Collapse
Affiliation(s)
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisa Espaciais - INPE, São José dos Campos, SP, 12227-010, Brazil
| | - Donald W Roberts
- Department of Biology, Utah State University, Logan, UT, 84322-5305, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
4
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
5
|
de Sousa LO, Oliveira LN, Naves RB, Pereira ALA, Santiago Freitas E Silva K, de Almeida Soares CM, de Sousa Lima P. The dual role of SrbA from Paracoccidioides lutzii: a hypoxic regulator. Braz J Microbiol 2021; 52:1135-1149. [PMID: 34148216 PMCID: PMC8382145 DOI: 10.1007/s42770-021-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
The fungus Paracoccidioides lutzii is one of the species of the Paracoccidioides genus, responsible for a neglected human mycosis, endemic in Latin America, the paracoccidioidomycosis (PCM). In order to survive in the host, the fungus overcomes a hostile environment under low levels of oxygen (hypoxia) during the infectious process. The hypoxia adaptation mechanisms are variable among human pathogenic fungi and worthy to be investigated in Paracoccidoides spp. Previous proteomic results identified that P. lutzii responds to hypoxia and it has a functional homolog of the SrbA transcription factor, a well-described hypoxic regulator. However, the direct regulation of genes by SrbA and the biological processes it governs while performing protein interactions have not been revealed yet. The goal of this study was to demonstrate the potential of SrbA targets genes in P. lutzii. In addition, to show the SrbA three-dimensional aspects as well as a protein interaction map and important regions of interaction with predicted targets. The results show that SrbA-regulated genes were involved with several biological categories, such as metabolism, energy, basal processes for cell maintenance, fungal morphogenesis, defense, virulence, and signal transduction. Moreover, in order to investigate the SrbA's role as a protein, we performed a 3D simulation and also a protein-protein network linked to this hypoxic regulator. These in silico analyses revealed relevant aspects regarding the biology of this pathogen facing hypoxia and highlight the potential of SrbA as an antifungal target in the future.
Collapse
Affiliation(s)
- Lorena Ordones de Sousa
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Raphaela Barbosa Naves
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - André Luiz Araújo Pereira
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Kleber Santiago Freitas E Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil.
| |
Collapse
|
6
|
Exploration and characterization of hypoxia-inducible endogenous promoters in Aspergillus niger. Appl Microbiol Biotechnol 2021; 105:5529-5539. [PMID: 34254155 DOI: 10.1007/s00253-021-11417-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
Aspergillus niger is widely used for the efficient production of organic acids and enzyme preparations. However, this organism lacks basic genetic elements for dynamic control, especially inducible promoters that can respond to specific environmental signals. Since these are desirable for better adaptation of fermentation to large-scale industrial production, herein, we have identified the two first hypoxia-inducible promoters in A. niger, PsrbB and PfhbA. Their performance under high or low oxygen conditions was monitored using two reporter proteins, green fluorescent protein (EGFP) and β-glucuronidase (GUS). For comparison, basal expression of the general strong promoter PgpdA was lower than PsrbB but higher than PfhbA. However, under hypoxia, both promoters showed higher expression than under hyperoxia, and these values were also higher than those observed for PgpdA. For PsrbB, strength under hypoxia was ~2-3 times higher than under hyperoxia (for PfhbA, 3-9 times higher) and ~2.5-5 times higher than for PgpdA (for PfhbA, 2-3 times higher). Promoter truncation analysis showed that the PsrbB fragment -1024 to -588 bp is the core region that determines hypoxia response. KEY POINTS: The first identification of two hypoxia-inducible promoters in A. niger is a promising tool for modulation of target genes under hypoxia. Two reporter genes revealed a different activity and responsiveness to hypoxia of PfhbA and PsrbB promoters, which is relevant for the development of dynamic metabolic regulation of A. niger fermentation. PsrbB promoter truncation and bioinformatics analysis is the foundation for further research.
Collapse
|
7
|
Abstract
C. neoformans is the main causative agent of fungal meningitis that is responsible for about 15% of all HIV-related deaths. Although an obligate aerobic fungus, C. neoformans is well adapted to hypoxia conditions that the fungus could encounter in the host or the environment. To aerobic organisms, low oxygen tension (hypoxia) presents a physiological challenge. To cope with such a challenge, metabolic pathways such as those used in energy production have to be adjusted. Many of such metabolic changes are orchestrated by the conserved hypoxia-inducible factors (HIFs) in higher eukaryotes. However, there are no HIF homologs in fungi or protists, and not much is known about conductors that direct hypoxic adaptation in lower eukaryotes. Here, we discovered that the transcription factor Pas2 controls the transcript levels of metabolic genes and consequently rewires metabolism for hypoxia adaptation in the human fungal pathogen Cryptococcus neoformans. Through genetic, proteomic, and biochemical analyses, we demonstrated that Pas2 directly interacts with another transcription factor, Rds2, in regulating cryptococcal hypoxic adaptation. The Pas2/Rds2 complex represents the key transcription regulator of metabolic flexibility. Its regulation of metabolism rewiring between respiration and fermentation is critical to our understanding of the cryptococcal response to low levels of oxygen.
Collapse
|
8
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
9
|
Mahmoud YAG, Abd El-Zaher EH. Recent advancements in biofuels production with a special attention to fungi. SUSTAINABLE BIOFUELS 2021:73-99. [DOI: 10.1016/b978-0-12-820297-5.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Songserm P, Srimongkol P, Thitiprasert S, Tanasupawat S, Cheirsilp B, Assabumrungrat S, Karnchanatat A, Thongchul N. Differential Gene Expression Analysis
of Aspergillus terreus Reveals Metabolic
Response and Transcription Suppression under Dissolved Oxygen and
pH Stress. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020060101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Zain Ul Arifeen M, Chu C, Yang X, Liu J, Huang X, Ma Y, Liu X, Xue Y, Liu C. The anaerobic survival mechanism of Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Environ Microbiol 2020; 23:1174-1185. [PMID: 33215844 DOI: 10.1111/1462-2920.15332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Fungi dominated the eukaryotic group in the anaerobic sedimentary environment below the ocean floor where they play an essential ecological role. However, the adaptive mechanism of fungi to these anaerobic environments is still unclear. Here, we reported the anaerobic adaptive mechanism of Schizophyllum commune 20R-7-F01, isolated from deep coal-bearing sediment down to ~2 km below the seafloor, through biochemical, metabolomic and transcriptome analyses. The fungus grows well, but the morphology changes obviously and the fruit body develops incompletely under complete hypoxia. Compared with aerobic conditions, the fungus has enhanced branched-chain amino acid biosynthesis and ethanol fermentation under anaerobic conditions, and genes related to these metabolisms have been significantly up-regulated. Additionally, the fungus shows novel strategies for synthesizing ethanol by utilizing both glycolysis and ethanol fermentation pathways. These findings suggest that the subseafloor fungi may adopt multiple mechanisms to cope with lack of oxygen.
Collapse
Affiliation(s)
- Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinyi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yunan Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE, Torok T, Wang CCC, Venkateswaran K. Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions. Front Microbiol 2019; 10:1013. [PMID: 31156574 PMCID: PMC6529585 DOI: 10.3389/fmicb.2019.01013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi have been associated with extreme habitats, including nuclear power plant accident sites and the International Space Station (ISS). Due to their immense adaptation and phenotypic plasticity capacities, fungi may thrive in what seems like uninhabitable niches. This study is the first report of fungal survival after exposure of monolayers of conidia to simulated Mars conditions (SMC). Conidia of several Chernobyl nuclear accident-associated and ISS-isolated strains were tested for UV-C and SMC sensitivity, which resulted in strain-dependent survival. Strains surviving exposure to SMC for 30 min, ISSFT-021-30 and IMV 00236-30, were further characterized for proteomic, and metabolomic changes. Differential expression of proteins involved in ribosome biogenesis, translation, and carbohydrate metabolic processes was observed. No significant metabolome alterations were revealed. Lastly, ISSFT-021-30 conidia re-exposed to UV-C exhibited enhanced UV-C resistance when compared to the conidia of unexposed ISSFT-021.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Department of Ecology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
13
|
Suparmin A, Kato T, Takemoto H, Park EY. Metabolic comparison of aerial and submerged mycelia formed in the liquid surface culture of Cordyceps militaris. Microbiologyopen 2019; 8:e00836. [PMID: 30924317 PMCID: PMC6741141 DOI: 10.1002/mbo3.836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
An entomopathogenic fungus, Cordyceps sp. has been known to produce cordycepin which is a purine nucleoside antimetabolite and antibiotic with potential anticancer, antioxidant and anti-inflammatory activities. Interestingly, Cordyceps militaris produces significantly higher amount in a liquid surface culture than in a submerged culture. The liquid surface culture consists of mycelia growing into the air (aerial mycelia) and mycelia growing toward the bottom into the medium (submerged mycelia). In this study, to clarify roles of aerial and submerged mycelia of C. militaris in the cordycepin production the difference in metabolism between these mycelia was investigated. From transcriptomic analyses of the aerial and submerged mycelia at the culture of 5, 12 and 19 days, the metabolism of the submerged mycelia switched from the oxidative phosphorylation to the fermentation pathway. This activated the pentose phosphate pathway to provide building block materials for the nucleotide biosynthetic pathway. Under hypoxic conditions, the 5-aminolevulinic acid synthase (CCM_01504), delta-aminolevulinic acid dehydratase (CCM_00935), coproporphyrinogen III oxidase (CCM_07483) and cytochrome c oxidase 15 (CCM_05057) genes of heme biosynthesis were significantly upregulated. In addition, the liquid surface culture revealed that metabolite coproporhyrinogen III and glycine, the product and precursor of heme, were increased at 12th day and decreased at 19th day, respectively. These results indicate that the submerged mycelia induce the activation of iron acquisition, the ergosterol biosynthetic pathway, and the iron cluster genes of cordycepin biosynthesis in a hypoxic condition. Even though, the expression of the cluster genes of cordycepin biosynthesis was not significantly different in both types of mycelia.
Collapse
Affiliation(s)
- Ahmad Suparmin
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Hiroyuki Takemoto
- Instrumental Research Support Office, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
14
|
Xu W, Peng J, Li D, Tsui CKM, Long Z, Wang Q, Mei H, Liu W. Transcriptional profile of the human skin pathogenic fungus Mucor irregularis in response to low oxygen. Med Mycol 2018; 56:631-644. [PMID: 29420826 DOI: 10.1093/mmy/myx081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Mucormycosis is one of the most invasive mycosis and has caused global concern in public health. Cutaneous mucormycosis caused by Mucor irregularis (formerly Rhizomucor variabilis) is an emerging disease in China. To survive in the human body, M. irregularis must overcome the hypoxic (low oxygen) host microenvironment. However, the exact molecular mechanism of its pathogenicity and adaptation to low oxygen stress environment is relatively unexplored. In this study, we used Illumina HiSeq technology (RNA-Seq) to determine and compare the transcriptome profile of M. irregularis CBS103.93 under normal growth condition and hypoxic stress. Our analyses demonstrated a series of genes involved in TCA, glyoxylate cycle, pentose phosphate pathway, and GABA shunt were down-regulated under hypoxic condition, while certain genes in the lipid/fatty acid metabolism and endocytosis were up-regulated, indicating that lipid metabolism was more active under hypoxia. Comparing the data with other important human pathogenic fungi such as Aspergillus spp., we found that the gene expression pattern and metabolism in responses to hypoxia in M. irregularis were unique and different. We proposed that these metabolic changes can represent a species-specific hypoxic adaptation in M. irregularis, and we hypothesized that M. irregularis could use the intra-lipid pool and lipid secreted in the infection region, as an extracellular nutrient source to support its hypoxic growth. Characterizing the significant differential gene expression in this species could be beneficial to uncover their role in hypoxia adaptation and fungalpathogenesis and further facilitate the development of novel targets in disease diagnosis and treatment against mucormycosis.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Jingwen Peng
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Clement K M Tsui
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Zhimin Long
- Demo Lab, Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, IBP, Shanghai, 200335, People's Republic of China
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Huan Mei
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Shimizu M. NAD +/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi. Biosci Biotechnol Biochem 2018; 82:216-224. [PMID: 29327656 DOI: 10.1080/09168451.2017.1422972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi are used to produce fermented foods, organic acids, beneficial secondary metabolites and various enzymes. During such processes, these fungi balance cellular NAD+:NADH ratios to adapt to environmental redox stimuli. Cellular NAD(H) status in fungal cells is a trigger of changes in metabolic pathways including those of glycolysis, fermentation, and the production of organic acids, amino acids and secondary metabolites. Under hypoxic conditions, high NADH:NAD+ ratios lead to the inactivation of various dehydrogenases, and the metabolic flow involving NAD+ is down-regulated compared with normoxic conditions. This review provides an overview of the metabolic mechanisms of filamentous fungi under hypoxic conditions that alter the cellular NADH:NAD+ balance. We also discuss the relationship between the intracellular redox balance (NAD/NADH ratio) and the production of beneficial secondary metabolites that arise from repressing the HDAC activity of sirtuin A via Nudix hydrolase A (NdxA)-dependent NAD+ degradation.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- a Faculty of Agriculture, Department of Applied Biological Chemistry , Meijo University , Nagoya , Japan
| |
Collapse
|
16
|
Masuo S, Komatsuzaki A, Takeshita N, Itoh E, Takaaki O, Zhou S, Takaya N. Spatial heterogeneity of glycogen and its metabolizing enzymes in Aspergillus nidulans hyphal tip cells. Fungal Genet Biol 2017; 110:48-55. [PMID: 29175367 DOI: 10.1016/j.fgb.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023]
Abstract
Glycogen is a homopolymer of glucose and a ubiquitous cellular-storage carbon. This study investigated which Aspergillus nidulans genes are involved in glycogen metabolism. Gene disruptants of predicted glycogen synthase (gsyA) and glycogenin (glgA) genes accumulated less cellular glycogen than the wild type strain, indicating that GsyA and GlgA synthesize glycogen similarly to other eukaryotes. Meanwhile, gene disruption of gphA encoding glycogen phosphorylase increased the amount of glycogen to a higher degree than wild type during the stationary phase that accompanies carbon-source limitation. GFP-tagged GsyA and GphA were distributed in the cytosol and formed punctate and filamentous structures, respectively. Carbon starvation resulted in elongated GphA-GFP filaments and increased numbers of filaments. These structures were more frequently located in the basal regions of tip cells and adjacent cells than in the apical regions of tip cells. Cellular glycogen visualized by incorporation of a fluorescent glucose analog accumulated in cytoplasmic puncta that were more prevalent in the basal regions, a pattern similar to that seen for GsyA. The colocalization of glycogen and GsyA at punctate structures in tip and sub-apical cells likely represents the cellular machinery for synthesizing glycogen. More frequent colocalization in the basal, rather than tip cell apical regions indicated that tip cells have differentiated subcellular regions for glycogen synthesis. Our findings regarding glycogen, GsyA and GphA distribution evoke the spatial heterogeneity of glycogen metabolism in fungal hyphae.
Collapse
Affiliation(s)
- Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Airi Komatsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Norio Takeshita
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Eriko Itoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Okazoe Takaaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shengmin Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
17
|
Burr R, Espenshade PJ. Oxygen-responsive transcriptional regulation of lipid homeostasis in fungi: Implications for anti-fungal drug development. Semin Cell Dev Biol 2017; 81:110-120. [PMID: 28851600 DOI: 10.1016/j.semcdb.2017.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
Low oxygen adaptation is essential for aerobic fungi that must survive in varied oxygen environments. Pathogenic fungi in particular must adapt to the low oxygen host tissue environment in order to cause infection. Maintenance of lipid homeostasis is especially important for cell growth and proliferation, and is a highly oxygen-dependent process. In this review, we focus on recent advances in our understanding of the transcriptional regulation and coordination of the low oxygen response across fungal species, paying particular attention to pathogenic fungi. Comparison of lipid homeostasis pathways in these organisms suggests common mechanisms of transcriptional regulation and points toward untapped potential to target low oxygen adaptation in antifungal development.
Collapse
Affiliation(s)
- Risa Burr
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter J Espenshade
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Itoh E, Shigemoto R, Oinuma KI, Shimizu M, Masuo S, Takaya N. Sirtuin A regulates secondary metabolite production by Aspergillus nidulans. J GEN APPL MICROBIOL 2017; 63:228-235. [PMID: 28674377 DOI: 10.2323/jgam.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Late-stage cultures of filamentous fungi under nutrient starvation produce valuable secondary metabolites such as pharmaceuticals and pigments, as well as deleterious mycotoxins, all of which have remarkable structural diversity and wide-spectrum bioactivity. The fungal mechanisms regulating the synthesis of many of these compounds are not fully understood, but sirtuin A (SirA) is a key factor that initiates production of the secondary metabolites, sterigmatocystin and penicillin G, by Aspergillus nidulans. Sirtuin is a ubiquitous NAD+-dependent histone deacetylase that converts euchromatin to heterochromatin and silences gene expression. In this study, we have investigated the transcriptome of a sirA gene disruptant (SirAΔ), and found that SirA concomitantly repressed the expression of gene clusters for synthesizing secondary metabolites and activated that of others. Extracts of SirAΔ cultures grown on solid agar and analyzed by HPLC indicated that SirA represses the production of austinol, dehydroaustinol and sterigmatocystin. These results indicated that SirA is a transcriptional regulator of fungal secondary metabolism.
Collapse
Affiliation(s)
- Eriko Itoh
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | | | - Ken-Ichi Oinuma
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Motoyuki Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
19
|
Itoh E, Odakura R, Oinuma KI, Shimizu M, Masuo S, Takaya N. Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. J Biol Chem 2017; 292:11043-11054. [PMID: 28465348 PMCID: PMC5491787 DOI: 10.1074/jbc.m116.753772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/20/2017] [Indexed: 11/06/2022] Open
Abstract
In response to limited nutrients, fungal cells exit the primary growth phase, enter the stationary phase, and cease proliferation. Although fundamental to microbial physiology in many environments, the regulation of this transition is poorly understood but likely involves many transcriptional regulators. These may include the sirtuins, which deacetylate acetyllysine residues of histones and epigenetically regulate global transcription. Therefore, we investigated the role of a nuclear sirtuin, sirtuin E (SirE), from the ascomycete fungus Aspergillus nidulans An A. nidulans strain with a disrupted sirE gene (SirEΔ) accumulated more acetylated histone H3 during the stationary growth phase when sirE was expressed at increased levels in the wild type. SirEΔ exhibited decreased mycelial autolysis, conidiophore development, sterigmatocystin biosynthesis, and production of extracellular hydrolases. Moreover, the transcription of the genes involved in these processes was also decreased, indicating that SirE is a histone deacetylase that up-regulates these activities in the stationary growth phase. Transcriptome analyses indicated that SirE repressed primary carbon and nitrogen metabolism and cell-wall synthesis. Chromatin immunoprecipitation demonstrated that SirE deacetylates acetylated Lys-9 residues in histone H3 at the gene promoters of α-1,3-glucan synthase (agsB), glycolytic phosphofructokinase (pfkA), and glyceraldehyde 3-phosphate (gpdA), indicating that SirE represses the expression of these primary metabolic genes. In summary, these results indicate that SirE facilitates the metabolic transition from the primary growth phase to the stationary phase. Because the observed gene expression profiles in stationary phase matched those resulting from carbon starvation, SirE appears to control this metabolic transition via a mechanism associated with the starvation response.
Collapse
Affiliation(s)
- Eriko Itoh
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Rika Odakura
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken-Ichi Oinuma
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoyuki Shimizu
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Masuo
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoki Takaya
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
20
|
A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism. PLoS Genet 2017; 13:e1006737. [PMID: 28467421 PMCID: PMC5435353 DOI: 10.1371/journal.pgen.1006737] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/17/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26 mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution. In nature, filamentous fungi sense nutrient availability in the surrounding environment and adjust their metabolism for optimal utilization, growth and reproduction. Carbon and nitrogen are two of major elements required for life. Within cells, signals from carbon and nitrogen catabolism are integrated, resulting in balanced metabolic activities for optimal carbon and nitrogen distribution. However, coordination of carbon and nitrogen metabolism is often missed in studies that are based on comparisons between single carbon or nitrogen sources. In this study, we performed systematic transcriptional profiling of Neurospora crassa on different components of starch and identified the transcription factor COL-26 to be an essential regulator for starch utilization and needed for coordinating carbon and nitrogen regulation and metabolism. Proteins with sequence similar to COL-26 widely exist among ascomycete fungi. Here we provide experimental evidence for shared function of a col-26 ortholog in Trichoderma reesei. Our finding provides novel insight into how the regulation of carbon and nitrogen metabolism can be integrated in filamentous fungi by the function of COL-26 and which may aid in the rational design of fungal strains for industrial purposes.
Collapse
|
21
|
Nižnanský Ľ, Varečka Ľ, Kryštofová S. Disruption of GABA shunt affects Trichoderma atroviride response to nutritional and environmental stimuli. ACTA CHIMICA SLOVACA 2016. [DOI: 10.1515/acs-2016-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The fungus Trichoderma atroviride is a member of the genus Trichoderma to which belong many species known for high cellulase production, formation of various antibiotics, plant biocontrol and antagonistic activities against other fungi. Deletion of T. atroviride glutamate decarboxylase gene gad caused minor defects in germination, hyphal branching, slower growth and disruption of conidiation pattern. GABA can be used by fungi as a secondary carbon source and as a primary nitrogen source. We analyzed the effect of different nutrient compositions and environmental conditions (light and temperature) on growth and development of T. atroviride in strains defective in the functional GAD. The gad mutants grown on NH4NO3 as a sole carbon source grew slower and formed conidiation bands closer to each other which was clearly demonstrated during their cultivation in race tubes. The gad mutants exhibited slightly lower apical extension growth rate at the room temperature but their apical extension rate dropped significantly at 30 °C. Higher temperature had also inhibitory effect on gad mutant conidiation, whereas 30 °C seems optimal temperature for the parental strain. The optimal temperature for gad mutant conidiation was lower than in F534, about 25 °C.
Collapse
Affiliation(s)
- Ľuboš Nižnanský
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava
| | - Ľudovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava
| |
Collapse
|
22
|
Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors. Sci Rep 2016; 6:34644. [PMID: 27708366 PMCID: PMC5052561 DOI: 10.1038/srep34644] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/14/2016] [Indexed: 11/26/2022] Open
Abstract
We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin.
Collapse
|
23
|
Shimizu M, Masuo S, Itoh E, Zhou S, Kato M, Takaya N. Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans. Biosci Biotechnol Biochem 2016; 80:1768-75. [DOI: 10.1080/09168451.2016.1158631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Thiamine pyrophosphate (TPP) is a critical cofactor and its biosynthesis is under the control of TPP availability. Here we disrupted a predicted thiA gene of the fungus Aspergillus nidulans and demonstrated that it is essential for synthesizing cellular thiamine. The thiamine riboswitch is a post-transcriptional mechanism for TPP to repress gene expression and it is located on A. nidulans thiA pre-messenger RNA. The thiA riboswitch was not fully derepressed under thiamine-limited conditions, and fully derepressed under environmental stressors. Upon exposure to hypoxic stress, the fungus accumulated more ThiA and NmtA proteins, and more thiamine than under aerobic conditions. The thiA gene was required for the fungus to upregulate hypoxic branched-chain amino acids and ethanol fermentation that involve enzymes containing TPP. These findings indicate that hypoxia modulates thiA expression through the thiamine riboswitch, and alters cellular fermentation mechanisms by regulating the activity of the TPP enzymes.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Agriculture, Department of Applied Biological Chemistry, Meijo University, Nagoya, Japan
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Eriko Itoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shengmin Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masashi Kato
- Faculty of Agriculture, Department of Applied Biological Chemistry, Meijo University, Nagoya, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
24
|
Hagiwara D, Sakamoto K, Abe K, Gomi K. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era. Biosci Biotechnol Biochem 2016; 80:1667-80. [PMID: 27007956 DOI: 10.1080/09168451.2016.1162085] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era."
Collapse
Affiliation(s)
- Daisuke Hagiwara
- a Medical Mycology Research Center , Chiba University , Chiba , Japan
| | | | - Keietsu Abe
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
25
|
Lima PDS, Chung D, Bailão AM, Cramer RA, Soares CMDA. Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus. PLoS Negl Trop Dis 2015; 9:e0004282. [PMID: 26659387 PMCID: PMC4686304 DOI: 10.1371/journal.pntd.0004282] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypoxic microenvironments are generated during fungal infection. It has been described that to survive in the human host, fungi must also tolerate and overcome in vivo microenvironmental stress conditions including low oxygen tension; however nothing is known how Paracoccidioides species respond to hypoxia. The genus Paracoccidioides comprises human thermal dimorphic fungi and are causative agents of paracoccidioidomycosis (PCM), an important mycosis in Latin America. METHODOLOGY/PRINCIPAL FINDINGS In this work, a detailed hypoxia characterization was performed in Paracoccidioides. Using NanoUPLC-MSE proteomic approach, we obtained a total of 288 proteins differentially regulated in 12 and 24 h of hypoxia, providing a global view of metabolic changes during this stress. In addition, a functional characterization of the homologue to the most important molecule involved in hypoxia responses in other fungi, the SREBP (sterol regulatory element binding protein) was performed. We observed that Paracoccidioides species have a functional homologue of SREBP, named here as SrbA, detected by using a heterologous genetic approach in the srbA null mutant in Aspergillus fumigatus. Paracoccidioides srbA (PbsrbA), in addition to involvement in hypoxia, is probable involved in iron adaptation and azole drug resistance responses. CONCLUSIONS/SIGNIFICANCE In this study, the hypoxia was characterized in Paracoccidioides. The first results can be important for a better understanding of the fungal adaptation to the host and improve the arsenal of molecules for the development of alternative treatment options in future, since molecules related to fungal adaptation to low oxygen levels are important to virulence and pathogenesis in human pathogenic fungi.
Collapse
Affiliation(s)
- Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
26
|
Choi J, Chung H, Lee GW, Koh SK, Chae SK, Lee YH. Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus, Magnaporthe oryzae. PLoS One 2015; 10:e0134939. [PMID: 26241858 PMCID: PMC4524601 DOI: 10.1371/journal.pone.0134939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen in the rice-growing area. This fungus has a biotrophic phase early in infection and later switches to a necrotrophic lifestyle. During the biotrophic phase, the fungus competes with its host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified that 1,047 genes were up-regulated in response to hypoxia. Those genes are involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms, and are well-conserved among three fungal species. In addition, null mutants of two hypoxia-responsive genes were generated and their roles in fungal development and pathogenicity tested. The mutant for the sterol regulatory element-binding protein gene, MoSRE1, exhibited increased sensitivity to a hypoxia-mimicking agent, increased conidiation, and delayed invasive growth within host cells, which is suggestive of important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant, for the alcohol dehydrogenase gene MoADH1, showed no defect in the hypoxia-mimicking condition (using cobalt chloride) and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxic condition with experimental validations would provide new insights into fungal development and pathogenicity in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
| | - Gir-Won Lee
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
| | - Sun-Ki Koh
- Department of Biochemistry, Paichai University, Daejeon 302–735, Korea
| | - Suhn-Kee Chae
- Department of Biochemistry, Paichai University, Daejeon 302–735, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151–921, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151–921, Korea
| |
Collapse
|
27
|
Insights into the cellular responses to hypoxia in filamentous fungi. Curr Genet 2015; 61:441-55. [PMID: 25911540 DOI: 10.1007/s00294-015-0487-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 01/06/2023]
Abstract
Most eukaryotes require molecular oxygen for growth. In general, oxygen is the terminal electron acceptor of the respiratory chain and represents an important substrate for the biosynthesis of cellular compounds. However, in their natural environment, such as soil, and also during the infection, filamentous fungi are confronted with low levels of atmospheric oxygen. Transcriptome and proteome studies on the hypoxic response of filamentous fungi revealed significant alteration of the gene expression and protein synthesis upon hypoxia. These analyses discovered not only common but also species-specific responses to hypoxia with regard to NAD(+) regeneration systems and other metabolic pathways. A surprising outcome was that the induction of oxidative and nitrosative stress defenses during oxygen limitation represents a general trait of adaptation to hypoxia in many fungi. The interplay of these different stress responses is poorly understood, but recent studies have shown that adaptation to hypoxia contributes to virulence of pathogenic fungi. In this review, results on metabolic changes of filamentous fungi during adaptation to hypoxia are summarized and discussed.
Collapse
|
28
|
Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol. Fungal Genet Biol 2015; 77:22-30. [DOI: 10.1016/j.fgb.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022]
|
29
|
Identification of hypoxia-inducible target genes of Aspergillus fumigatus by transcriptome analysis reveals cellular respiration as an important contributor to hypoxic survival. EUKARYOTIC CELL 2014; 13:1241-53. [PMID: 25084861 DOI: 10.1128/ec.00084-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aspergillus fumigatus is an opportunistic, airborne pathogen that causes invasive aspergillosis in immunocompromised patients. During the infection process, A. fumigatus is challenged by hypoxic microenvironments occurring in inflammatory, necrotic tissue. To gain further insights into the adaptation mechanism, A. fumigatus was cultivated in an oxygen-controlled chemostat under hypoxic and normoxic conditions. Transcriptome analysis revealed a significant increase in transcripts associated with cell wall polysaccharide metabolism, amino acid and metal ion transport, nitrogen metabolism, and glycolysis. A concomitant reduction in transcript levels was observed with cellular trafficking and G-protein-coupled signaling. To learn more about the functional roles of hypoxia-induced transcripts, we deleted A. fumigatus genes putatively involved in reactive nitrogen species detoxification (fhpA), NAD(+) regeneration (frdA and osmA), nitrogen metabolism (niaD and niiA), and respiration (rcfB). We show that the nitric oxygen (NO)-detoxifying flavohemoprotein gene fhpA is strongly induced by hypoxia independent of the nitrogen source but is dispensable for hypoxic survival. By deleting the nitrate reductase gene niaD, the nitrite reductase gene niiA, and the two fumarate reductase genes frdA and osmA, we found that alternative electron acceptors, such as nitrate and fumarate, do not have a significant impact on growth of A. fumigatus during hypoxia, but functional mitochondrial respiratory chain complexes are essential under these conditions. Inhibition studies indicated that primarily complexes III and IV play a crucial role in the hypoxic growth of A. fumigatus.
Collapse
|
30
|
Woo S, Denis V, Won H, Shin K, Lee G, Lee TK, Yum S. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool Stud 2013. [DOI: 10.1186/1810-522x-52-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
In this study, we investigated transcription and enzyme level responses of mussels Mytilus galloprovincialis exposed to hypoxic conditions. Genes for catalase (CAT), cytochrome P450, glutathione S-transferase (GST), metallothionein, superoxide dismutase (SOD), cytochrome c oxidase subunit 1 (COX-1), and NADH dehydrogenase subunit 2 were selected for study. Transcriptional changes were investigated in mussels exposed to hypoxia for 24 and 48 h and were compared to changes in control mussels maintained at normal oxygen levels. Activities of CAT, GST, and SOD enzymes, and lipid peroxidation (LPO) were also investigated in mussels following exposure to hypoxia for 24, 48, and 72 h.
Results
Relative to the control group, the CAT activity decreased in all hypoxia treatments, while the activity of GST significantly increased in mussels exposed to hypoxia for 24 and 48 h, but decreased in those exposed for 72 h. The LPO levels were significantly higher in mussels in the 24- and 48-h hypoxia treatments than those in the control mussels, but there was no significant change in the SOD activities among all hypoxia treatments. Messenger RNA levels for the CAT, cytochrome P450, GST, metallothionein, and SOD genes were not significantly affected by hypoxic conditions for 48 h, but the expressions of the COX-1 and NADH dehydrogenase subunit 2 genes were significantly repressed in mussels in both the 24- and 48-h exposure treatments.
Conclusions
These results demonstrate the transcriptional stability and changes among several genes related to oxidative stress under oxygen-depletion conditions in M. galloprovincialis and provide useful information about the modulation of antioxidant enzyme activities induced by hypoxia in a marine animal.
Collapse
|
31
|
Shimizu M, Takaya N. Nudix hydrolase controls nucleotides and glycolytic mechanisms in hypoxic Aspergillus nidulans. Biosci Biotechnol Biochem 2013; 77:1888-93. [PMID: 24018665 DOI: 10.1271/bbb.130334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleoside diphosphates linked to moiety X (Nudix) hydrolase functions were investigated in hypoxic Aspergillus nidulans cells. Among three nudix hydrolase isozymes, NdxA transcription was up-regulated under oxygen (O2)-limited conditions. A gene disruptant of the NdxA-encoding gene (NdxAΔ) accumulated more NADH and ADP-ribose than the wild type (WT) under the same conditions. These results indicate that NdxA hydrolyzes these nucleotides in hypoxic fungal cells, which accords with the thesis that NdxA hydrolyzes NADH and ADP-ribose. Under O2-limited conditions, NdxAΔ decreased glucose consumption, the production of ethanol and lactate, cellular ATP levels, and growth as compared with WT. WT cultured under hypoxia converted exogenously added fructose 1,6-bisphophate, a glycolytic intermediate, to glyceraldehyde 3-phosphate (GAP). The hypoxic NdxAΔ cells accumulated 3.0- to 4.2-fold more GAP than WT under the same conditions, indicating that NdxA increased GAP oxidation by a glycolytic mechanism. Steady-state kinetics indicated that NADH and ADP-ribose competitively inhibited fungal GAP dehydrogenase (GAPDH) with Ki values of 34- and 55-µM, respectively. These results indicate that NdxA hydrolyzes cellular NADH- and ADP-ribose, derepresses GAPDH activity, and hence up-regulates glycolysis in hypoxic A. nidulans cells. That NdxAΔ consumed less pyruvate and tricarboxylate cycle intermediates than WT suggests that NdxA-dependent hydrolysis of nucleotides controls the catabolism of these carbon sources under O2-limited conditions.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | | |
Collapse
|
32
|
Nižňanský L, Kryštofová S, Vargovič P, Kaliňák M, Simkovič M, Varečka L. Glutamic acid decarboxylase gene disruption reveals signalling pathway(s) governing complex morphogenic and metabolic events in Trichoderma atroviride. Antonie van Leeuwenhoek 2013; 104:793-807. [PMID: 23912446 DOI: 10.1007/s10482-013-9989-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
Abstract
Glutamate decarboxylase (GAD) catalyses decarboxylation of glutamate to gamma-aminobutyrate (GABA) in a metabolic pathway connected to citrate cycle and known as GABA shunt. The gene (gad) was disrupted in Trichoderma atroviride CCM F-534 and viable mutants were characterized. Two of them were found to arise by homologous recombination and were devoid of both GAD activity and GABA. Mutants grew slower as compared to the wild type (F534). In the submerged culture, mutants developed less CO2 and consumed less O2 than the F534 without changing their respiratory quotients. Hyphae of mutants were more ramified than those of F534. Their ramification, in contrast to F534, was not increased by cyclosporin A, a drug causing hyphae ramification of several fungi and which is a calcineurin/cyclophilin inhibitor, or by FK506. Rapamycin, which is a cyclophilin but not calcineurin inhibitor, had a different effect on hyphae ramification in F534 and mutants. To examine the presence of GABA receptors in the fungus the effect of mammalian GABA-receptor modulators, such as bicuculline, gabapentin or carbamazepine on fungal morphology were investigated. Conidia of mutants germinated in a multipolar manner more frequently (up to 80 %) than those of F534. This trait was modified with cyclosporine A, FK506 and GABA receptor modulators in a different manner. Transport of chlorides, an intimate feature of GABA-regulated receptors/channels in animal cells, was measured in vegetative mycelia by means (36)Cl(-) uptake. It was significantly reduced in gad mutants. The results suggest that T. atroviride possesses a signalling pathway that involves GABA, putative GABA receptor(s), calcineurin, target of rapamycin and chloride transporter(s) to regulate physiological functions.
Collapse
Affiliation(s)
- Luboš Nižňanský
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia,
| | | | | | | | | | | |
Collapse
|
33
|
Georgakopoulos P, Lockington RA, Kelly JM. The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex in Aspergillus nidulans. PLoS One 2013; 8:e65221. [PMID: 23762321 PMCID: PMC3676421 DOI: 10.1371/journal.pone.0065221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/23/2013] [Indexed: 01/15/2023] Open
Abstract
A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.
Collapse
Affiliation(s)
- Paraskevi Georgakopoulos
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Robin A. Lockington
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Joan M. Kelly
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
34
|
Caspeta L, Nielsen J. Toward systems metabolic engineering ofAspergillusandPichiaspecies for the production of chemicals and biofuels. Biotechnol J 2013; 8:534-44. [DOI: 10.1002/biot.201200345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/19/2013] [Accepted: 03/14/2013] [Indexed: 12/11/2022]
|
35
|
Siso MIG, Becerra M, Maceiras ML, Vázquez ÁV, Cerdán ME. The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnol Lett 2012; 34:2161-73. [DOI: 10.1007/s10529-012-1039-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
|
36
|
Abstract
Over the last 3 decades, the frequency of life-threatening human fungal infections has increased as advances in medical therapies, solid-organ and hematopoietic stem cell transplantations, an increasing geriatric population, and HIV infections have resulted in significant rises in susceptible patient populations. Although significant advances have been made in understanding how fungi cause disease, the dynamic microenvironments encountered by fungi during infection and the mechanisms by which they adapt to these microenvironments are not fully understood. As inhibiting and preventing in vivo fungal growth are main goals of antifungal therapies, understanding in vivo fungal metabolism in these host microenvironments is critical for the improvement of existing therapies or the design of new approaches. In this minireview, we focus on the emerging appreciation that pathogenic fungi like Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are exposed to oxygen-limited or hypoxic microenvironments during fungal pathogenesis. The implications of these in vivo hypoxic microenvironments for fungal metabolism and pathogenesis are discussed with an aim toward understanding the potential impact of hypoxia on invasive fungal infection outcomes.
Collapse
|
37
|
Barker BM, Kroll K, Vödisch M, Mazurie A, Kniemeyer O, Cramer RA. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics 2012; 13:62. [PMID: 22309491 PMCID: PMC3293747 DOI: 10.1186/1471-2164-13-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/06/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. RESULTS Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R(2) = 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in A. fumigatus. CONCLUSIONS Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia by the human pathogenic mold A. fumigatus. As with other pathogenic fungi, the induction of glycolysis and transcriptional down-regulation of the TCA cycle and oxidative phosphorylation appear to major components of the hypoxia response in this pathogenic mold. In addition, a significant induction of the transcripts involved in ergosterol biosynthesis is consistent with previous observations in the pathogenic yeasts Candida albicans and Cryptococcus neoformans indicating conservation of this response to hypoxia in pathogenic fungi. Because ergosterol biosynthesis enzymes also require iron as a co-factor, the increase in iron uptake transcripts is consistent with an increased need for iron under hypoxia. However, unlike C. albicans and C. neoformans, the GABA shunt appears to play an important role in reducing NADH levels in response to hypoxia in A. fumigatus and it will be intriguing to determine whether this is critical for fungal virulence. Overall, regulatory mechanisms of the A. fumigatus hypoxia response appear to involve both transcriptional and post-transcriptional control of transcript and protein levels and thus provide candidate genes for future analysis of their role in hypoxia adaptation and fungal virulence.
Collapse
Affiliation(s)
- Bridget M Barker
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, MT, USA
| | | | | | | | | | | |
Collapse
|
38
|
Terabayashi Y, Shimizu M, Kitazume T, Masuo S, Fujii T, Takaya N. Conserved and specific responses to hypoxia in Aspergillus oryzae and Aspergillus nidulans determined by comparative transcriptomics. Appl Microbiol Biotechnol 2011; 93:305-17. [PMID: 22170104 DOI: 10.1007/s00253-011-3767-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/13/2011] [Accepted: 11/16/2011] [Indexed: 01/27/2023]
Abstract
Hypoxia imposes stress on filamentous fungi that require oxygen to proliferate. Global transcription analysis of Aspergillus oryzae grown under hypoxic conditions found that the expression of about 50% of 4,244 affected genes was either induced or repressed more than 2-fold. A comparison of these genes with the hypoxically regulated genes of Aspergillus nidulans based on their predicted amino acid sequences classified them as bi-directional best hit (BBH), one-way best hit (extra homolog, EH), and no-hit (non-syntenic genes, NSG) genes. Clustering analysis of the BBH genes indicated that A. oryzae and A. nidulans down-regulated global translation and transcription under hypoxic conditions, respectively. Under hypoxic conditions, both fungi up-regulated genes for alcohol fermentation and the γ-aminobutyrate shunt of the tricarboxylate cycle, whereas A. oryzae up-regulated the glyoxylate pathway, indicating that both fungi eliminate NADH accumulation under hypoxic conditions. The A. oryzae NS genes included specific genes for secondary and nitric oxide metabolism under hypoxic conditions. This comparative transcriptomic analysis discovered common and strain-specific responses to hypoxia in hypoxic Aspergillus species.
Collapse
Affiliation(s)
- Yasunobu Terabayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Franken ACW, Lokman BC, Ram AFJ, Punt PJ, van den Hondel CAMJJ, de Weert S. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 2011; 91:447-60. [PMID: 21687966 PMCID: PMC3136693 DOI: 10.1007/s00253-011-3391-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/01/2022]
Abstract
Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally produced in small amounts by basidiomycetes. Filamentous fungi like Aspergillus sp. are considered as suitable hosts for protein production due to their high capacity of protein secretion. For the purpose of peroxidase production, heme is considered a putative limiting factor. However, heme addition is not appropriate in large-scale production processes due to its high hydrophobicity and cost price. The preferred situation in order to overcome the limiting effect of heme would be to increase intracellular heme levels. This requires a thorough insight into the biosynthetic pathway and its regulation. In this review, the heme biosynthetic pathway is discussed with regards to synthesis, regulation, and transport. Although the heme biosynthetic pathway is a highly conserved and tightly regulated pathway, the mode of regulation does not appear to be conserved among eukaryotes. However, common factors like feedback inhibition and regulation by heme, iron, and oxygen appear to be involved in regulation of the heme biosynthesis pathway in most organisms. Therefore, they are the initial targets to be investigated in Aspergillus niger.
Collapse
Affiliation(s)
- Angelique C W Franken
- The Netherlands & Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Vödisch M, Scherlach K, Winkler R, Hertweck C, Braun HP, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O. Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J Proteome Res 2011; 10:2508-24. [PMID: 21388144 PMCID: PMC3091480 DOI: 10.1021/pr1012812] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dimensional gel electrophoresis analysis of mycelial and mitochondrial proteins as well as two-dimensional Blue Native/SDS-gel separation of mitochondrial membrane proteins led to the identification of 117 proteins with an altered abundance under hypoxic in comparison to normoxic conditions. Hypoxia induced an increased activity of glycolysis, the TCA-cycle, respiration, and amino acid metabolism. Consistently, the cellular contents in heme, iron, copper, and zinc increased. Furthermore, hypoxia induced biosynthesis of the secondary metabolite pseurotin A as demonstrated at proteomic, transcriptional, and metabolite levels. The observed and so far not reported stimulation of the biosynthesis of a secondary metabolite by oxygen depletion may also affect the survival of A. fumigatus in hypoxic niches of the human host. Among the proteins so far not implicated in hypoxia adaptation, an NO-detoxifying flavohemoprotein was one of the most highly up-regulated proteins which indicates a link between hypoxia and the generation of nitrosative stress in A. fumigatus. Aspergillus fumigatus is a ubiquitously distributed filamentous fungus and an important human pathogen. To colonize the human lung, A. fumigatus has to adapt to low oxygen concentrations. We analyzed the cytosolic and mitochondrial proteome of A. fumigatus under normoxic in comparison to hypoxic conditions using an oxygen-controlled chemostat. Hypoxia led to an increased respiratory capacity, induction of the biosynthesis of the secondary metabolite pseurotin A and presumably nitrosative stress.
Collapse
Affiliation(s)
- Martin Vödisch
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|