1
|
Bulanov AN, Andreeva EA, Tsvetkova NV, Zykin PA. Regulation of Flavonoid Biosynthesis by the MYB-bHLH-WDR (MBW) Complex in Plants and Its Specific Features in Cereals. Int J Mol Sci 2025; 26:734. [PMID: 39859449 PMCID: PMC11765516 DOI: 10.3390/ijms26020734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals. Published data revealed the following perspectives for further research: (1) In cereals, a large number of paralogs of MYC and MYB transcription factors are present, and their diversification has led to spatial and biochemical specialization, providing an opportunity to fine-tune the distribution and composition of flavonoid compounds; (2) Regulatory systems formed by MBW proteins in cereals possess distinctive features that are not yet fully understood and require further investigation; (3) Non-classical MB-EMSY-like complexes, WDR-independent MB complexes, and solely acting R2R3-MYB transcription factors are of particular interest for studying unique regulatory mechanisms in plants. More comprehensive understanding of flavonoid biosynthesis regulation will allow us to develop cereal varieties with the required flavonoid content and spatial distribution.
Collapse
Affiliation(s)
- Andrey N. Bulanov
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Elena A. Andreeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia V. Tsvetkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
| | - Pavel A. Zykin
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia;
| |
Collapse
|
2
|
Li H, Guo F, Zhao Y, Wang C, Fan Z, Feng Y, Ji X, Tao L, Ma C, Qian J, Zhao Y, Liu Q, Sehgal SK, Liu C, Liu W. Construction of a physical map for Aegilops geniculata chromosome 7M g and localization of its novel purple coleoptile gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:4. [PMID: 39658707 DOI: 10.1007/s00122-024-04792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
KEY MESSAGE A physical map of Aegilops geniculata chromosome 7Mg was constructed, and a novel purple coleoptile gene was localized at 7MgS bin FL 0.60-0.65 by development of wheat-Ae. geniculata structural aberrations. The development of wheat-wild relative chromosomal structure aberrations not only provides novel germplasm resources for wheat improvement, but also aids in mapping desirable genes to specific chromosomal regions. Aegilops geniculata (2n = 4x = 28, UgUgMgMg), a wild relative of common wheat, possesses many favorable genes. In this study, Ae. geniculata chromosome 7Mg was identified as harboring a purple coleoptile gene by phenotypic evaluation of Chinese Spring (CS)-Ae. geniculata addition and substitution lines. To construct a physical map of chromosome 7Mg and localize the purple coleoptile gene, 59 molecular markers specific to 7Mg were developed, and 43 wheat-Ae. geniculata 7Mg chromosome structure aberrations were generated based on chromosome centromeric breakage-fusion and ph1b-induced homoeologous recombination. Segment sizes and breakpoint positions of each 7Mg structure aberration were further characterized using in situ hybridization and molecular marker analysis. Consequently, a physical map of chromosome 7Mg was constructed with 59 molecular markers, comprising six bins with 28 markers on 7MgS and six bins with 31 markers on 7MgL, and the purple coleoptile gene was mapped to an interval of FL 0.60-0.65 on 7MgS. The newly developed wheat-Ae. geniculata 7Mg structural aberrations and the physical map of 7Mg will facilitate the transfer and utilization of desirable genes from 7Mg in the future.
Collapse
Affiliation(s)
- Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Fu Guo
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yanlong Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Chaoli Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ziwei Fan
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yajun Feng
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiang Ji
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Luna Tao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jiajun Qian
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Cheng Liu
- Crop Research Institution, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
3
|
Esposito S, Palombieri S, Vitale P, Angione G, D'Attilia C, Taranto F, Sestili F, De Vita P. Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:210. [PMID: 39198268 DOI: 10.1007/s00122-024-04710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
KEY MESSAGE Two allelic variants of Pp-A3 and Pp-B1 were identified in purple durum wheat. Molecular markers at both loci were developed and validated on an independent panel, offering a breakthrough for wheat improvement. Purple wheats are a class of cereals with pigmented kernels of particular interest for their antioxidant and anti-inflammatory properties. Although two complementary loci (Pp-B1 and Pp-A3), responsible for purple pericarp have been pinpointed in bread wheat (Triticum aestivum L.), in durum wheat (Triticum durum Desf.) the causative genes along with functional and non-functional alleles are still unknown. Here, using a quantitative trait loci (QTL) mapping approach on a RIL population derived from purple and non-purple durum wheat genotypes, we identified three major regions on chromosomes 2A, 3A, and 7B explaining the highest phenotypic variation (> 50%). Taking advantage of the Svevo genome, a MYB was reannotated on chromosome 7B and reported as a candidate for Pp-B1. An insertion of ~ 1.6 kb within the first exon led to a non-functional allele (TdPpm1b), whereas the functional allele (TdPpm1a) was characterized and released for the first time in durum wheat. Pp-A3 was instead identified as a duplicated gene, of which only one was functional. The promoter sequencing of the functional allele (TdPpb1a) revealed six 261-bp tandem repeats in purple durum wheat, whereas one unit (TdPpb1b) was found in the yellow once. Functional molecular markers at both loci were developed to precisely discriminate purple and not purple genotypes, representing a valuable resource for selecting superior purple durum lines at early growth stages. Overall, our results expand the understanding of the function of MYB and bHLH activators in durum wheat, paving new ways to explore cis-regulatory elements at the promoter level.
Collapse
Affiliation(s)
- Salvatore Esposito
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Via Università, 133, 80055, Portici, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Paolo Vitale
- International Maize and Wheat Improvement Center (CIMMYT), Edo. de Mexico, El Batan, Mexico
| | - Giuseppina Angione
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy
- Department of Agriculture, Food, Natural Science, Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Chiara D'Attilia
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Francesca Taranto
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Bari (CNR-IBBR), Via Amendola 165/A, 70126, Bari, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy.
| |
Collapse
|
4
|
Li J, Zhang C, Xu X, Su Y, Gao Y, Yang J, Xie C, Ma J. A MYB family transcription factor TdRCA1 from wild emmer wheat regulates anthocyanin biosynthesis in coleoptile. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:208. [PMID: 39181956 DOI: 10.1007/s00122-024-04723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
As important secondary metabolites in plants, anthocyanins not only contribute to colored plants organs, but also provide protections against various biotic and abiotic stresses. In this study, a MYB transcription factor gene TdRCA1 from wild emmer wheat regulating anthocyanin biosynthesis in wheat coleoptile was identified on the short arm of chromosome 7A in common wheat genetic background. The TdRCA1 overexpression lines showed colored callus, coleoptile, auricle and stem nodes, as well as up regulation of six anthocyanin-related structural genes. The expression of TdRCA1 was activated by light in a temporal manner. While coleoptile color of 48 and 60 h dark-grown seedlings changed from green to red after 24 h light treatment, those grown in dark for 72 and 96 h failed to develop red coleoptiles after light restoration. Interestingly, the over expression of TdRCA1 resulted in increased resistance to Fusarium crown rot, a chronic and severe fungal disease in many cereal growing regions in the world. Our results offer a better understanding of the molecular basis of coleoptile color in bread wheat.
Collapse
Affiliation(s)
- Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuqing Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiatian Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Saripalli G, Adhikari L, Amos C, Kibriya A, Ahmed HI, Heuberger M, Raupp J, Athiyannan N, Wicker T, Abrouk M, Wallace S, Hosseinirad S, Chhuneja P, Livesay J, Rawat N, Krattinger SG, Poland J, Tiwari V. Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits. Commun Biol 2023; 6:835. [PMID: 37573415 PMCID: PMC10423216 DOI: 10.1038/s42003-023-05189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.
Collapse
Affiliation(s)
- Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cameron Amos
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ashraf Kibriya
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sydney Wallace
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Seyedali Hosseinirad
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Janelle Livesay
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA.
| |
Collapse
|
6
|
Shoeva OY, Mukhanova MA, Zakhrabekova S, Hansson M. Ant13 Encodes Regulatory Factor WD40 Controlling Anthocyanin and Proanthocyanidin Synthesis in Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6967-6977. [PMID: 37104658 DOI: 10.1021/acs.jafc.2c09051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flavonoid compounds like anthocyanins and proanthocyanidins are important plant secondary metabolites having wide biological activities for humans. In this study, the molecular function of the Ant13 locus, which is one of the key loci governing flavonoid synthesis in barley, was determined. It was found that Ant13 encodes a WD40-type regulatory protein, which is required for transcriptional activation of a set of structural genes encoding enzymes of flavonoid biosynthesis at the leaf sheath base (colored by anthocyanins) and in grains (which accumulate proanthocyanidins). Besides its role in flavonoid biosynthesis, pleiotropic effects of this gene in plant growth were revealed. The mutants deficient in the Ant13 locus showed similar germination rates but a decreased rate of root and shoot growth and yield-related parameters in comparison to the parental cultivars. This is the seventh Ant locus (among 30) for which molecular functions in flavonoid biosynthesis regulation have been determined.
Collapse
Affiliation(s)
- Olesya Yu Shoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Kurchatov Center for Genome Research of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Marina A Mukhanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | | | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden
| |
Collapse
|
7
|
Sgaramella N, Nigro D, Pasqualone A, Signorile MA, Laddomada B, Sonnante G, Blanco E, Simeone R, Blanco A. Genetic Mapping of Flavonoid Grain Pigments in Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1674. [PMID: 37111897 PMCID: PMC10142998 DOI: 10.3390/plants12081674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Pigmented cereal grains with high levels of flavonoid compounds have attracted the attention of nutritional science backing the development of functional foods with claimed health benefits. In this study, we report results on the genetic factors controlling grain pigmentation in durum wheat using a segregant population of recombinant inbred lines (RILs) derived from a cross between an Ethiopian purple grain accession and an Italian amber grain cultivar. The RIL population was genotyped by the wheat 25K SNP array and phenotyped for total anthocyanin content (TAC), grain color, and the L*, a*, and b* color index of wholemeal flour, based on four field trials. The mapping population showed a wide variation for the five traits in the different environments, a significant genotype x environment interaction, and high heritability. A total of 5942 SNP markers were used for constructing the genetic linkage map, with an SNP density ranging from 1.4 to 2.9 markers/cM. Two quantitative trait loci (QTL) were identified for TAC mapping on chromosome arms 2AL and 7BS in the same genomic regions of two detected QTL for purple grain. The interaction between the two QTL was indicative of an inheritance pattern of two loci having complementary effects. Moreover, two QTL for red grain color were detected on chromosome arms 3AL and 3BL. The projection of the four QTL genomic regions on the durum wheat Svevo reference genome disclosed the occurrence of the candidate genes Pp-A3, Pp-B1, R-A1, and R-B1 involved in flavonoid biosynthetic pathways and encoding of transcription factors bHLH (Myc-1) and MYB (Mpc1, Myb10), previously reported in common wheat. The present study provides a set of molecular markers associated with grain pigments useful for the selection of essential alleles for flavonoid synthesis in durum wheat breeding programs and enhancement of the health-promoting quality of derived foods.
Collapse
Affiliation(s)
- Natalia Sgaramella
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (N.S.); (D.N.); (A.P.); (M.A.S.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (N.S.); (D.N.); (A.P.); (M.A.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (N.S.); (D.N.); (A.P.); (M.A.S.)
| | - Massimo Antonio Signorile
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (N.S.); (D.N.); (A.P.); (M.A.S.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Prov.le Monteroni, 73100 Lecce, Italy;
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy; (G.S.); (E.B.)
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy; (G.S.); (E.B.)
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (N.S.); (D.N.); (A.P.); (M.A.S.)
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (N.S.); (D.N.); (A.P.); (M.A.S.)
| |
Collapse
|
8
|
Meng G, Rasmussen SK, Christensen CSL, Fan W, Torp AM. Molecular breeding of barley for quality traits and resilience to climate change. Front Genet 2023; 13:1039996. [PMID: 36685930 PMCID: PMC9851277 DOI: 10.3389/fgene.2022.1039996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Barley grains are a rich source of compounds, such as resistant starch, beta-glucans and anthocyanins, that can be explored in order to develop various products to support human health, while lignocellulose in straw can be optimised for feed in husbandry, bioconversion into bioethanol or as a starting material for new compounds. Existing natural variations of these compounds can be used to breed improved cultivars or integrated with a large number of mutant lines. The technical demands can be in opposition depending on barley's end use as feed or food or as a source of biofuel. For example beta-glucans are beneficial in human diets but can lead to issues in brewing and poultry feed. Barley breeders have taken action to integrate new technologies, such as induced mutations, transgenics, marker-assisted selection, genomic selection, site-directed mutagenesis and lastly machine learning, in order to improve quality traits. Although only a limited number of cultivars with new quality traits have so far reached the market, research has provided valuable knowledge and inspiration for future design and a combination of methodologies to achieve the desired traits. The changes in climate is expected to affect the quality of the harvested grain and it is already a challenge to mitigate the unpredictable seasonal and annual variations in temperature and precipitation under elevated [CO2] by breeding. This paper presents the mutants and encoded proteins, with a particular focus on anthocyanins and lignocellulose, that have been identified and characterised in detail and can provide inspiration for continued breeding to achieve desired grain and straw qualities.
Collapse
Affiliation(s)
- Geng Meng
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Weiyao Fan
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anna Maria Torp
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
9
|
Shoeva OY, Kukoeva TV. Relationship between the anthocyanin content values in the leaf sheath base of barley cultivars and in the grain of the hybrids derived from them. PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2022. [DOI: 10.30901/2227-8834-2022-4-152-162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background. The development of barley cultivars accumulating anthocyanins in grain is an important task for breeding, which is based on the Ant1 and Ant2 genes that control synthesis of these compounds. To optimize the breeding strategy and selection of the initial material, quantitative assay of anthocyanin content in the leaf sheath base of barley cultivars was carried out and the relationship between this parameter for some of the barley cultivars and anthocyanin content in grain of the hybrids derived from them was evaluated.Materials and methods. The anthocyanin content in the leaf sheath base was studied in 32 barley cultivars in the tillering stage and in mature grains of 11 purple-grain hybrids selected from the hybrid populations using DNA-markers.Results and discussion. It was shown that there were quantitative differences in the anthocyanin content in the leaf sheath base among barley cultivars, which varied from 1 to 191 mg/kg. A cluster analysis helped to identify three groups of cultivars: with low, medium and high anthocyanin content. The hybrids from crossing cultivars differing in their anthocyanin content in the leaf sheath base with line P18, the donor of the dominant allele of the Ant2 gene, showed variation of the anthocyanin content in grain from 22 to 71 mg/kg. The observed differences among the hybrids were determined by the genotypes of individual plants and the allelic state of Ant2. A weak correlation (rs = 0.37, p = 0.0362) was shown between the anthocyanin contents in the leaf sheath base and in the grain of the obtained hybrids.Conclusion. The results of the study would help to optimize the breeding strategy for the development of new barley cultivars with high anthocyanin content in the grain and substantiate the need to test the anthocyanin content in the grain of individual lines.
Collapse
Affiliation(s)
- O. Yu. Shoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences;
Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - T. V. Kukoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences;
Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
10
|
Polyphenol and Anthocyanin Composition and Activity of Highland Barley with Different Colors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113411. [PMID: 35684349 PMCID: PMC9181920 DOI: 10.3390/molecules27113411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
In this research, the composition of free phenols, bound phenols, and anthocyanins and their in vitro antioxidant activity and in vitro α-glucosidase inhibiting activity were observed in different barley colors. The outcomes revealed that the contents of total phenols (570.78 mg/100 gDW), total flavonoids (47.08 mg/100 gDW), and anthocyanins (48.07 mg/100 g) were the highest in purple barley. Furthermore, the structure, composition, and concentration of phenolics differed depending on the colors of barley. The types and contents of bound total phenolic acids and flavonoids were greater than those of free total phenolic acids and flavonoids. The main phenolic acids in blue barley were cinnamic acid polyphenols, whereas in black, yellow, and purple barley, benzoic acid polyphenols were the main phenolic acids, and the main types of flavonoids in black and blue barley were chalcones and flavanones, respectively, whereas flavonol was the main type of flavonoid in yellow and purple barley. Moreover, cornflower pigment-3-glucoside was the major anthocyanin in blue, yellow, and purple barley, whereas the main anthocyanin in black barley was delphinidin-3-glucoside. The dark color of barley indicated richness in the anthocyanins. In addition, the free polyphenol fractions had stronger DPPH and ABTS radical scavenging capacity as compared to the bound ones. In vitro α-glucosidase-inhibiting activity was greater in bound polyphenols than in free polyphenols, with differences between different varieties of barley. Purple barley phenolic fractions had the greatest ABTS radical scavenging and iron ion reduction capacities, as well as the highest α-glucosidase-inhibiting activity. The strongest DPPH radical scavenging capacity was found in yellow barley, while the strongest in vitro α-glucosidase-inhibiting activity was found in anthocyanins isolated from black barley. Furthermore, in different colors of barley, there was a strong association between the concentration of specific phenolic compounds and antioxidant and α-glucosidase-inhibiting activities. The outcomes of this study revealed that all colored barley seeds tested were high in phenolic compounds, and had a good antioxidant impact and α-glucosidase-inhibiting activity. As a result, colored barley can serve as an antioxidant and hypoglycemic food. Polyphenols extracted from purple barley and anthocyanins extracted from black barley stand out among them.
Collapse
|
11
|
Flavonoid Biosynthesis Genes in Triticum aestivum L.: Methylation Patterns in Cis-Regulatory Regions of the Duplicated CHI and F3H Genes. Biomolecules 2022; 12:biom12050689. [PMID: 35625617 PMCID: PMC9138379 DOI: 10.3390/biom12050689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Flavonoids are a diverse group of secondary plant metabolites that play an important role in the regulation of plant development and protection against stressors. The biosynthesis of flavonoids occurs through the activity of several enzymes, including chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H). A functional divergence between some copies of the structural TaCHI and TaF3H genes was previously shown in the allohexaploid bread wheat Triticum aestivum L. (BBAADD genome). We hypothesized that the specific nature of TaCHI and TaF3H expression may be induced by the methylation of the promoter. It was found that the predicted position of CpG islands in the promoter regions of the analyzed genes and the actual location of methylation sites did not match. We found for the first time that differences in the methylation status could affect the expression of TaCHI copies, but not the expression of TaF3Hs. At the same time, we revealed significant differences in the structure of the promoters of only the TaF3H genes, while the TaCHI promoters were highly homologous. We assume that the promoter structure in TaF3Hs primarily affects the change in the nature of gene expression. The data obtained are important for understanding the mechanisms that regulate the synthesis of flavonoids in allopolyploid wheat and show that differences in the structure of promoters have a key effect on gene expression.
Collapse
|
12
|
Bajgain P, Li C, Anderson JA. Genome-wide association mapping and genomic prediction for kernel color traits in intermediate wheatgrass (Thinopyrum intermedium). BMC PLANT BIOLOGY 2022; 22:218. [PMID: 35477400 PMCID: PMC9047355 DOI: 10.1186/s12870-022-03616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Intermediate wheatgrass (IWG) is a novel perennial grain crop currently undergoing domestication. It offers important ecosystem benefits while producing grain suitable for human consumption. Several aspects of plant biology and genetic control are yet to be studied in this new crop. To understand trait behavior and genetic characterization of kernel color in IWG breeding germplasm from the University of Minnesota was evaluated for the CIELAB components (L*, a*, b*) and visual differences. Trait values were used in a genome-wide association scan to reveal genomic regions controlling IWG's kernel color. The usability of genomic prediction in predicting kernel color traits was also evaluated using a four-fold cross validation method. RESULTS A wide phenotypic variation was observed for all four kernel color traits with pairwise trait correlations ranging from - 0.85 to 0.27. Medium to high estimates of broad sense trait heritabilities were observed and ranged from 0.41 to 0.78. A genome-wide association scan with single SNP markers detected 20 significant marker-trait associations in 9 chromosomes and 23 associations in 10 chromosomes using multi-allelic haplotype blocks. Four of the 20 significant SNP markers and six of the 23 significant haplotype blocks were common between two or more traits. Evaluation of genomic prediction of kernel color traits revealed the visual score to have highest mean predictive ability (r2 = 0.53); r2 for the CIELAB traits ranged from 0.29-0.33. A search for candidate genes led to detection of seven IWG genes in strong alignment with MYB36 transcription factors from other cereal crops of the Triticeae tribe. Three of these seven IWG genes had moderate similarities with R-A1, R-B1, and R-D1, the three genes that control grain color in wheat. CONCLUSIONS We characterized the distribution of kernel color in IWG for the first time, which revealed a broad phenotypic diversity in an elite breeding germplasm. Identification of genetic loci controlling the trait and a proof-of-concept that genomic selection might be useful in selecting genotypes of interest could help accelerate the breeding of this novel crop towards specific end-use.
Collapse
Affiliation(s)
- Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Catherine Li
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
13
|
Recombinant inbred lines and next-generation sequencing enable rapid identification of candidate genes involved in morphological and agronomic traits in foxtail millet. Sci Rep 2022; 12:218. [PMID: 34997038 PMCID: PMC8742101 DOI: 10.1038/s41598-021-04012-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
We constructed recombinant inbred lines (RILs) between a Japanese and a Taiwanese landrace of foxtail millet and employed next-generation sequencing, such as flexible ddRAD-seq and Nanopore sequencing to identify the candidate genes involved in the crop evolution of foxtail millet. We successfully constructed a linkage map using flexible ddRAD-seq with parents and RILs and detected major QTLs for each of three traits: leaf sheath colors, spikelet-tipped bristles (stb), and days to heading (DTH). (1) For leaf sheath colors, we identified the C gene on chromosome IV. (2) We identified a homeobox (HOX14) gene for stb on chromosome II, which shows homology with HvVrs1 in barley. (3) Finally, we identified a QTL with a large effect on DTH on chromosome II. A parent of the RILs from Taiwan and Yugu1 had a Harbinger-like TE in intron 3 of this gene. We also investigated the geographical distribution of the TE insertion type of this gene and found that the insertion type is distributed in the northern part of East Asia and intensively in South and Southeast Asia, suggesting that loss/reduction of function of this gene plays an important role in spreading into the northern part of East Asia and subtropical and tropical zones.
Collapse
|
14
|
Glagoleva A, Kukoeva T, Mursalimov S, Khlestkina E, Shoeva O. Effects of Combining the Genes Controlling Anthocyanin and Melanin Synthesis in the Barley Grain on Pigment Accumulation and Plant Development. AGRONOMY 2022; 12:112. [PMID: 0 DOI: 10.3390/agronomy12010112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Anthocyanins and melanins are phenolic pigments of plants and accumulate in seed envelopes of the barley grain, thereby giving them a blue, purple, or black color. To explore the effects of combined accumulation of anthocyanins and melanins in the grain, a barley near-isogenic line (NIL), characterized by simultaneous accumulation in both pigments, was developed using a marker-assisted approach. The presence of both pigments in the grain pericarp was evaluated by light microscopy. Emergence of anthocyanin pigmentation proved to be temporally separated from that of melanin, and the formation of anthocyanin pigments began at an earlier stage of spike maturation. During spike maturation, a significantly higher total anthocyanin content was noted in the created NIL than in the parental anthocyanin-accumulating NIL, indicating a positive influence of the Blp1 gene on the anthocyanin content at some developmental stages. In a comparative analysis of yield components, it was found that the observed differences between the barley NILs are possibly caused by environmental factors, and the presence of pigments does not decrease plant productivity. Our results should facilitate investigation into genetic mechanisms underlying overlaps in the biosynthesis of pigments and into breeding strategies aimed at the enrichment of barley varieties with polyphenols.
Collapse
|
15
|
Wang F, Ji G, Xu Z, Feng B, Zhou Q, Fan X, Wang T. Metabolomics and Transcriptomics Provide Insights into Anthocyanin Biosynthesis in the Developing Grains of Purple Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11171-11184. [PMID: 34529412 DOI: 10.1021/acs.jafc.1c01719] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purple wheat is thought to have beneficial effects on humans owing to its high anthocyanin content. However, a systematic understanding of the anthocyanin biosynthesis process in developing wheat grain is lacking. Here, the dynamic changes in anthocyanin components and transcripts in the grain of purple wheat ZNM168 at five developmental stages (10, 15, 20, 25, and 30 DAF) were characterized. Compared with other anthocyanins, four components, cyanidin 3-O-rutinoside, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, and malvidin 3-O-glucoside, were significantly accumulated with grain development. In particular, the considerable accumulation of cyanidin 3-O-rutinoside indicated that it was the pivotal pigment for the purple grain. Transcriptome analysis revealed that the nine differentially expressed genes related to anthocyanin biosynthesis belonged to the BZ1 group, the homologous enzyme encoded by the maize Bronze-1 locus, which may primarily serve to glucosylate anthocyanidins. By constructing a gene coexpression network based on weighted gene coexpression network analysis, the TaBZ1 UniGene (TraesCS1D02G019200) was predicted as a core gene in anthocyanin biosynthesis. In addition, correlation analysis between the metabolites and transcripts suggested that TraesCS2A01G527700 (TaCHS) and TraesCS6B01G006200 (TaANS) were considered critical structural genes in the anthocyanin biosynthesis pathway. This study provides insights to exploit genes pinpointed as genetic engineering targets, thereby breeding anthocyanin-enriched wheat.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Zhou C, Zeng Z, Suo J, Li X, Bian H, Wang J, Zhu M, Han N. Manipulating a Single Transcription Factor, Ant1, Promotes Anthocyanin Accumulation in Barley Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5306-5317. [PMID: 33908247 DOI: 10.1021/acs.jafc.0c08147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Barley has abundant anthocyanin-rich accessions, which renders it an ideal model to investigate the regulatory mechanism of anthocyanin biosynthesis. This study functionally characterized two transcription factors: Ant1 and Ant2. Sequence alignment showed that the coding sequences of Ant1 and Ant2 are conserved among 11 colored hulless barley and noncolored barley varieties. The expression profiles of Ant1 and Ant2 were divergent between species, and significantly higher expression was found in two colored Qingke accessions. The co-expression of Ant1 and Ant2 resulted in purple pigmentation in transient transformation systems via the promotion of the transcription of four structural genes. Ant1 interacted with Ant2, and overexpression of Ant1 activated the transcription of Ant2. Moreover, overexpression of Ant1 led to anthocyanin accumulation in the pericarp and aleurone layer of transgenic barley grains. Overall, our results suggest that anthocyanin-enriched barley grains can be produced by manipulating Ant1 expression.
Collapse
Affiliation(s)
- Chenlu Zhou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Zhanghui Zeng
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Jingqi Suo
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Xipu Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Junhui Wang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| |
Collapse
|
17
|
Bioactive Components in Oat and Barley Grain as a Promising Breeding Trend for Functional Food Production. Molecules 2021; 26:molecules26082260. [PMID: 33919686 PMCID: PMC8069901 DOI: 10.3390/molecules26082260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cereal crops, such as oats and barley, possess a number of valuable properties that meet the requirements for functional diet components. This review summarized the available information about bioactive compounds of oat and barley grain. The results of studying the structure and physicochemical properties of the cell wall polysaccharides of barley and oat are presented. The main components of the flavonoids formation pathway are shown and data, concerning anthocyanins biosynthesis in various barley tissues, are discussed. Moreover, we analyzed the available information about structural and regulatory genes of anthocyanin biosynthesis in Hordeum vulgare L. genome, including β-glucan biosynthesis genes in Avena sativa L species. However, there is not enough knowledge about the genes responsible for biosynthesis of β-glucans and corresponding enzymes and plant polyphenols. The review also covers contemporary studies about collections of oat and barley genetic resources held by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR). This review intended to provide information on the processes of biosynthesis of biologically active compounds in cereals that will promote further researches devoted to transcription factors controlling expression of structural genes and their role in other physiological processes in higher plants. Found achievements will allow breeders to create new highly productive varieties with the desirable properties.
Collapse
|
18
|
Yang CJ, Russell J, Ramsay L, Thomas W, Powell W, Mackay I. Overcoming barriers to the registration of new plant varieties under the DUS system. Commun Biol 2021; 4:302. [PMID: 33686157 PMCID: PMC7940638 DOI: 10.1038/s42003-021-01840-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/08/2021] [Indexed: 01/30/2023] Open
Abstract
Distinctness, Uniformity and Stability (DUS) is an intellectual property system introduced in 1961 by the International Union for the Protection of New Varieties of Plants (UPOV) for safeguarding the investment and rewarding innovation in developing new plant varieties. Despite the rapid advancement in our understanding of crop biology over the past 60 years, the DUS system has changed little and is still largely dependent upon a set of morphological traits for testing candidate varieties. As the demand for more plant varieties increases, the barriers to registration of new varieties become more acute and thus require urgent review to the system. To highlight the challenges and remedies in the current system, we evaluated a comprehensive panel of 805 UK barley varieties that span the entire history of DUS testing. Our findings reveal the system deficiencies such as inconsistencies in DUS traits across environments, limitations in DUS trait combinatorial space, and inadequacies in currently available DUS markers. We advocate the concept of genomic DUS and provide evidence for a shift towards a robust genomics-enabled registration system for new crop varieties.
Collapse
Affiliation(s)
- Chin Jian Yang
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Luke Ramsay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - William Thomas
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Ian Mackay
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
- IMplant Consultancy Ltd., Chelmsford, UK.
| |
Collapse
|
19
|
Strygina KV. Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Hu W, Zhou T, Han Z, Tan C, Xing Y. Dominant complementary interaction between OsC1 and two tightly linked genes, Rb1 and Rb2, controls the purple leaf sheath in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2555-2566. [PMID: 32458058 DOI: 10.1007/s00122-020-03617-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/16/2020] [Indexed: 05/20/2023]
Abstract
Two tightly linked genes for rice purple leaf sheath were identified via map-based cloning. Further analysis indicated that these two genes together with OsC1 co-regulating the purple leaf sheath. The purple color of the leaf sheath in rice is dependent on the accumulation of anthocyanins such as cyanidin 3-O-glucoside (C3G) and peonidin 3-O-glucoside (P3G). Although many genes related to leaf sheath color have been mapped, the genetic basis for leaf sheath color is not yet clear. Here, PSH1 (purple leaf sheath 1) was mapped to chromosome 1 using an F2 and a RIL population. Map-based cloning and transformation assays further divided PSH1 as two tightly linked bHLH genes, Rb1 and Rb2. Ectopic expression of these two genes resulted in substantial accumulation of C3G and P3G in the leaf blade, leaf sheath and pericarp. Single gene mutants displayed a faded purple leaf sheath or green leaf sheath in the top half of the leaf sheath, but double mutants displayed a green leaf sheath, indicating that both genes have dosage effects on anthocyanin synthesis. However, overexpression of Rb1 and Rb2 sharply decreased grain filling. A segregation ratio of green to purple was 15:1 observed in the F2 population from parents Minghui 63 and Xizang 2, which both had green leaf sheaths; these results demonstrate that dominant complementary interaction between OsC1 and Rb (Rb1 and Rb2) controls the purple leaf sheath. These findings systematically uncovered the genetic basis of leaf sheath color and provided alternative genes for breeding anthocyanin-rich rice.
Collapse
Affiliation(s)
- Wei Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianhao Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong Tan
- China National GeneBank, Shenzhen, 518120, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Zeng X, Yuan H, Dong X, Peng M, Jing X, Xu Q, Tang T, Wang Y, Zha S, Gao M, Li C, Shu C, Wei Z, Qimei W, Basang Y, Dunzhu J, Li Z, Bai L, Shi J, Zheng Z, Yu S, Fernie AR, Luo J, Nyima T. Genome-wide Dissection of Co-selected UV-B Responsive Pathways in the UV-B Adaptation of Qingke. MOLECULAR PLANT 2020; 13:112-127. [PMID: 31669581 DOI: 10.1016/j.molp.2019.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 05/03/2023]
Abstract
Qingke (Tibetan hulless barley) has long been cultivated and exposed to long-term and strong UV-B radiation on the Tibetan Plateau, which renders it an ideal species for elucidating novel UV-B responsive mechanisms in plants. Here we report a comprehensive metabolite profiling and metabolite-based genome-wide association study (mGWAS) using 196 diverse qingke and barley accessions. Our results demonstrated both constitutive and induced accumulation, and common genetic regulation, of metabolites from different branches of the phenylpropanoid pathway that are involved in UV-B protection. A total of 90 significant mGWAS loci for these metabolites were identified in barley-qingke differentiation regions, and a number of high-level metabolite trait alleles were found to be significantly enriched in qingke, suggesting co-selection of various phenylpropanoids. Upon dissecting the entire phenylpropanoid pathway, we identified some key determinants controlling natural variation of phenylpropanoid content, including three novel proteins, a flavone C-pentosyltransferase, a tyramine hydroxycinnamoyl acyltransferase, and a MYB transcription factor. Our study, furthermore, demonstrated co-selection of both constitutive and induced phenylpropanoids for UV-B protection in qingke.
Collapse
Affiliation(s)
- Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xuekui Dong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; VIB-UGent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde, 71, 9052 Ghent, Belgium
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Sang Zha
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Meng Gao
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Congzhi Li
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Chujin Shu
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Zexiu Wei
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Agricultural Resources and Environment Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Wangmu Qimei
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuzhen Basang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Jiabu Dunzhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Zeqing Li
- Wuhan Igenebook Biotechnology Co., Ltd., Wuhan, China
| | - Lijun Bai
- Chengdu Life Baseline Technology Co., Ltd, Chengdu, 610041, China
| | - Jian Shi
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Zhigang Zheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Crops, Hainan University, Haikou, Hainan 572208, China.
| | - Tashi Nyima
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China.
| |
Collapse
|
22
|
Zhao S, Xi X, Zong Y, Li S, Li Y, Cao D, Liu B. Overexpression of ThMYC4E Enhances Anthocyanin Biosynthesis in Common Wheat. Int J Mol Sci 2019; 21:E137. [PMID: 31878210 PMCID: PMC6982250 DOI: 10.3390/ijms21010137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The basic helix-loop helix (bHLH) transcription factor has been inferred to play an important role in blue and purple grain traits in common wheat, but to date, its overexpression has not been reported. In this study, the bHLH transcription factor ThMYC4E, the candidate gene controlling the blue grain trait from Th. Ponticum, was transferred to the common wheat JW1. The positive transgenic lines displayed higher levels of purple anthocyanin pigments in their grains, leaves and glumes. Stripping the glumes (light treatment) caused white grains to become purple in transgenic lines. RNA-Seq and qRT-PCR analysis demonstrated that the transcript levels of structural genes associated with anthocyanin biosynthesis were higher in transgenic wheat than the wild-type (WT), which indicated that ThMYC4E activated anthocyanin biosynthesis in the transgenic lines. Correspondingly, the anthocyanin contents in grains, roots, stems, leaves and glumes of transgenic lines were higher than those in the WT. Metabolome analysis demonstrated that the anthocyanins were composed of cyanidin and delphinidin in the grains of the transgenic lines. Moreover, the transgenic lines showed higher antioxidant activity, in terms of scavenging DPPH radicals, in the ethanol extracts of their grains. The overexpression of ThMYC4E sheds light on the traits related to anthocyanin biosynthesis in common wheat and provide a new way to improve anthocyanin content.
Collapse
Affiliation(s)
- Shuo Zhao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyuan Xi
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
23
|
Riaz B, Chen H, Wang J, Du L, Wang K, Ye X. Overexpression of Maize ZmC1 and ZmR Transcription Factors in Wheat Regulates Anthocyanin Biosynthesis in a Tissue-Specific Manner. Int J Mol Sci 2019; 20:E5806. [PMID: 31752300 PMCID: PMC6887777 DOI: 10.3390/ijms20225806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Maize ZmC1 and ZmR transcription factors belong to the MYB-type and bHLH families, respectively, and control anthocyanin biosynthesis. In this study, Agrobacterium-mediated transformation was used to generate transgenic wheat plants that overexpress ZmC1 and ZmR or both, with the objective of developing anthocyanin-enriched wheat germplasm. Three kinds of stable transgenic wheat lines were obtained. The integration of target genes in the transgenic wheat plants was confirmed by fluorescence in situ hybridization (FISH) analysis. We found that single overexpression of ZmC1 regulates pigmentation in the vegetative tissues such as coleoptiles, auricles, and stems. The single overexpression of ZmR controls the coloration in reproductive tissue like spikelets and seeds. The simultaneous overexpression of ZmC1 and ZmR showed the strongest pigmentation in almost all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis revealed that expression of the two transgenes, and of two conserved homologous and six associated structural genes involved in anthocyanin biosynthesis in wheat were greatly up-regulated in the transgenic plants. Similarly, quantitative analysis for anthocyanin amounts based on HPLC-MS also confirmed that the transgenic wheat plants with combined overexpression of ZmC1 and ZmR accumulated the highest quantity of pigment products. Moreover, developing seeds overexpressing ZmR exposed to light conditions showed up-regulated transcript levels of anthocyanin biosynthesis-related genes compared to dark exposure, which suggests an important role of light in regulating anthocyanin biosynthesis. This study provides a foundation for breeding wheat materials with high anthocyanin accumulation and understanding the mechanism of anthocyanin biosynthesis in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| |
Collapse
|
24
|
Cao D, Fan J, Xi X, Zong Y, Wang D, Zhang H, Liu B. Transcriptome Analysis Identifies Key Genes Responsible for Red Coleoptiles in Triticum Monococcum. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24050932. [PMID: 30866466 PMCID: PMC6429503 DOI: 10.3390/molecules24050932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
Abstract
Red coleoptiles can help crops to cope with adversity and the key genes that are responsible for this trait have previously been isolated from Triticum aestivum, Triticum urartu, and Aegilops tauschii. This report describes the use of transcriptome analysis to determine the candidate gene that controls the trait for white coleoptiles in T. monococcum by screening three cultivars with white coleoptiles and two with red coleoptiles. Fifteen structural genes and two transcription factors that are involved in anthocyanin biosynthesis were identified from the assembled UniGene database through BLAST analysis and their transcript levels were then compared in white and red coleoptiles. The majority of the structural genes reflected lower transcript levels in the white than in the red coleoptiles, which implied that transcription factors related to anthocyanin biosynthesis could be candidate genes. The transcript levels of MYC transcription factor TmMYC-A1 were not significantly different between the white and red coleoptiles and all of the TmMYC-A1s contained complete functional domains. The deduced amino acid sequence of the MYB transcription factor TmMYB-A1 in red coleoptiles was homologous to TuMYB-A1, TaMYB-A1, TaMYB-B1, and TaMYB-D1, which control coleoptile color in corresponding species and contained the complete R2R3 MYB domain and the transactivation domain. TmMYB-a1 lost its two functional domains in white coleoptiles due to a single nucleotide deletion that caused premature termination at 13 bp after the initiation codon. Therefore, TmMYB-A1 is likely to be the candidate gene for the control of the red coleoptile trait, and its loss-of-function mutation leads to the white phenotype in T. monococcum.
Collapse
Affiliation(s)
- Dong Cao
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 800010, Qinghai, China.
| | - Jiequn Fan
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Xingyuan Xi
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
| | - Yuan Zong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 800010, Qinghai, China.
| | - Dongxia Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 800010, Qinghai, China.
| | - Huaigang Zhang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
| | - Baolong Liu
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
| |
Collapse
|
25
|
Abstract
Background The members of the Triticeae tribe are characterised by the presence of orthologous and homoeologous gene copies regulating flavonoid biosynthesis. Among transcription factors constituting a regulatory MBW complex, the greatest contribution to the regulation of flavonoid biosynthetic pathway is invested by R2R3-Myb-type TFs. Differently expressed R2R3-Myb copies activate the synthesis of various classes of flavonoid compounds in different plant tissues. The aim of this research was the identification, comparison and analysis of full-length sequences of the duplicated R2R3-Myb Mpc1 (Myb protein c1) gene copies in barley and wheat genomes. Results The Mpc1 genes were identified in homoeologous group 4 and 7 chromosomes: a total of 3 copies in barley (Hordeum vulgare L.) and 8 copies in bread wheat (Triticum aestivum L.) genomes. All Mpc1 genes have a similar two-exon structure, and almost all of them are transcriptionally active. The calculation of the divergence time revealed that first duplication between 4 and 7 chromosomes of the common ancestor of the Triticeae tribe occurred about 35–46 million years ago (MYA); the last duplication arised about 16–19 MYA before the divergence Triticum and Hordeum genera The connection between gene expression and the appearance of anthocyanin pigmentation was found for three genes from homoeologous group 4 chromosomes: TaMpc1-A2 (5AL) in wheat coleoptile, HvMpc1-H2 (4HL) in barley lemma and aleurone layer, and HvMpc1-H3 (4HL) in barley aleurone layer. TaMpc1-D4 (4DL) from the wheat genome showed a strong level of expression regardless of the colour of coleoptile or pericarp. It is assumed, that this gene regulates the biosynthesis of uncoloured flavonoids in analysed tissues. Conclusions The regulatory R2R3-Myb genes involved in anthocyanin synthesis were identified and characterised in Triticeae tribe species. Genes designated HvMpc1-H2 and HvMpc1-H3 appeared to be the main factors underlying intraspecific variation of H. vulgare by lemma and aleurone colour. TaMpc1-A2 is the co-regulator of the Mpc1–1 genes in bread wheat genome controlling anthocyanin synthesis in coleoptile. Electronic supplementary material The online version of this article (10.1186/s12862-019-1378-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ksenia V Strygina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090, Russia.
| | - Elena K Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str., 1, Novosibirsk, 630090, Russia.,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya Str., 42-44, St. Petersburg, 190000, Russia
| |
Collapse
|
26
|
Gordeeva EI, Glagoleva AY, Kukoeva TV, Khlestkina EK, Shoeva OY. Purple-grained barley (Hordeum vulgare L.): marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC PLANT BIOLOGY 2019; 19:52. [PMID: 30813902 PMCID: PMC6393963 DOI: 10.1186/s12870-019-1638-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Anthocyanins are plants secondary metabolites important for plant adaptation to severe environments and potentially beneficial to human health. Purple colour of barley grain is caused by the pigments synthesized in pericarp. One or two genes determine the trait. One of them is Ant2 mapped on chromosome 2HL and is known to encode transcription factor (TF) with a bHLH domain. In plants, bHLH regulates anthocyanin biosynthesis together with TF harboring an R2R3-MYB domain. In wheat, the R2R3-MYBs responsible for purple colour of grain pericarp are encoded by the homoallelic series of the Pp-1 genes that were mapped on the short arms of chromosomes 7. In barley, in orthologous positions to wheat's Pp-1, the Ant1 gene determining red colour of leaf sheath has been mapped. In the current study, we tested whether Ant1 has pleiotropic effect not only on leaf sheath colour but also on pericarp pigmentation. RESULTS А set of near isogenic lines (NILs) carrying different combinations of alleles at the Ant1 and Ant2 loci was created using markers-assisted backcrossing approach. The dominant alleles of both the Ant1 and Ant2 genes are required for anthocyanin accumulation in pericarp. A qRT-PCR analysis of the Ant genes in lemma and pericarp of the NILs revealed that some reciprocal interaction occurs between the genes. Expression of each of the two genes was up-regulated in purple-grained line with dominant alleles at the both loci. The lines carrying dominant allele either in the Ant1 or in the Ant2 locus were characterized by the decreased level of expression of the dominant gene and scant activity of the recessive one. The Ant1 and Ant2 expression was barely detected in uncolored line with recessive alleles at both loci. The anthocyanin biosynthesis structural genes were differently regulated: Chs, Chi, F3h, Dfr were transcribed in all lines independently on allelic state of the Ant1 and Ant2 genes, whereas F3'h and Ans were activated in presence on dominant alleles of the both regulatory genes. CONCLUSIONS The R2R3-MYB-encoding counterpart (Ant1) of the regulatory Ant2 gene was determined for the first time. The dominant alleles of both of them are required for activation of anthocyanin synthesis in barley lemma and pericarp. The R2R3-MYB + bHLH complex activates the synthesis via affecting expression of the F3'h and Ans structural genes. In addition, positive regulatory loop between Ant1 and Ant2 was detected. Earlier the interaction between the anthocyanin biosynthesis regulatory genes has been revealed in dicot plant species only. Our data demonstrated that the regulatory mechanism is considered to be more common for plant kingdom than it has been reported so far.
Collapse
Affiliation(s)
- Elena I. Gordeeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090 Russia
| | - Anastasiya Yu. Glagoleva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090 Russia
| | - Tatjana V. Kukoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090 Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova str., 1, Novosibirsk, 630090 Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), St. Petersburg, 190000 Russia
| | - Olesya Yu. Shoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090 Russia
| |
Collapse
|
27
|
Chaves-Silva S, Santos ALD, Chalfun-Júnior A, Zhao J, Peres LEP, Benedito VA. Understanding the genetic regulation of anthocyanin biosynthesis in plants - Tools for breeding purple varieties of fruits and vegetables. PHYTOCHEMISTRY 2018; 153:11-27. [PMID: 29803860 DOI: 10.1016/j.phytochem.2018.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 05/21/2023]
Abstract
Anthocyanins are naturally occurring flavonoids derived from the phenylpropanoid pathway. There is increasing evidence of the preventative and protective roles of anthocyanins against a broad range of pathologies, including different cancer types and metabolic diseases. However, most of the fresh produce available to consumers typically contains only small amounts of anthocyanins, mostly limited to the epidermis of plant organs. Therefore, transgenic and non-transgenic approaches have been proposed to enhance the levels of this phytonutrient in vegetables, fruits, and cereals. Here, were review the current literature on the anthocyanin biosynthesis pathway in model and crop species, including the structural and regulatory genes involved in the differential pigmentation patterns of plant structures. Furthermore, we explore the genetic regulation of anthocyanin biosynthesis and the reasons why it is strongly repressed in specific cell types, in order to create more efficient breeding strategies to boost the biosynthesis and accumulation of anthocyanins in fresh fruits and vegetables.
Collapse
Affiliation(s)
- Samuel Chaves-Silva
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA; Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Adolfo Luís Dos Santos
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA; Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Antonio Chalfun-Júnior
- Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lázaro E P Peres
- Department of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Vagner Augusto Benedito
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA.
| |
Collapse
|
28
|
Jiang W, Liu T, Nan W, Jeewani DC, Niu Y, Li C, Wang Y, Shi X, Wang C, Wang J, Li Y, Gao X, Wang Z. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2555-2567. [PMID: 29562292 PMCID: PMC5920291 DOI: 10.1093/jxb/ery101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/08/2018] [Indexed: 05/04/2023]
Abstract
Purple pericarps of bread wheat (Triticum aestivum L.) are a useful source of dietary anthocyanins. Previous mapping results indicated that the purple pericarp trait is controlled by two complementary genes located on chromosomes 7D and 2A. However, the identity of the genes and the mechanisms by which they regulate the trait are unknown. In this study, two transcription factors were characterised as anthocyanin activators in purple pericarps: TaPpm1 (purple pericarp-MYB 1) and TaPpb1 (purple pericarp-bHLH 1). Three non-functional variants were detected in the coding sequence of TaPpm1 from non-purple seed lines, in which the function of TaPpm1 was destroyed either by insertion-induced frame shifts or truncated peptides. There were six 261-bp tandem repeats in the promoter region of TaPpb1 in the purple-grained varieties, while there was only one repeat unit present in the non-purple varieties. Furthermore, using yeast two-hybrid, dual luciferase, yeast one-hybrid, and transient assays, we were able to demonstrate that the interaction of TaPpm1 and TaPpb1 co-regulates the synthesis of anthocyanin. Overall, our results provide a better understanding of the molecular basis of anthocyanin synthesis in the wheat pericarp and indicate the existence of an integrated regulatory mechanism that controls production.
Collapse
Affiliation(s)
- Wenhui Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenzhi Nan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Diddugodage Chamila Jeewani
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanlu Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Correspondence: or
| | | |
Collapse
|
29
|
Cao D, Ye G, Zong Y, Zhang B, Chen W, Liu B, Zhang H. AetMYC1, the Candidate Gene Controlling the Red Coleoptile Trait in Aegilops tauschii Coss. Accession As77. Molecules 2017; 22:molecules22122259. [PMID: 29258257 PMCID: PMC6149708 DOI: 10.3390/molecules22122259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
The red coleoptile trait can help monocotyledonous plants withstand stresses, and key genes responsible for the trait have been isolated from Triticum aestivum, Triticum urartu, and Triticum monococcum, but no corresponding research has been reported for Aegilops tauschii. In this research, transcriptome analysis was performed to isolate the candidate gene controlling the white coleoptile trait in Ae. tauschii. There were 5348 upregulated, differentially-expressed genes (DEGs) and 4761 downregulated DEGs in red coleoptile vs. white coleoptile plants. Among these DEGs, 12 structural genes and two transcription factors involved in anthocyanin biosynthesis were identified. The majority of structural genes showed lower transcript abundance in the white coleoptile of accession ‘As77’ than in the red coleoptile of accession ‘As60’, which implied that transcription factors related to anthocyanin biosynthesis could be the candidate genes. The MYB and MYC transcription factors AetMYB7D and AetMYC1 were both isolated from Ae. tauschii accessions ‘As60’ and ‘As77’, and their transcript levels analyzed. The coding sequence and transcript level of AetMYB7D showed no difference between ‘As60’ and ‘As77’. AetMYC1p encoded a 567-amino acid polypeptide in ‘As60’ containing the entire characteristic domains, bHLH-MYC_N, HLH, and ACT-like, belonging to the gene family involved in regulating anthocyanin biosynthesis. AetMYC1w encoded a 436-amino acid polypeptide in ‘As77’ without the ACT-like domain because a single nucleotide mutation at 1310 bp caused premature termination. Transient expression of AetMYC1p induced anthocyanin biosynthesis in ‘As77’ with the co-expression of AetMYB7D, while AetMYC1w could not cause induced anthocyanin biosynthesis under the same circumstances. Moreover, the transcript abundance of AetMYC1w was lower than that of AetMYC1p. AetMYC1 appears to be the candidate gene controlling the white coleoptile trait in Ae. tauschii, which can be used for potential biotech applications, such as producing new synthetic hexaploid wheat lines with different coleoptile colors.
Collapse
Affiliation(s)
- Dong Cao
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
- Northwest Institute of Plateau Biology, University of Chinese Academy of Sciences, Beijing 100049, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Guangji Ye
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, Xining 800010, China.
| | - Yuan Zong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, Xining 800010, China.
| | - Bo Zhang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Wenjie Chen
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Baolong Liu
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Huaigang Zhang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
30
|
Strygina KV, Börner A, Khlestkina EK. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC PLANT BIOLOGY 2017; 17:184. [PMID: 29143621 PMCID: PMC5688479 DOI: 10.1186/s12870-017-1122-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Among natural populations, there are different colours of barley (Hordeum vulgare L.). The colour of barley grains is directly related to the accumulation of different pigments in the aleurone layer, pericarp and lemma. Blue grain colour is due to the accumulation of anthocyanins in the aleurone layer, which is dependent on the presence of five Blx genes that are not sequenced yet (Blx1, Blx3 and Blx4 genes clustering on chromosome 4HL and Blx2 and Blx5 on 7HL). Due to the health benefits of anthocyanins, blue-grained barley can be considered as a source of dietary food. The goal of the current study was to identify and characterize components of the anthocyanin synthesis regulatory network for the aleurone layer in barley. RESULTS The candidate genes for components of the regulatory complex MBW (consisting of transcription factors MYB, bHLH/MYC and WD40) for anthocyanin synthesis in barley aleurone were identified. These genes were designated HvMyc2 (4HL), HvMpc2 (4HL), and HvWD40 (6HL). HvMyc2 was expressed in aleurone cells only. A loss-of-function (frame shift) mutation in HvMyc2 of non-coloured compared to blue-grained barley was revealed. Unlike aleurone-specific HvMyc2, the HvMpc2 gene was expressed in different tissues; however, its activity was not detected in non-coloured aleurone in contrast to a coloured aleurone, and allele-specific mutations in its promoter region were found. The single-copy gene HvWD40, which encodes the required component of the regulatory MBW complex, was expressed constantly in coloured and non-coloured tissues and had no allelic differences. HvMyc2 and HvMpc2 were genetically mapped using allele-specific developed CAPS markers developed. HvMyc2 was mapped in position between SSR loci XGBS0875-4H (3.4 cM distal) and XGBM1048-4H (3.4 cM proximal) matching the region chromosome 4HL where the Blx-cluster was found. In this position, one of the anthocyanin biosynthesis structural genes (HvF3'5'H) was also mapped using an allele-specific CAPS-marker developed in the current study. CONCLUSIONS The genes involved in anthocyanin synthesis in the barley aleurone layer were identified and characterized, including components of the regulatory complex MBW, from which the MYC-encoding gene (HvMyc2) appeared to be the main factor underlying variation of barley by aleurone colour.
Collapse
Affiliation(s)
- Ksenia V. Strygina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090 Russia
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben Germany
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova str., 1, Novosibirsk, 630090 Russia
| |
Collapse
|
31
|
Strygina KV, Khlestkina EK. MYC gene family in cereals: Transformations during evolution of hexaploid bread wheat and its relatives. Mol Biol 2017. [DOI: 10.1134/s0026893317050181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Zhang XW, Jiang QT, Wei YM, Liu C. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. PLoS One 2017; 12:e0183704. [PMID: 28832657 PMCID: PMC5568277 DOI: 10.1371/journal.pone.0183704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 11/19/2022] Open
Abstract
Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G) and cyanidin-3-glucoside (C3G), were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL) mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- CSIRO Agriculture & Food, St Lucia, Queensland, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Chunji Liu
- CSIRO Agriculture & Food, St Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
33
|
Zong Y, Xi X, Li S, Chen W, Zhang B, Liu D, Liu B, Wang D, Zhang H. Allelic Variation and Transcriptional Isoforms of Wheat TaMYC1 Gene Regulating Anthocyanin Synthesis in Pericarp. FRONTIERS IN PLANT SCIENCE 2017; 8:1645. [PMID: 28983311 PMCID: PMC5613136 DOI: 10.3389/fpls.2017.01645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/07/2017] [Indexed: 05/20/2023]
Abstract
Recently the TaMYC1 gene encoding bHLH transcription factor has been isolated from the bread wheat (Triticum aestivum L.) genome and shown to co-locate with the Pp3 gene conferring purple pericarp color. As a functional evidence of TaMYC1 and Pp3 being the same, higher transcriptional activity of the TaMYC1 gene in colored pericarp compared to uncolored one has been demonstrated. In the current study, we present additional strong evidences of TaMYC1 to be a synonym of Pp3. Furthermore, we have found differences between dominant and recessive Pp3(TaMyc1) alleles. Light enhancement of TaMYC1 transcription was paralleled with increased AP accumulation only in purple-grain wheat. Coexpression of TaMYC1 and the maize MYB TF gene ZmC1 induced AP accumulation in the coleoptile of white-grain wheat. Suppression of TaMYC1 significantly reduced AP content in purple grains. Two distinct TaMYC1 alleles (TaMYC1p and TaMYC1w) were isolated from purple- and white-grained wheat, respectively. A unique, compound cis-acting regulatory element had six copies in the promoter of TaMYC1p, but was present only once in TaMYC1w. Analysis of recombinant inbred lines showed that TaMYC1p was necessary but not sufficient for AP accumulation in the pericarp tissues. Examination of larger sets of germplasm lines indicated that the evolution of purple pericarp in tetraploid wheat was accompanied by the presence of TaMYC1p. Our findings may promote more systematic basic and applied studies of anthocyanins in common wheat and related Triticeae crops.
Collapse
Affiliation(s)
- Yuan Zong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai UniversityXining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Xinyuan Xi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Shiming Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- *Correspondence: Baolong Liu
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Daowen Wang
| | - Huaigang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai UniversityXining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- Huaigang Zhang
| |
Collapse
|
34
|
Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare. PLoS One 2016; 11:e0163782. [PMID: 27706214 PMCID: PMC5051897 DOI: 10.1371/journal.pone.0163782] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/14/2016] [Indexed: 01/12/2023] Open
Abstract
Barley grain at maturity can have yellow, purple, blue, and black pigmentations which are suggested to play a protective role under stress conditions. The first three types of the colors are caused by phenolic compounds flavonoids; the last one is caused by phytomelanins, oxidized and polymerized phenolic compounds. Although the genetic basis of the flavonoid biosynthesis pathway in barley has been thoroughly studied, there is no data yet on its regulation in purple and black barley grains. In the current study, genetic model of Hordeum vulgare ‘Bowman’ near-isogenic lines (NILs) was used to investigate the regulation of the flavonoid biosynthesis in white, purple, and black barley grains. Microsatellite genotyping revealed donor segments in the purple- and black-grained lines on chromosomes 2H (in region of the Ant2 gene determining purple color of grains) and 1H (in region of the Blp gene determining black lemma and pericarp), respectively. The isolated dominant Ant2 allele of the purple-grained line has high level of sequence similarity with the recessive Bowman’s ant2 in coding region, whereas an insertion of 179 bp was detected in promoter region of ant2. This structural divergence between Ant2 and ant2 alleles may underlie their different expression in grain pericarp: Bowman’s Ant2 is not transcribed, whereas it was up-regulated in the purple-grained line with coordinately co-expressed flavonoid biosynthesis structural genes (Chs, Chi, F3h, F3’h, Dfr, Ans). This led to total anthocyain content increase in purple-grained line identified by ultra-performance liquid chromatography (HPLC). Collectively, these results proved the regulatory function of the Ant2 gene in anthocyanin biosynthesis in barley grain pericarp. In the black-grained line, the specific transcriptional regulation of the flavonoid biosynthesis pathway genes was not detected, suggesting that flavonoid pigments are not involved in development of black lemma and pericarp trait.
Collapse
|
35
|
Gong X, Wheeler R, Bovill WD, McDonald GK. QTL mapping of grain yield and phosphorus efficiency in barley in a Mediterranean-like environment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1657-72. [PMID: 27193775 DOI: 10.1007/s00122-016-2729-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/05/2016] [Indexed: 05/05/2023]
Abstract
Key QTLs were identified for P efficiency in barley. Phosphorus efficiency and grain yield can be improved simultaneously in breeding. An important breeding goal for many crop species is improved phosphorus (P) efficiency. As in many other crops, selection for P efficient barley varieties has been slow because of inconsistent definitions of P efficiency and unknown genetic controls of P efficiency. We used two criteria to assess P efficiency in a doubled haploid Commander/Fleet population: P responsiveness (estimated as the deviation from the regression of yield with added P against yield with no added P treatment) and PUE (relative yield). Phosphorus responsiveness, PUE and grain yield were phenotyped at 0 and 30 kg P/ha in five environments. Lines consistently responsive to 30 kg P/ha across environments had the highest yield at the two P rates, and P responsiveness showed significantly higher broad sense heritability than PUE in the materials we studied. Genotyping of the population was subjected to a 9,000 single nucleotide polymorphism array and quantitative trait loci (QTLs) for P responsiveness were mapped with yield at 30 kg P/ha, which are common QTLs for yield when P was not limiting growth. The largest QTL for P responsiveness was mapped to 7HL in 2 years. PUE varied from 31 to 124 % across environments and one of the QTLs for PUE was mapped with yield at 0 kg P/ha. Our results demonstrate P responsiveness and grain yield can be improved simultaneously under high-input agricultural systems, but breeding for high PUE varieties may need to explore landrace or wild barley germplasm for low P tolerant alleles.
Collapse
Affiliation(s)
- Xue Gong
- School of Agriculture, Food and Wine, Waite Institute, PMB 1, Glen Osmond, SA, 5064, Australia.
| | - Rob Wheeler
- SARDI Sustainable Systems, Waite Campus, GPO 397, Adelaide, SA, 5001, Australia
| | | | - Glenn K McDonald
- School of Agriculture, Food and Wine, Waite Institute, PMB 1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
36
|
Dwivedi SL, Upadhyaya HD, Chung IM, De Vita P, García-Lara S, Guajardo-Flores D, Gutiérrez-Uribe JA, Serna-Saldívar SO, Rajakumar G, Sahrawat KL, Kumar J, Ortiz R. Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:763. [PMID: 27375635 PMCID: PMC4891577 DOI: 10.3389/fpls.2016.00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 05/29/2023]
Abstract
Phenylpropanoids are a diverse chemical class with immense health benefits that are biosynthesized from the aromatic amino acid L-phenylalanine. This article reviews the progress for accessing variation in phenylpropanoids in germplasm collections, the genetic and molecular basis of phenylpropanoid biosynthesis, and the development of cultivars dense in seed-phenylpropanoids. Progress is also reviewed on high-throughput assays, factors that influence phenylpropanoids, the site of phenylpropanoids accumulation in seed, Genotype × Environment interactions, and on consumer attitudes for the acceptance of staple foods rich in phenylpropanoids. A paradigm shift was noted in barley, maize, rice, sorghum, soybean, and wheat, wherein cultivars rich in phenylpropanoids are grown in Europe and North and Central America. Studies have highlighted some biological constraints that need to be addressed for development of high-yielding cultivars that are rich in phenylpropanoids. Genomics-assisted breeding is expected to facilitate rapid introgression into improved genetic backgrounds by minimizing linkage drag. More research is needed to systematically characterize germplasm pools for assessing variation to support crop genetic enhancement, and assess consumer attitudes to foods rich in phenylpropanoids.
Collapse
Affiliation(s)
- Sangam L. Dwivedi
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- Department of Agronomy, Kansas State UniversityManhattan, KS, USA
- UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
| | - Ill-Min Chung
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Pasquale De Vita
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la CerealicolturaFoggia, Italy
| | - Silverio García-Lara
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Janet A. Gutiérrez-Uribe
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Govindasamy Rajakumar
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Kanwar L. Sahrawat
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
37
|
A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis. Biochem Biophys Res Commun 2016; 469:686-91. [DOI: 10.1016/j.bbrc.2015.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
|
38
|
Himi E, Taketa S. Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy. Genome 2015; 58:43-53. [PMID: 25932661 DOI: 10.1139/gen-2014-0189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preharvest sprouting is a serious problem in grain crop production because it causes quality deterioration and economic losses. It is well known that grain colour is closely associated with grain dormancy in wheat; white-grained lines without accumulating proanthocyanidins in testa tend to be more susceptible to preharvest sprouting than red ones. All available white-grained wheat lines are restricted to triple recessive mutations at the R loci (R-A1, R-B1, and R-D1), but barley is known to have 11 independent loci conferring the proanthocyanidin-free grain phenotype. In this study, we evaluated the dormancy levels of anthocyanin/proanthocyanidin-free ant17 mutants. Three ant17 mutants showed the same levels of dormancy as their respective wild types. Sequencing of three independent ant17 alleles detected a point mutation within the coding regions of flavanone-3-hydroxylase (F3H), which are predicted to cause a premature stop codon at different sites. The F3H locus completely cosegregated with the Ant17 position on the chromosome arm 2HL. Expression of the barley F3H gene was observed in pigmented tissues, but not in nonpigmented roots and stems. This result indicates that wheat F3H may be a promising new target locus for breeding white-grained lines with a practical level of preharvest sprouting resistance.
Collapse
Affiliation(s)
- Eiko Himi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | | |
Collapse
|