1
|
Devi R, Verma R, Dhalaria R, Kumar A, Kumar D, Puri S, Thakur M, Chauhan S, Chauhan PP, Nepovimova E, Kuca K. A systematic review on endophytic fungi and its role in the commercial applications. PLANTA 2023; 257:70. [PMID: 36856911 DOI: 10.1007/s00425-023-04087-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
MAIN CONCLUSION EF have been explored for its beneficial impact on environment and for its commercial applications. It has proved its worth in these sectors and showed an impact on biological properties of plants by producing various bioactive molecules and enzymes. Endophytes are plant mutualists that live asymptomatically within plant tissues and exist in almost every plant species. Endophytic fungi benefit from the host plant nutrition, and the host plant gains improved competitive abilities and tolerance against pathogens, herbivores, and various abiotic stresses. Endophytic fungi are one of the most inventive classes which produce secondary metabolites and play a crucial role in human health and other biotic aspects. This review is focused on systematic study on the biodiversity of endophytic fungi in plants, and their role in enhancing various properties of plants such as antimicrobial, antimycobacterial, antioxidant, cytotoxic, anticancer, and biological activity of secondary metabolites produced by various fungal endophytes in host plants reported from 1994 to 2021. This review emphasizes the endophytic fungal population shaped by host genotype, environment, and endophytic fungi genotype affecting host plant. The impact of endophytic fungi has been discussed in detail which influences the commercial properties of plants. Endophytes also have an influence on plant productivity by increasing parameters such as nutrient recycling and phytostimulation. Studies focusing on mechanisms that regulate attenuation of secondary metabolite production in EF would provide much needed impetus on ensuring continued production of bioactive molecules from a indubitable source. If this knowledge is further extensively explored regarding fungal endophytes in plants for production of potential phytochemicals, then it will help in exploring a keen area of interest for pharmacognosy.
Collapse
Affiliation(s)
- Reema Devi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, 249405, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, H.P., 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Monika Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Saurav Chauhan
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Prem Parkash Chauhan
- Lal Bahadur Shastri Government Degree College, Saraswati Nagar, Shimla, H.P., 171206, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Tiwari P, Kang S, Bae H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res 2023; 266:127241. [DOI: 10.1016/j.micres.2022.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
3
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021. [PMID: 34835312 DOI: 10.1007/10.3390/microorganisms9112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021; 9:2186. [PMID: 34835312 PMCID: PMC8623577 DOI: 10.3390/microorganisms9112186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloë genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloë endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloë infection of grass and stressors affect the rhizosphere environment of the plant.
Collapse
Affiliation(s)
- Kendall Lee
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| | - Kishan Mahmud
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA;
| | - Holly Presley
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA; (K.L.); (H.P.)
| | - Marin Lonnee
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
6
|
Hettiarachchige IK, Vander Jagt CJ, Mann RC, Sawbridge TI, Spangenberg GC, Guthridge KM. Global Changes in Asexual Epichloë Transcriptomes during the Early Stages, from Seed to Seedling, of Symbiotum Establishment. Microorganisms 2021; 9:microorganisms9050991. [PMID: 34064362 PMCID: PMC8147782 DOI: 10.3390/microorganisms9050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Asexual Epichloë fungi are strictly seed-transmitted endophytic symbionts of cool-season grasses and spend their entire life cycle within the host plant. Endophyte infection can confer protective benefits to its host through the production of bioprotective compounds. Inversely, plants provide nourishment and shelter to the resident endophyte in return. Current understanding of the changes in global gene expression of asexual Epichloë endophytes during the early stages of host-endophyte symbiotum is limited. A time-course study using a deep RNA-sequencing approach was performed at six stages of germination, using seeds infected with one of three endophyte strains belonging to different representative taxa. Analysis of the most abundantly expressed endophyte genes identified that most were predicted to have a role in stress and defence responses. The number of differentially expressed genes observed at early time points was greater than those detected at later time points, suggesting an active transcriptional reprogramming of endophytes at the onset of seed germination. Gene ontology enrichment analysis revealed dynamic changes in global gene expression consistent with the developmental processes of symbiotic relationships. Expression of pathway genes for biosynthesis of key secondary metabolites was studied comprehensively and fuzzy clustering identified some unique expression patterns. Furthermore, comparisons of the transcriptomes from three endophyte strains in planta identified genes unique to each strain, including genes predicted to be associated with secondary metabolism. Findings from this study highlight the importance of better understanding the unique properties of individual endophyte strains and will serve as an excellent resource for future studies of host-endophyte interactions.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Christy J. Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Ross C. Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- Correspondence:
| |
Collapse
|
7
|
The Impact of Alkaloid-Producing Epichloë Endophyte on Forage Ryegrass Breeding: A New Zealand Perspective. Toxins (Basel) 2021; 13:toxins13020158. [PMID: 33670470 PMCID: PMC7922046 DOI: 10.3390/toxins13020158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/02/2022] Open
Abstract
For 30 years, forage ryegrass breeding has known that the germplasm may contain a maternally inherited symbiotic Epichloë endophyte. These endophytes produce a suite of secondary alkaloid compounds, dependent upon strain. Many produce ergot and other alkaloids, which are associated with both insect deterrence and livestock health issues. The levels of alkaloids and other endophyte characteristics are influenced by strain, host germplasm, and environmental conditions. Some strains in the right host germplasm can confer an advantage over biotic and abiotic stressors, thus acting as a maternally inherited desirable ‘trait’. Through seed production, these mutualistic endophytes do not transmit into 100% of the crop seed and are less vigorous than the grass seed itself. This causes stability and longevity issues for seed production and storage should the ‘trait’ be desired in the germplasm. This makes understanding the precise nature of the relationship vitally important to the plant breeder. These Epichloë endophytes cannot be ‘bred’ in the conventional sense, as they are asexual. Instead, the breeder may modulate endophyte characteristics through selection of host germplasm, a sort of breeding by proxy. This article explores, from a forage seed company perspective, the issues that endophyte characteristics and breeding them by proxy have on ryegrass breeding, and outlines the methods used to assess the ‘trait’, and the application of these through the breeding, production, and deployment processes. Finally, this article investigates opportunities for enhancing the utilisation of alkaloid-producing endophytes within pastures, with a focus on balancing alkaloid levels to further enhance pest deterrence and improving livestock outcomes.
Collapse
|
8
|
Bharadwaj R, Jagadeesan H, Kumar SR, Ramalingam S. Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity. World J Microbiol Biotechnol 2020; 36:92. [PMID: 32562008 DOI: 10.1007/s11274-020-02868-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.
Collapse
Affiliation(s)
- R Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - H Jagadeesan
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - S R Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - S Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
9
|
Novel bioassay to assess antibiotic effects of fungal endophytes on aphids. PLoS One 2020; 15:e0228813. [PMID: 32040957 PMCID: PMC7010463 DOI: 10.1371/journal.pone.0228813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
Perennial ryegrass is an important feed base for the dairy and livestock industries around the world. It is often infected with mutualistic fungal endophytes that confer protection to the plant against biotic and abiotic stresses. Bioassays that test their antibiotic effect on invertebrates are varied and range from excised leaves to whole plants. The aim of this study was to design and validate a "high-throughput" in-planta bioassay using 7-day-old seedlings confined in small cups, allowing for rapid assessments of aphid life history to be made while maintaining high replication and treatment numbers. Antibiosis was evaluated on the foliar and the root aphid species; Diuraphis noxia (Mordvilko) and Aploneura lentisci (Passerini) feeding on a range of perennial ryegrass-Epichloë festucae var. Lolii endophyte symbiota. As expected, both D. noxia and A. lentisci reared on endophyte-infected plants showed negatively affected life history traits by comparison to non-infected plants. Both species exhibited the highest mortality at the nymphal stage with an average total mortality across all endophyte treatments of 91% and 89% for D. noxia and A. lentisci respectively. Fecundity decreased significantly on all endophyte treatments with an average total reduction of 18% and 16% for D. noxia and A. lentisci respectively by comparison to non-infected plants. Overall, the bioassay proved to be a rapid method of evaluating the insecticidal activity of perennial ryegrass-endophyte symbiota on aphids (nymph mortality could be assessed in as little as 24 and 48 hours for D. noxia and A. lentisci respectively). This rapid and simple approach can be used to benchmark novel grass-endophyte symbiota on a range of aphid species that feed on leaves of plants, however we would caution that it may not be suitable for the assessment of root-feeding aphids, as this species exhibited relatively high mortality on the control as well.
Collapse
|
10
|
Hettiarachchige IK, Ludlow EJ, Ekanayake PN, Brohier ND, Sahab S, Sawbridge TI, Spangenberg GC, Guthridge KM. Generation of Epichloë Strains Expressing Fluorescent Proteins Suitable for Studying Host-Endophyte Interactions and Characterisation of a T-DNA Integration Event. Microorganisms 2019; 8:E54. [PMID: 31892173 PMCID: PMC7023320 DOI: 10.3390/microorganisms8010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
Methods for the identification and localisation of endophytic fungi are required to study the establishment, development, and progression of host-symbiont interactions, as visible reactions or disease symptoms are generally absent from host plants. Fluorescent proteins have proved valuable as reporter gene products, allowing non-invasive detection in living cells. This study reports the introduction of genes for two fluorescent proteins, green fluorescent protein (GFP) and red fluorescent protein, DsRed, into the genomes of two distinct perennial ryegrass (Lolium perenne L.)-associated Epichloë endophyte strains using A. tumefaciens-mediated transformation. Comprehensive characterisation of reporter gene-containing endophyte strains was performed using molecular genetic, phenotypic, and bioinformatic tools. A combination of long read and short read sequencing of a selected transformant identified a single complex T-DNA insert of 35,530 bp containing multiple T-DNAs linked together. This approach allowed for comprehensive characterisation of T-DNA integration to single-base resolution, while revealing the unanticipated nature of T-DNA integration in the transformant analysed. These reporter gene endophyte strains were able to establish and maintain stable symbiotum with the host. In addition, the same endophyte strain labelled with two different fluorescent proteins were able to cohabit the same plant. This knowledge can be used to provide the basis to develop strategies to gain new insights into the host-endophyte interaction through independent and simultaneous monitoring in planta throughout its life cycle in greater detail.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Emma J. Ludlow
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Natasha D. Brohier
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| |
Collapse
|
11
|
Berry D, Mace W, Grage K, Wesche F, Gore S, Schardl CL, Young CA, Dijkwel PP, Leuchtmann A, Bode HB, Scott B. Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proc Natl Acad Sci U S A 2019; 116:25614-25623. [PMID: 31801877 PMCID: PMC6926027 DOI: 10.1073/pnas.1913080116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) generate the core peptide scaffolds of many natural products. These include small cyclic dipeptides such as the insect feeding deterrent peramine, which is a pyrrolopyrazine (PPZ) produced by grass-endophytic Epichloë fungi. Biosynthesis of peramine is catalyzed by the 2-module NRPS, PpzA-1, which has a C-terminal reductase (R) domain that is required for reductive release and cyclization of the NRPS-tethered dipeptidyl-thioester intermediate. However, some PpzA variants lack this R domain due to insertion of a transposable element into the 3' end of ppzA We demonstrate here that these truncated PpzA variants utilize nonenzymatic cyclization of the dipeptidyl thioester to a 2,5-diketopiperazine (DKP) to synthesize a range of novel PPZ products. Truncation of the R domain is sufficient to subfunctionalize PpzA-1 into a dedicated DKP synthetase, exemplified by the truncated variant, PpzA-2, which has also evolved altered substrate specificity and reduced N-methyltransferase activity relative to PpzA-1. Further allelic diversity has been generated by recombination-mediated domain shuffling between ppzA-1 and ppzA-2, resulting in the ppzA-3 and ppzA-4 alleles, each of which encodes synthesis of a unique PPZ metabolite. This research establishes that efficient NRPS-catalyzed DKP biosynthesis can occur in vivo through nonenzymatic dipeptidyl cyclization and presents a remarkably clean example of NRPS evolution through recombinant exchange of functionally divergent domains. This work highlights that allelic variants of a single NRPS can result in a surprising level of secondary metabolite diversity comparable to that observed for some gene clusters.
Collapse
Affiliation(s)
- Daniel Berry
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Wade Mace
- Grasslands Research Centre, AgResearch Ltd., Palmerston North 4442, New Zealand
| | - Katrin Grage
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Frank Wesche
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sagar Gore
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | | | | | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Helge B Bode
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany;
- Buchmann Institute for Molecular Life Sciences, Goethe-Universität, 60438 Frankfurt am Main, Germany
- Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz (LOEWE) Centre for Translational Biodiversity Genomics, 60325 Frankfurt am Main, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand;
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
12
|
Wang R, Clarke BB, Belanger FC. Transcriptome Analysis of Choke Stroma and Asymptomatic Inflorescence Tissues Reveals Changes in Gene Expression in Both Epichloë festucae and Its Host Plant Festuca rubra subsp. rubra. Microorganisms 2019; 7:E567. [PMID: 31744076 PMCID: PMC6921078 DOI: 10.3390/microorganisms7110567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Many cool-season grasses have symbiotic relationships with Epichloë (Ascomycota, Clavicipitaceae) fungal endophytes that inhabit the intercellular spaces of the above-ground parts of the host plants. The presence of the Epichloë endophytes is generally beneficial to the hosts due to enhanced tolerance to biotic and abiotic stresses conferred by the endophytes. Many Epichloë spp. are asexual, and those infections always remain asymptomatic. However, some Epichloë spp. have a sexual stage and produce a macroscopic fruiting body, a stroma, that envelops the developing inflorescence causing a syndrome termed "choke disease". Here, we report a fungal and plant gene expression analysis of choke stroma tissue and asymptomatic inflorescence tissue of Epichloë festucae-infected strong creeping red fescue (Festuca rubra subsp. rubra). Hundreds of fungal genes and over 10% of the plant genes were differentially expressed when comparing the two tissue types. The differentially expressed fungal genes in the choke stroma tissue indicated a change in carbohydrate and lipid metabolism, as well as a change in expression of numerous genes for candidate effector proteins. Plant stress-related genes were up-regulated in the stroma tissue, suggesting the plant host was responding to the epiphytic stage of E. festucae as a pathogen.
Collapse
Affiliation(s)
| | | | - Faith C. Belanger
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (R.W.); (B.B.C.)
| |
Collapse
|
13
|
Ludlow EJ, Vassiliadis S, Ekanayake PN, Hettiarachchige IK, Reddy P, Sawbridge TI, Rochfort SJ, Spangenberg GC, Guthridge KM. Analysis of the Indole Diterpene Gene Cluster for Biosynthesis of the Epoxy-Janthitrems in Epichloë Endophytes. Microorganisms 2019; 7:microorganisms7110560. [PMID: 31766147 PMCID: PMC6921081 DOI: 10.3390/microorganisms7110560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023] Open
Abstract
Epoxy-janthitrems are a class of indole diterpenes with structural similarity to lolitrem B. Two taxa of asexual Epichloë endophytes have been reported to produce epoxy-janthitrems, LpTG-3 (Lolium perenne Taxonomic Group 3; e.g., NEA12) and LpTG-4 (e.g., E1). Epichloë epoxy-janthitrems are not well understood, the biosynthetic pathway and associated gene complement have not been described and while the literature suggests they are associated with superior protection against pasture insect pests and are tremorgenic in grazing mammals, these properties have not been confirmed using isolated and purified compounds. Whole genome sequence analysis was used to identify candidate genes for epoxy-janthitrem biosynthesis that are unique to epoxy-janthitrem producing strains of Epichloë. A gene, jtmD, was identified with homology to aromatic prenyl transferases involved in synthesis of indole diterpenes. The location of the epoxy-janthitrem biosynthesis gene cluster (JTM locus) was determined in the assembled nuclear genomes of NEA12 and E1. The JTM locus contains cluster 1 and cluster 2 of the lolitrem B biosynthesis gene cluster (LTM locus), as well as four genes jtmD, jtmO, jtm01, and jtm02 that are unique to Epichloë spp. that produce epoxy-janthitrems. Expression of each of the genes identified was confirmed using transcriptome analysis of perennial ryegrass-NEA12 and perennial ryegrass-E1 symbiota. Sequence analysis confirmed the genes are functionally similar to those involved in biosynthesis of related indole diterpene compounds. RNAi silencing of jtmD and in planta assessment in host-endophyte associations confirms the role of jtmD in epoxy-janthitrem production. Using LCMS/MS technologies, a biosynthetic pathway for the production of epoxy-janthitrems I-IV in Epichloë endophytes is proposed.
Collapse
Affiliation(s)
- Emma J. Ludlow
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Simone Vassiliadis
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Inoka K. Hettiarachchige
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Priyanka Reddy
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- Correspondence:
| |
Collapse
|
14
|
Vassiliadis S, Elkins AC, Reddy P, Guthridge KM, Spangenberg GC, Rochfort SJ. A Simple LC-MS Method for the Quantitation of Alkaloids in Endophyte-Infected Perennial Ryegrass. Toxins (Basel) 2019; 11:E649. [PMID: 31703425 PMCID: PMC6891275 DOI: 10.3390/toxins11110649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 11/25/2022] Open
Abstract
The rapid identification and quantitation of alkaloids produced by Epichloë endophyte-infected pasture grass is important for the agricultural industry. Beneficial alkaloids, such as peramine, provide the grass with enhanced insect protection. Conversely, ergovaline and lolitrem B can negatively impact livestock. Currently, a single validated method to measure these combined alkaloids in planta does not exist. Here, a simple two-step extraction method was developed for Epichloë-infected perennial ryegrass (Lolium perenne L.). Peramine, ergovaline and lolitrem B were quantified using liquid chromatography-mass spectrometry (LC-MS). Alkaloid linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision, selectivity, recovery, matrix effect and robustness were all established. The validated method was applied to eight different ryegrass-endophyte symbiota. Robustness was established by comparing quantitation results across two additional instruments; a triple quadruple mass spectrometer (QQQ MS) and by fluorescence detection (FLD). Quantitation results were similar across all three instruments, indicating good reproducibility. LOQ values ranged from 0.8 ng/mL to 6 ng/mL, approximately one hundred times lower than those established by previous work using FLD (for ergovaline and lolitrem B), and LC-MS (for peramine). This work provides the first highly sensitive quantitative LC-MS method for the accurate and reproducible quantitation of important endophyte-derived alkaloids.
Collapse
Affiliation(s)
- Simone Vassiliadis
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (A.C.E.); (P.R.); (K.M.G.); (G.C.S.); (S.J.R.)
| | - Aaron C. Elkins
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (A.C.E.); (P.R.); (K.M.G.); (G.C.S.); (S.J.R.)
| | - Priyanka Reddy
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (A.C.E.); (P.R.); (K.M.G.); (G.C.S.); (S.J.R.)
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (A.C.E.); (P.R.); (K.M.G.); (G.C.S.); (S.J.R.)
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (A.C.E.); (P.R.); (K.M.G.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (A.C.E.); (P.R.); (K.M.G.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
15
|
Slaughter LC, Nelson JA, Carlisle AE, Bourguignon M, Dinkins RD, Phillips TD, McCulley RL. Tall Fescue and E. coenophiala Genetics Influence Root-Associated Soil Fungi in a Temperate Grassland. Front Microbiol 2019; 10:2380. [PMID: 31749767 PMCID: PMC6843077 DOI: 10.3389/fmicb.2019.02380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
A constitutive, host-specific symbiosis exists between the aboveground fungal endophyte Epichloë coenophiala (Morgan-Jones & W. Gams) and the cool-season grass tall fescue (Lolium arundinaceum (Schreb.) Darbysh.), which is a common forage grass in the United States, Australia, New Zealand, and temperate European grasslands. New cultivars of tall fescue are continually developed to improve pasture productivity and animal health by manipulating both grass and E. coenophiala genetics, yet how these selected grass-endophyte combinations impact other microbial symbionts such as mycorrhizal and dark septate fungi remains unclear. Without better characterizing how genetically distinct grass-endophyte combinations interact with belowground microorganisms, we cannot determine how adoption of new E. coenophiala-symbiotic cultivars in pasture systems will influence long-term soil characteristics and ecosystem function. Here, we examined how E. coenophiala presence and host × endophyte genetic combinations control root colonization by belowground symbiotic fungi and associated plant nutrient concentrations and soil properties in a 2-year manipulative field experiment. We used four vegetative clone pairs of tall fescue that consisted of one endophyte-free (E-) and one E. coenophiala-symbiotic (E+) clone each, where E+ clones within each pair contained one of four endophyte genotypes: CTE14, CTE45, NTE16, or NTE19. After 2 years of growth in field plots, we measured root colonization of arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE), extraradical AMF hyphae in soil, total C, N, and P in root and shoot samples, as well as C and N in associated soils. Although we observed no effects of E. coenophiala presence or symbiotic genotype on total AMF or DSE colonization rates in roots, different grass-endophyte combinations altered AMF arbuscule presence and extraradical hyphal length in soil. The CTE45 genotype hosted the fewest AMF arbuscules regardless of endophyte presence, and E+ clones within NTE19 supported significantly greater soil extraradical hyphae compared to E- clones. Because AMF are often associated with improved soil physical characteristics and C sequestration, our results suggest that development and use of unique grass-endophyte combinations may cause divergent effects on long-term ecosystem properties.
Collapse
Affiliation(s)
- Lindsey C. Slaughter
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Jim A. Nelson
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - A. Elizabeth Carlisle
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Marie Bourguignon
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Randy D. Dinkins
- USDA–ARS, Forage-Animal Production Research Unit, Lexington, KY, United States
| | - Timothy D. Phillips
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Rebecca L. McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|